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Breast cancer is a main cause of disease and death for women globally. Because of the limitations of traditional mammography and
ultrasonography, magnetic resonance imaging (MRI) has gradually become an important radiological method for breast cancer
assessment over the past decades. MRI is free of the problems related to radiation exposure and provides excellent image resolution
and contrast. However, a disadvantage is the injection of contrast agent, which is toxic for some patients (such as patients with
chronic renal disease or pregnant and lactating women). Recent findings of gadolinium deposits in the brain are also a concern. To
address these issues, this paper develops an intravoxel incoherentmotion- (IVIM-)MRI-based histogram analysis approach, which
takes advantage of several hyperspectral techniques, such as the band expansion process (BEP), to expand a multispectral image
to hyperspectral images and create an automatic target generation process (ATGP). After automatically finding suspected targets,
further detection was attained by using kernel constrained energy minimization (KCEM). A decision tree and histogram analysis
were applied to classify breast tissue via quantitative analysis for detected lesions, which were used to distinguish between three
categories of breast tissue: malignant tumors (i.e., central and peripheral zone), cysts, and normal breast tissues. The experimental
results demonstrated that the proposed IVIM-MRI-based histogram analysis approach can effectively differentiate between these
three breast tissue types.

1. Introduction

Breast cancer is the most prevalent cancer and a major
cause of death in women worldwide [1, 2]. Early diagnosis is
critical for increasing the survival rate among women with

breast cancer. However, current basic imaging approaches
(e.g., mammography and ultrasonography [US]) have their
limitations, especially in patients with implants, postoper-
ative scarring, and dense breast parenchyma. These factors
occasionally result in improper management of breast cancer
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Figure 1: Illustration of the breast tissue regions.

[3–7]. Recent studies demonstrate that dynamic contrast-
enhanced magnetic resonance imaging (DCE-MRI) tech-
niques are the most promising methods for detecting tumors
and assessing therapeutic response [7–9]. Furthermore, the
additional diagnostic value of breast MRI is that it detects
more multifocal, multicentric, and contralateral diseases
[10, 11]. The sensitivity of DCE-MRI in the diagnosis of
breast cancer is as high as 88%-100% [12, 13]. However, the
specificity of DCE-MRI varies from 50% to 97% [11, 14–
16]. This variability may result from different lesion criteria
and tumor heterogeneity used among studies [15–17]. Thus,
differentiating a benign lesion from a malignant lesion using
DCE-MRI remains a challenge. To increase breast MRI
specificity, one of the latest advancements inMRI technology,
the apparent diffusion coefficient (ADC), which is obtained
from diffusion-weighted imaging (DWI), was developed to
differentiate between benign and malignant breast lesions
with 91.5% sensitivity and 86.5% specificity [18, 19]. A typical
illustration of the regions of the breast tissues is shown in
Figure 1.

DWI is a nocontrast-enhancedMRI technique. It is useful
for characterizing cancerous tissue heterogeneity by directly
reflecting the Brownian motion of water molecules in body
tissues, particularly in breast cancer [19–21]. It can obtain
the physiological characteristics of breast tissue with the
assumption of the monoexponential decay to quantitate the
analysis of the water molecules’ ADC [22]. In malignant
tumors, the ADC value is usually lower than that of the
normal tissue because of the restriction of water diffusion
resulting from increased cellularity of the tissue and reduced
extracellular space in the tumor. Based on the findings of
a meta-analysis [23], the specificity of DWI is higher than
contrast-enhanced MRI, although there is a wide range in
threshold values from 0.90 mm2/s to 1.60 x 10−3 mm2/s to
account for the use of different b values. The specificity of
DWI and DCE-MRI is 84% and 72% [23].

In vivo, microscopic motion of water molecules detected
by DWI is influenced by the diffusion of water molecules
in the tissue structure and by the microcirculation of blood

in the capillary network [24]. Signal attenuation on mono-
exponential DWI therefore presents a linear relationship
but does not truly reflect the microstructure changes in
organization. The reason for this finding is that the ADC
value is overestimated due to the fact that it contains two
types of information: (1) microcirculation perfusion of blood
in a capillary network and (2) water molecule diffusion of
the tissue structure. Intravoxel incoherent motion (IVIM),
which was first described by Li Bihan et al. in 1986 [25],
separates microcirculation perfusion and water molecule
diffusion by using a biexponential model [22, 25, 26]. Using
this biexponential model, