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Simple Summary: Mosquito-borne diseases lead to serious public health concerns in tropical and sub-
tropical countries worldwide. Due to the developed resistance to synthetic chemical insecticides, their
effects on the surrounding environment, and economic concerns, natural products are considered
promising agents to be used in vector control programs, due to their safety, low cost, and high activity.
Therefore, the aim of this study is to evaluate the larvicidal, developmental, and repellent activities of
the methanolic extract of Annickia chlorantha and its isolated compounds against the mosquito vector,
Culex pipiens, besides their toxicity to the non-target aquatic organism, the zebrafish (Danio rerio).
The results highlight the potential of A. chlorantha extract and its isolated compounds as effective
mosquitocidal agents with a very low toxic effect on non-target organisms.

Abstract: In this study, the crude extract and its isolated compounds from the stem bark of An-
nickia chlorantha were tested for their larvicidal, developmental, and repellent activity against the
mosquito vector, Culex pipiens, besides their toxicity to the non-target aquatic organism, the zebrafish
(Danio rerio). The acute larvicidal activity of isolated compounds; namely, palmatine, jatrorrhizine,
columbamine, β-sitosterol, and Annickia chlorantha methanolic extract (AC), was observed. Devel-
opmentally, the larval duration was significantly prolonged when palmatine and β-sitosterol were
applied, whereas the pupal duration was significantly prolonged for almost all treatments except
palmatine and jatrorrhizine, where it shortened from those in the control. Acetylcholinesterase
(AChE) enzyme showed different activity patterns, where it significantly increased in columbamine
and β-sitosterol, and decreased in (AC), palmatine, and jatrorrhizine treatments, whereas glutathione
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S-transferase (GST) enzyme was significantly increased when AC methanolic extract/isolated com-
pounds were applied, compared to the control. The adult emergence percentages were significantly
decreased in all treatments, whereas tested compounds revealed non-significant (p > 0.05) changes
in the sex ratio percentages, with a slight female-to-male preference presented in the AC-treated
group. Additionally, the tested materials revealed repellence action; interestingly, palmatine and
jatrorrhizine recorded higher levels of protection, followed by AC, columbamine, and β-sitosterol
for 7 consecutive hours compared to the negative and positive control groups. The non-target assay
confirms that the tested materials have very low toxic activity compared to the reported toxicity
against mosquito larvae. A docking simulation was employed to better understand the interaction of
the isolated compounds with the enzymes, AChE and GST. Additionally, DFT calculations revealed
that the reported larvicidal activity may be due to the differing electron distributions among tested
compounds. Overall, this study highlights the potential of A. chlorantha extract and its isolated
compounds as effective mosquitocidal agents with a very low toxic effect on non-target organisms.

Keywords: A. chlorantha; C. pipiens; non-target; bioactive compounds; DFT; docking

1. Introduction

Mosquitoes are considered to be serious threat for human health, since they trans-
mit the causative pathogens of many diseases; Culex pipiens (L.) has a wide distribution
worldwide and is considered the main vector of Rift Valley Fever virus, lymphatic filariasis,
Western Nile Virus, and other pathogens of public health importance. Chemical insecticides
have been used for long time. Besides their developed resistance in mosquitoes, synthetic
insecticides disturb the environmental balance and cause harmful effects to the non-target
habitat. As such, there is a critical need for searching for new products/by-products with
larvicidal or insecticidal properties that are less toxic to the non-target organisms [1–3].
Our non-target model used here is zebrafish (Danio rerio): they are small freshwater fish
characterized by their maintenance ease, rapid development, and good acclimatization in
laboratory conditions.

Plant products/by-products have become a promising alternative to synthetic chemical
insecticides [4–6]. Plants contain phytochemicals that belong to different classes, such as
steroids, alkaloids, terpenes, and phenolics. These phytochemicals have been investigated
by many researchers for their potential insecticidal activities, revealing environmentally
safe, cheap, biodegradable, and reliable alternative solutions to chemical strategies used in
insect control [7,8]. In addition to their safety for humans and the environment, insecticides
from a plant origin are characterized by broad-spectrum activity and relative specificity in
their mode of action, which pave the way for such materials to be used in the control of the
eggs, larvae, pupae, and adults of medical insects [9].

The discovery of novel compounds with insecticidal/mosquitocidal properties is crit-
ically needed to combat the developed resistance rates. Botanicals contain many active
phytochemicals with insecticidal properties, and may be considered as alternatives to
hazardous synthetic/chemical insecticides [10]. Among detoxification enzymes, acetyl-
cholinesterase (AChE) and glutathione S-transferase (GST) are key enzymes in insect
control strategies. AChE catalyzes the hydrolysis of the neurotransmitter (acetylcholine)
in the nervous system, which is affected by synthetic insecticides, botanical insecticides,
and secondary fungal metabolites [11], whereas GST plays a pivotal role in detoxifica-
tion and cellular antioxidant defenses against oxidative stress by conjugating reduced
glutathione to the electrophilic centers of natural and synthetic exogenous xenobiotics,
including insecticides [12].

Annickia chlorantha (Oliv.) Setten and Maas (family, Annonaceae) is known for several
medicinal uses. Decoctions, concoctions, and infusions of the stem bark of A. chlorantha
are used in the traditional health systems of Nigeria, Cameroon, and other West African
countries for the treatment of various ailments, such as stomach problems, rickettsia,
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typhoid fever, infective hepatitis, malaria, and tuberculosis [13]. A. chlorantha is locally
known as Awogba, Oso pupa or Dokita-igbo (Yoruba), Osomolu (Ikale), Kakerim (Boki), and
Erenba-vbogo (Bini). It is widely distributed along the coasts of West and Central Africa, and
is very common in the forest regions of Nigeria [13]. Previous phytochemical studies of the
stem bark of A. chlorantha resulted in the isolation of berberine and protoberberine alkaloids
possessing antimalarial [14], antibacterial [15], and trypanosomicidal properties [16]. The
current study aims to evaluate the larvicidal, developmental, and repellent activities of the
methanolic extract of Annickia chlorantha and its isolated compounds against the mosquito
vector, Culex pipiens, besides their toxicity to the non-target aquatic organism, the zebrafish
(Danio rerio).

2. Materials and Methods
2.1. Plant Sample

The plant species used here is Annickia chlorantha (Oliv.) Setten and Maas (formerly,
Enantia chlorantha). The origin of the plant used, collection, identification, deposited voucher
of plant specimen, preparation of extract, isolated compounds (Figure 1), and other related
information are published elsewhere [17].
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Figure 1. Chemical structures of the isolated compounds.

2.2. Mosquito Colony

The laboratory strain larvae of the mosquito, Culex pipiens, were collected from the
established colony at the insectary of Medical Entomology, Animal House, Faculty of
Science, Al-Azhar University, Cairo, Egypt. It was reared separately in 40-cm-diameter
white enamel bowls containing 1000 mL dechlorinated tap water under laboratory condi-
tions of 27 ± 2 ◦C, 75 ± 5% relative humidity, and a 14–10 h light and dark photoperiod.
Larvae were provided with fish food as their diet daily. Emerged adults were supplied
with cotton pieces soaked in a 10% sucrose solution. Females were fed on pigeons’ blood
for reproduction and development purposes. The deposited eggs were transferred gently
to (30 × 30 × 30 cm) wooden cadges supplied with plastic cups containing 500 mL distilled
water to allow hatching [18].
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2.3. Larvicidal Activity

The larvicidal activity of palmatine, jatrorrhizine, columbamine, β-sitosterol, and
Annickia chlorantha extract (AC) were evaluated against the mosquito vector, C. pipiens,
according to the World Health Organization bioassay for testing mosquito larvicides [19].
Briefly, twenty-five early-third-instar larvae were picked up from the established colony
and transferred to 500 mL plastic cups containing 249 mL dechlorinated tap water + 1 mL
of tested concentration solubilized in dimethyl sulphoxide (DMSO), which was employed
for the negative vehicle control. The larvae were then treated with different concentrations
of compounds; namely, palmatine (10, 20, 40, 60, and 80 µg/mL), jatrorrhizine (25, 50, 100,
150, and 200 µg/mL), columbamine (20, 40, 60, 80, and 100 µg/mL), β-sitosterol (50, 100,
150, 200, and 250 µg/mL), and AC (50, 100, 200, 300, and 400 µg/mL). The negative control
group was tested at the same conditions (25 larvae in 249 mL dechlorinated tap water +
1 mL DMSO). Mortality was recorded 24-h post-treatment. Each concentration was tested
in triplicates. More details about the larvicidal activity of tested materials are presented in
the Supplementary File (Tables S1–S5).

2.4. Developmental Durations

From the established colony, 25 newly hatched larvae were treated with the LC50
concentration of the AC methanolic extract/isolated compounds, alongside the untreated
(control) group. The larval developmental duration (days) of larval instars (L1–L4) was
estimated as the duration consumed by the larval instar to reach the next instar [20]. Pupal
developmental duration (hours) was estimated as the period between entering the pupal
stage and adult emergence [21]. For each treatment, three replicates were tested.

2.5. Biochemical Assay

From the established colony, the 1st-instar larvae were treated with the LC50 concen-
tration of tested materials, alongside the untreated (control) group. Each concentration was
tested in triplicates. Upon the emergence of the 3rd instar, fifty larvae were collected from
each treatment and homogenized in distilled water using a Teflon homogenizer dipped
in crushed ice for 5 min. The homogenized samples were centrifugated in a refrigerated
centrifuge at 6000 r.p.m for 10 min, and the supernatant was used for further biochemical
assays. Acetylcholinesterase (AChE) activity was evaluated using acetylcholine bromide
as a substrate [22], whereas glutathione S-transferase (GST) activity was evaluated using
1-chloro-2,4-dinitrobenzene as a substrate [23].

2.6. Adult Emergence and Sex Ratio

Twenty-five 3rd-instar larvae were picked up from the established colony and gently
transferred to separate cadges of standard capacity (30 × 30 × 30 cm). The larvae were
treated with the LC50 concentration of the AC methanolic extract/isolated compounds,
alongside the untreated (control) group. Treatments were observed until adult emergence.
Emerged adults were counted, and dead pupae were quantified and excluded to accurately
calculate adult emergence following Khazanie [24]. The sex ratio was calculated according
to the method of Shetty et al. [25]. The results were calculated as the mean ± standard error
(SE) of three replicates.

2.7. Repellency Test

The LC50 concentrations of the AC methanolic extract/isolated compounds were
directly applied on the ventral surface of the pigeon after removal of the abdominal feath-
ers, and left for 10 min, as previously described elsewhere [1]. The pigeons were placed,
for 2 h, in cages containing adult C. pipiens females starved for 72 h. Distilled water
with the same amount of DMSO was used as a negative control, whereas the commer-
cial repellent, DEET 15% (Johnson Wax, Egypt), was applied as a positive control. The
treatments were replicated three times in separate cages. Later, the numbers of fed and
unfed females were counted and calculated, as described by Abbott [26], as the following:
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repellency% = (A% − B%/100 − B%) × 100, where (A) is the percentage of unfed females
in treatment, and (B) the percentage of unfed females in control. For the repellency assay,
the tested animals received care in compliance with the guidelines of the Animal Research
Ethics Committee of Al-Azhar University (Egypt).

2.8. Toxicity to the Non-Target Organism

The zebrafish (Danio rerio) were collected from the established aquaria at the Labora-
tory of Fish Rearing, Animal House, Zoology Department, Faculty of Science, Al-Azhar
University, Cairo, Egypt. The tested animals received care in compliance with the guide-
lines of the Animal Research Ethics Committee of Al-Azhar University (Egypt). They
were acclimatized in circular aquaria with a volume of 1000 mL. Each aquarium contains
10 fish, supported with 24-h artificial aeration. The fish were fed on fish fodder with a
suitable pellet size. Triplicate experiments were performed according to Mount [27]. To
shed light on the effect of tested materials on our non-target model, thirty adults of healthy
zebrafish were exposed to 100, 200, 400, and 800 µg/mL of each tested material over the
course of 96 h. The control group was tested under the same conditions (10 fish in each
aquarium in triplicate with the same amount of DMSO), and then, mortality was recorded
96-h post-treatment. Toxicity (%) was estimated according to the formula of Deo et al. [28]:

Toxicity (%) =
LC50 o f target vector species

LC50 o f non − target organisms × 100

2.9. Statistical Analysis

Descriptive statistics, including the mean and SE, were calculated for each treatment.
The mean larval mortality data were subjected to probit analysis to calculate regression, and
LC50 and LC90 at 95% confidence limits. Analysis of variance, lower and upper confidence
limits, and chi-squared values for both tested mosquito and zebrafish mortalities were
performed using SPSS (IBM SPSS ver. 25). The Holm–Sidak post hoc test was used for
pairwise comparisons. Data are presented as the mean ± SE. The p-value was considered
significant at <0.05.

2.10. Molecular Modeling
2.10.1. Preparation of Small Molecule

The 3D structures for the tested compounds and reference inhibitors (glutathione and
difluoromethyl) were optimized using the PM3 semi-empirical Hamiltonian molecular
orbital calculation MOPAC16 package, as implemented in the MOE. 2015 package [29].

2.10.2. Selection of Proteins Structures

The docking experiment was carried out for the target active sites of AChE and GST.
AChE (PDB ID: 6ARY Cheung et al. [30]) and GST (PDB ID: 1JLV Oakley et al. [31]) proteins
were extracted from (https://www.rcsb.org/, accessed on 7 September 2021). The crystal
structure of an insecticide-resistant acetylcholinesterase mutant from the malaria vector,
Anopheles gambiae, and the crystal structure of glutathione S-transferases isozymes from An.
dirus species were obtained. MOE 2015 was used for correcting errors of the active sites
by the structure preparation process in MOE. After the correction, hydrogens were added,
and partial charges (Amber12: EHT) were calculated. Energy minimization (AMBER12:
EHT, root mean square gradient: 0.100) was performed.

2.10.3. Binding Site Analysis

The binding site of the receptor was identified through the MOE. The Site Finder
program uses a geometric approach to calculate putative binding sites in a protein, starting
from its tridimensional structure. This method is not based on energy models, but only on
alpha spheres, which are a generalization of convex hulls. The prediction of the binding

https://www.rcsb.org/
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sites, performed by the MOE Site Finder module, confirmed the binding sites defined by
the co-crystallized ligands in the holo-forms of the investigated proteins.

2.10.4. MOE Stepwise Docking Method

The crystal structure of the enzymes was obtained. The parameters and charges were
assigned with the MMFF94x force field. Alpha-site spheres were generated using the Site
Finder module of MOE. The optimized 3D structure of the compounds and the reference
inhibitors were subjected to generate different poses of the ligand using the triangular
matcher placement method, which generates poses by aligning ligand triplets of atoms on
triplets of alpha spheres represented in the receptor site points; a random triplet of alpha
sphere centers was used to determine the pose during each iteration. The pose generated
was rescored using the London dG. scoring function. The poses generated were refined
with the MMFF94x force field; also, the solvation effects were treated. The Born solvation
model (GB/VI) was used to calculate the final energy, and the final poses were assigned a
score based on the free energy in Kcal/mol.

2.10.5. Computational Methods

The structures of the isolated compounds were drawn in Gauss View 6.0, and the four
structures were optimized using DFT-B3LYP/6-31G methods in Gaussian 09 software. The
four optimized geometries are at the minimal point on the potential surface, according to
no imaginary frequencies.

3. Results

The early-third-instar Culex pipiens larvae were treated with different concentrations of
tested compounds and the Annickia chlorantha extract (AC), alongside the control. According to
(Table 1), the obtained LC50 and LC90 confirmed the larvicidal activity of both AC and isolated
compounds. Palmatine had the lowest LC50, which was 33.392 µg/mL (27.366–40.343), and an
LC90 of 81.522 µg/mL (63.405–122.239), whereas AC had the highest LC50 of 162.630 µg/mL
(144.472–182.347), and an LC90 of 433.95 µg/mL (365.123–546.16), with no recorded mortality
in the control group. According to the LC50 and LC90, AC and its isolated compounds can
be arranged as follows: palmatine, columbamine, jatrorrhizine, β-sitosterol, and (AC). The
increased chi-squared values for both AC and the isolated compounds indicate the homogeneity
of the tested population.

Table 1. Larvicidal activity of the palmatine, jatrorrhizine, columbamine, β-sitosterol, and Annickia
chlorantha extract (AC) against the third-instar larvae of the mosquito, Culex pipiens, 24-h post-treatment.

Compounds
(µg/mL) A. chlorantha (AC) Palmatine Jatrorrhizine Columbamine β-Sitosterol

LC50
(LCL–UCL)

(µg/mL)
162.630

(144.472–182.347)
33.392

(27.366–40.343)
91.343

(74.861–110.929)
61.440

(53.260–70.980)
123.236

(52.365–210.466)

LC90
(LCL–UCL)

(µg/mL)
433.95

(365.123–546.16)
81.522

(63.405–122.239)
228.135

(174.962–354.875)
119.542

(97.470–171.995)
254.709

(166.189–4711.963)

Regression equation Y = 0.2499X − 1.0163 Y = 1.3293X − 5.1626 Y = 0.5161X − 6.7236 Y = 1.1267X − 23.867 Y = 0.456X − 14.267

Statistic summary d. f. = 5,
p < 0.001

d. f. = 5,
p < 0.001

d. f. = 5,
p < 0.001

d. f. = 5,
p < 0.001

d. f. = 5,
p < 0.001

χ2 19.459 7.121 5.140 6.860 8.006

(LC50) concentration that kills 50% of population, (LC90) concentration that kills 90% of population, (LCL) lower
confidence limit, (UCL) upper confidence limit, (DF) degree of freedom, (χ2) chi-squared. Three replicates were
used in each treatment, n = 375. No mortality was recorded in the negative control group.
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The newly hatched larvae were treated with the LC50 concentration of the AC methano-
lic extract/isolated compounds to estimate its effect on the developmental duration, along-
side the control group. There was a significant larval duration increase (p < 0.05) for (AC),
palmatine, and β-sitosterol in the first-instar larvae, whereas in the second, third, and fourth
instars, palmatine and β-sitosterol significantly (p < 0.05) prolonged larval developmental
duration compared with the control group (Figure 2). On the other hand, pupal devel-
opmental duration was significantly (p < 0.05) prolonged in the (AC), columbamine, and
β-sitosterol, whereas it was significantly (p < 0.05) shortened in palmatine and jatrorrhizine
treatments compared to the control (Figure 3).

Insects 2022, 13, x FOR PEER REVIEW 7 of 19 
 

 

Statistic summary 
d. f. = 5, 

p < 0.001 

d. f. = 5, 

p < 0.001 

d. f. = 5, 

p < 0.001 

d. f. = 5, 

p < 0.001 

d. f. = 5, 

p < 0.001 

χ2 19.459 7.121 5.140 6.860 8.006 

(LC50) concentration that kills 50% of population, (LC90) concentration that kills 90% of population, 

(LCL) lower confidence limit, (UCL) upper confidence limit, (DF) degree of freedom, (χ2) chi-

squared. Three replicates were used in each treatment, n = 375. No mortality was recorded in the 

negative control group. 

The newly hatched larvae were treated with the LC50 concentration of the AC meth-

anolic extract/isolated compounds to estimate its effect on the developmental duration, 

alongside the control group. There was a significant larval duration increase (p < 0.05) for 

(AC), palmatine, and β-sitosterol in the first-instar larvae, whereas in the second, third, 

and fourth instars, palmatine and β-sitosterol significantly (p < 0.05) prolonged larval de-

velopmental duration compared with the control group (Figure 2). On the other hand, 

pupal developmental duration was significantly (p < 0.05) prolonged in the (AC), colum-

bamine, and β-sitosterol, whereas it was significantly (p < 0.05) shortened in palmatine 

and jatrorrhizine treatments compared to the control (Figure 3). 

 

Figure 2. Effect of tested LC50 concentrations of palmatine, jatrorrhizine, columbamine, β-sitosterol, 

and Annickia chlorantha extract (AC) on the mean developmental durations of Culex pipiens larvae. 

Bars with different letters are significantly (p < 0.05) different. Data presented as mean ± SE. Three 

replicates were used in each treatment. Sample size (n) = 75 for the control and L1 groups; n = 45 for 

the L2 group; n = 41 for the L3 group; and n = 36 for the L4 group. Sample sizes were almost the 

same for the different tested compounds. 

Figure 2. Effect of tested LC50 concentrations of palmatine, jatrorrhizine, columbamine, β-sitosterol,
and Annickia chlorantha extract (AC) on the mean developmental durations of Culex pipiens larvae.
Bars with different letters are significantly (p < 0.05) different. Data presented as mean ± SE. Three
replicates were used in each treatment. Sample size (n) = 75 for the control and L1 groups; n = 45
for the L2 group; n = 41 for the L3 group; and n = 36 for the L4 group. Sample sizes were almost the
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Figure 3. Effect of tested LC50 concentrations of palmatine, jatrorrhizine, columbamine, β-sitosterol,
and Annickia chlorantha extract (AC) on the mean pupal developmental durations (hours) of the
mosquito, Culex pipiens. Bars with different letters are significantly (p < 0.05) different. Data presented
as mean ± SE of three replicates.

The first instar larvae were treated with the LC50 concentration of tested materials, and
then, the successfully emerged third-instar larvae were subjected to a biochemical assay to
evaluate acetylcholinesterase (AChE) and glutathione S-transferase (GST) activities. The
obtained data revealed that the AChE enzyme showed different activity patterns, where it
was significantly (p < 0.05) increased in columbamine and β-sitosterol, and decreased in
(AC), palmatine, and jatrorrhizine treatments compared to the control (Figure 4A). On the
other hand, the (GST) enzyme was significantly (p < 0.05) increased in all tested materials
compared to the control group (Figure 4B).
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Figure 4. Effect of tested LC50 concentrations of palmatine, jatrorrhizine, columbamine, β-sitosterol,
and Annickia chlorantha extract (AC) on the enzymatic activities of acetylcholinesterase (AChE) (A) and
glutathione S-transferase (GSTs) (B) in the third larval instar of the mosquito, Culex pipiens. Bars with
different letters are significantly (p < 0.05) different. Data presented as mean ± SE of three replicates.

The emergence percentages of adults treated as third-instar larvae with the LC50
concentrations of tested materials were significantly (p < 0.05) decreased in all treatments
compared to the control group. On the other hand, the tested compounds revealed non-
significant (p > 0.05) changes in the sex ratio percentages, with a slight female-to-male
preference presented in the AC-treated group (Table 2).

Table 2. Effect of tested LC50 concentrations of palmatine, jatrorrhizine, columbamine, β-sitosterol,
and Annickia chlorantha extract (AC) on the adult emergence and sex ratio percentages of the mosquito,
Culex pipiens.

Treatments
Adult Emergence (%) Sex Ratio (%) (Mean ± SE)

n Mean ± SE n Males Females

Control 75 100.0 ± 0.0 a 75 46.67 ± 1.33 a 53.33 ± 1.33 a

A. chlorantha (AC) 38 80.13 ± 1.58 b 31 40.72 ± 1.17 b 59.28 ± 1.87 b

Palmatine 35 68.68 ± 2.02 c 24 45.83 ± 4.17 a 54.17 ± 4.17 a

Jatrorrhizine 35 72.34 ± 4.54 d 25 43.52 ± 6.02 a 56.48 ± 6.02 a

Columbamine 36 83.08 ± 1.53 b 30 46.97 ± 1.52 a 53.03 ± 1.5 a

β-Sitosterol 36 83.33 ± 4.81 b 30 46.63 ± 1.71 a 53.37 ± 1.71 a

Statistic summary d. f. = 5
p < 0.05

d. f. = 5
p > 0.05

d. f. = 5
p > 0.05

Data were analyzed by one-way ANOVA, followed by the Holm–Sidak post hoc test, and are presented as the
mean ± SE of three replicates. In each column, means followed by different letters differ significantly, p < 0.05,
n = sample size.

For the repellency assay, the LC50 concentration from each tested material was directly
applied on the ventral surface of the pigeon after abdominal feather removal, to allow
starved females to blood-feed. The obtained results revealed that all tested materials possess
repellence properties, particularly at the beginning of exposure; interestingly, jatrorrhizine
and palmatine recorded higher levels of protection, followed by AC, columbamine, and
β-sitosterol for 7 consecutive hours compared to the negative control, which recorded zero
repellency. By comparing the obtained results with the positive control, the tested materials
showed significant differentiation (p < 0.01) for AC, palmatine, jatrorrhizine, columbamine,
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and β-sitosterol, except exposure to palmatine and jatrorrhizine at the first hour, which
showed non-significant variance (p > 0.05) compared with the positive control (DEET),
which decreased from 96.0 ± 1.0 h at the first hour to 80.0 ± 1.5 h at the seventh hour
(Figure 5). Overall, there was decreased repellent action over time from all tested materials.

The non-target organism model used in this study was zebrafish (Danio rerio). It was
treated with different concentrations of tested materials, alongside the control group, to
estimate their potential effects. Based on the obtained results, the LC50 for non-target
treatments were (805.5 ± 20.1), (1622.3 ± 108.8), (922.3 ± 22.4), (1273.1 ± 50.5), and
(1406.6 ± 66.4) µg/mL, whereas the LC90 recorded was (1456.6 ± 43.9), (2850.1 ± 212.8),
(1504.9 ± 44.4), (1273.1 ± 50.5), and (1406.6 ± 66.4) µg/mL for palmatine, jatrorrhizine,
columbamine, β-sitosterol, and (AC) extract, respectively, with no mortality in the
negative control group (Table 3).
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Figure 5. Repellency effect of the LC50 concentrations of palmatine, jatrorrhizine, columbamine,
β-sitosterol, and Annickia chlorantha extract (AC) for seven consecutive hours against the mosquito,
Culex pipiens, adult females. Data presented as average % ± SE. Three replicates were used in each
treatment. The negative control group recorded zero repellency action.

Table 3. Toxicity of the palmatine, jatrorrhizine, columbamine, β-sitosterol, and Annickia chlorantha
extract (AC) to the zebrafish (Danio rerio), 96-h post-treatment.

Compounds
(µg/mL) A. chlorantha Palmatine Jatrorrhizine Columbamine β-Sitosterol

LC50 ± SE
(LCL–UCL)

1406.6 ± 66.4
(984.7–4196.9)

805.5 ± 20.1
(641.6–1153.4)

1622.3 ± 108.8
(998.2–16177.5)

922.3 ± 22.4
(743.0–1324.1)

1273.1 ± 50.5
(931.9–2792.6)

LC90 ± SE
(LCL–UCL)

2157.1 ± 117.6
(1428.7–7232.3)

1456.6 ± 43.9
(1121.4–2270.5)

2850.1 ± 212.8
(1653.3–31863.3)

1504.9 ± 44.4
(1167.7–2348.0)

1974.8 ± 94.0
(1371.7–4830.2)

d. f. 4 4 4 4 4

χ2 1.93 8.87 3.72 1.87 3.12

See footnote in Table 1.
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There was a significant difference in the ratio of toxicity values of the tested compounds
and (AC) for zebrafish compared to mosquito larvae. Respectively, the concentration values
of LC50 comparison were: (4.1:95.9), (5.6:94.4), (6.7:93.3), (9.7:90.3), and (11.6:88.4) (folds,
percent of change); whereas the concentrations values of LC90 comparison were: (5.6:94.4),
(8.0:92.0), (7.9:92.1), (12.9:87.1), and (20.1:78.9) (folds, percent of change). These results
confirm that the tested materials have very low toxic activity to the non-target organism
compared to their reported toxicity against mosquito larvae (Figure 6).
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β-sitosterol, and Annickia chlorantha extract (AC) against mosquito larvae and the non-target model.

Binding Efficacy for Molecular Docking

The post-docking results for AChE and GST showed that all docked isolated com-
pounds showed promising binding efficacy: ∆G of about (−4 Kcal/mol.) and (−6 Kcal/mol),
respectively (Table 4). The validation of the docking experiment was confirmed by the
low RMSD value (1.01 to 1.97). All investigated compounds, when docked into AChE,
showed a binding efficacy value near that of the difluoromethyl value as a reference
inhibitor. These compounds displayed higher binding potency than glutathione, with
∆G = −5.387 Kcal/mol (original inhibitor for GST). Jatrorrhizine showed the highest LC50
against AChE and GST; we cannot explain this finding by ∆G, due to the little variation in
these values. Palmatine showed the highest (E.H.B. = −8.75 and −18.19 Kcal/mol) against
both proteins.

The LIGPLOT tool was used to generate the 2D interaction maps. The 3D chemi-
cal interaction between the isolated compounds and 6ARY and 1JLV domains has been
visualized and represented in Figure 7.
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Figure 7. Docked in the active sites of AChE and GST, with corresponding 2D maps. H-Bond is
characterized by blue lines, hydrophobic interactions are presented by green dotted lines.

Table 4. The docking energy scores (kcal/mol) for the isolated component reference inhibitor.

∆G rmsd E.vdw E.Int E.H.B Eele

6ARY

Palmatine −4.781 1.991 8.934 −5.667 −7.385 −24.345

Jatrorrhizine −4.725 1.012 28.914 −14.683 −8.725 −18.975

Columbamine −4.560 1.731 2.230 −5.482 −7.739 −21.639

β-sitosterol −4.785 1.450 46.606 −4.659 −5.647 −21.316

Difluoromethyl −5.01 1.12 33.26 −11.259 −5.78 −28.168
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Table 4. Cont.

∆G rmsd E.vdw E.Int E.H.B Eele

1JLV

Palmatine −6.489 1.761 16.228 −17.429 −11.193 −30.506

Jatrorrhizine −6.256 1.971 6.333 −14.474 −18.195 −25.802

Columbamine −6.051 1.774 25.000 −11.036 −14.145 −21.342

β-sitosterol −6.798 1.168 8.083 −16.394 −13.908 −31.302

Glutathione −5.387 1.89 6.45 −10.67 −11.61 −32.544
∆G: free binding energy of the ligand from a given conformer, E.Int.: affinity binding energy of hydrogen bond
interaction with the receptor, E.H.B.: hydrogen bonding energy between protein and ligand, Eele: electrostatic
interaction with the receptor, Evdw: Van der Waals energies between the ligand and the receptor, rmsd: root mean
square deviation.

Furthermore, the hydrophobic zone between the AChE and GST domains and the
isolated component was examined, and is represented in Figure 8. The red color represents
the hydrophobic region in the binding site, whereas the hydrophilic zone is displayed in
green zones.
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4. Discussion

Insecticides from a natural origin may serve as suitable alternatives to chemical insecti-
cides in the future, as they are relatively environmentally safe and inexpensive. This study
intended to highlight the role of isolated botanical compounds as an alternative control
measure against Culex pipiens mosquitoes. Annickia chlorantha methanol extract and its
isolated compounds have previously demonstrated promising antiprotozoal potential [17].
Herein, we evaluated the mosquitocidal activities of the AC methanolic extract and isolated
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compounds from the stem bark of A. chlorantha against C. pipiens, besides their impact on
the non-target organism, Danio rerio.

For the larvicidal bioassay, the obtained LC50 and LC90 confirm that (AC) and its
isolated compounds are promising potential candidates against the tested mosquito vector,
and palmatine was the most potent compound in the different tested biological aspects.
However, in the same range of the obtained lethal concentrations, Elumalai et al. [32]
demonstrated the potency of the methanol leaf extract of Gymnema sylvestre as an effective
larvicide against C. tritaeniorynchus larvae (LC50 = 28.58 ppm); Azadirachta recorded an LC50
value of 62.5 µg/mL against Culex pipiens [33]. Furthermore, Abutaha et al. [34] found
similar results (LC50 ranged from 42.6 to 85.4 µg/mL) when 69 extracts from ten plant
species were evaluated for toxicity against C. pipiens. Additionally, the hexane extract of
Ocimum basilicum leaves showed an LC50 of 16.0 (10.9–22.1) and an LC90 of 53.0 (34.6–136.8)
µg/mL after 24 h of exposure. However, we report here, for the first time, the larvicidal
potential of this medicinal plant and its isolated compounds.

The botanical extracts showed various effects on the growth and development of many
insect pests, affecting the larval, pupal, and adult stages, and prolonged/shortened their
development [35]; it also reduced the survival rates of larvae and pupae, and affected the
adult emergence [36]. Many botanical extracts have been reported to have a pronounced
effect on the developmental period, growth, and adult emergence [5,37]. Detoxification
enzymes, such as acetylcholinesterase and glutathione S-transferase, are known to be key
enzymes in insect pest control strategies. Acetylcholinesterase (AChE) protects insects
from chemical poisons, whereas glutathione S-transferase (GST) plays an important role in
protection mechanisms against oxidative stress. Herein, AChE showed different activity
patterns, where it was significantly increased in columbamine and β-sitosterol treatments,
and decreased in (AC), palmatine, and jatrorrhizine treatments, whereas GST was signifi-
cantly increased in all tested materials. In similar studies, Al-Solami [38] found that Lantana
camara extract significantly restricted the AChE activity in larvae, as compared to larvae
treated with other plant extracts and/or positive control, and successfully reduced the
GST levels.

The adult emergence percentages were significantly decreased in all treatments,
whereas the isolated compounds revealed non-significant changes in sex ratio percentages.
Similarly, the aqueous leaf extract of Calotropis procera inhibited the adult emergence of
C. quinquefasciatus to 50% at 183.65 ppm [39]. The hexane extract of Eucalyptus citriodora,
tested at a 10-ppm concentration, failed to emerge An. Stephensi adults [40]. Although the
typical sex ratio for C. pipiens is 1:1, external factors, such as pesticide exposure, can alter
the sex ratio, which often results in a male bias [41]. Our data showed the same typical sex
ratios even after exposure to different treatments. In contrast, Steinwascher [42] reported a
female preference after exposure to curcumin molecules, due to the digestive flow in the
female larval gut being greater than in males, resulting in a higher excretion rate.

The tested materials revealed promising repellence action for 7 consecutive hours.
Certain other botanicals have previously been investigated for repellent properties against
mosquitoes; for example, Zanthoxylum armatum, Z. alatum, A. indica, and Curcuma aromatica
have been reported to possess repellent properties against mosquitoes [43]. Rajkumar and
Jebanesan [44] reported that Solanum trilobatum leaf extract induced repellent activities
against An. stephensi, with over 100 min of protection. Additionally, Mullai et al. [45]
reported that the skin repellent test at 1.0, 2.5, and 5.0 mg/cm2 revealed complete protec-
tion ranging from 119.17 to 387.83 min against An. stephensi with different extracts from
Citrullus vulgaris. Recently, Junkum et al. [46] found that the hexane extract of Ligusticum
sinense afforded remarkable repellency against Aedes aegypti, An. minimus, and C. quinque-
fasciatus, with median protection times of 5.5, 11.5, and 11.25 h, respectively. Overall, our
reported repellency investigations here provide the most extended protection time, which
prolonged to seven hours from all tested compounds and AC, and this effect was much
more pronounced in palmatine and jatrorrhizine.
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Treating an aquatic environment with insecticides of a plant origin to control mosquito
larvae or other pests may lead to important risks for non-target aquatic organisms [47]. The
current results confirm that isolated materials have a very low toxic activity compared to
the reported toxicity of mosquito larvae reported here. Similarly, green-fabricated metal
nanoparticles failed to show toxicity against different aquatic organisms. For example,
Pergularia-daemia-synthesized AgNPs did not exhibit any evident toxicity against Poecilia
reticulata fishes after 48 h of exposure [48]. Haldar et al. [49] reported no toxicity of AgNPs
produced using Putranjiva roxburghii on P. reticulata after 48 h of exposure to the LC50 of
fourth-instar larvae of An. Stephensi and C. quinquefasciatus. Additionally, most of the LC50
values calculated for the non-target organisms have been found to be extremely higher
than the lethal concentrations of the targeted pests [50].

4.1. Chemical Interaction with AChE and GST Domain Based on Molecular Docking Studies

Acetylcholinesterase’s active site, “AChE” (PDB ID: 1ACJ), contains two principal
binding sites, according to its crystallographic structure: the catalytic active site (CAS) and
the gorge-connected peripheral anionic site (PAS) [51]. The CAS is made up of amino acids
from the esteratic subsite gorge (Ser200, Glu327, and His440), anionic substrate (Trp84,
Glu199, and Phe330), and the acyl binding pocket (Phe288 and Phe299), whereas the PAS is
made up of Tyr70, Asp72, Tyr121, Trp279, and Phe290 [52].

All compounds interacted with the binding site in the same manner as the reference
inhibitor, and formed a strong H-interaction with vital amino acid residues. Jatror-
rhizine formed a strong hydrogen interaction, with important Met244 and π–π interac-
tion (Eint = −8.725 Kcal/mol) with Gly601 and Glu359 (Eele = −18.97 Kcal/mol.). The
stronger H- and electrostatic interactions compared to other compounds may explain
the higher Ec50for of jatrorrhizine. Moreover, columbamine showed an H-interaction
with Ala526. β-sitosterol interacted with His663 and Arg675 by stack H-bond. Further-
more, jatrorrhizine and columbamine interacted with glutathione S-transferase (GST)
by the same important amino acid residue, Tyr113, through H-interaction, whereas pal-
matine connected with the water molecules which interacted with the Arg66 backbone.
Thus, these compounds have remarkable components that explain their inhibition
potency of the AChE and GST domains.

4.2. DFT Calculation

Frontier molecular orbitals are significant in a variety of chemical and pharmacological
activities [53]. The Highest Occupied Molecular Orbital (HOMO) has the priority to provide
electrons, whereas the Lowest Unoccupied Molecular Orbital (LUMO) accepts electrons
first [54,55]. Thus, studying the frontier orbital may assist in the investigation of insecticidal
action. Tested compounds with a significant differential in activity were chosen for DFT
comparison. Iteratively solving the self-consistent field equation yielded the optimized
geometry corresponding to the minimum of the potential energy surface. Table 5 lists the
LUMO and HOMO energies, as well as the HOMO–LUMO (HL) gaps (in eV) of isolated
compounds. These orbitals were able to display the binding manner of a biomolecule with a
receptor. The FMOs gap was characterized by the chemical reactivity and kinetic stability of
the molecule. The molecule with a high EHOMO reflects the strong ability of the molecule
for donating electrons, as well as it being easier to lose the electron of valence to biological
media; hence, enhancing interactions with a receptor and vice versa. The considerable
difference in larvicidal activity may be due to the differing electron distributions among
the isolated compounds. When the molecules’ HL gaps were compared, the order was
β-sitosterol > jatrorrhizine > palmatine > columbamine. The small HOMO–LUMO gap
predicts a high chemical reactivity [56]. This showed that the compounds (palmatine and
columbamine) would have a reasonably high activity, which corresponded well with our
experimental findings. The HOMO and LUMO maps are shown in Figure 9.
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Table 5. LUMO and HOMO energies and HOMO–LUMO (HL) gaps (in eV) of isolated compounds.

Compound No. EHOMO (eV) ELUMO (eV) HL Gaps (eV)

Palmatine −0.1074 −0.0352 0.0722

Jatrorrhizine −0.1891 −0.0362 0.1529

Columbamine −0.1072 −0.0356 0.0716

β-sitosterol −0.2279 −0.0279 0.2
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5. Conclusions

Herein, the crude extract and its isolated compounds from the stem bark of Annickia
chlorantha were tested for their larvicidal, developmental, and repellent activity against the
mosquito vector, Culex pipiens, besides their toxicity to the non-target aquatic model, Danio
rerio. Developmentally, the tested materials induced a prolonged effect for both the larval
and pupal durations. The acetylcholinesterase enzyme showed different activity patterns,
whereas the glutathione S-transferase enzyme was significantly increased. The adult
emergence percentages were significantly decreased, whereas the sex ratio percentages
were not affected by the tested materials. The tested materials (in particular, palmatine
and jatrorrhizine) revealed potent repellence action. Finally, the tested materials showed a
very low toxicity to the non-target model tested here. However, a docking simulation and
DFT calculations were employed to better understand the interaction between the isolated
compounds and the obtained results. In conclusion, this study highlights the potential of
A. chlorantha extract and its isolated compounds as safe and effective mosquitocidal agents,
with a very low toxic effect on non-target organisms.
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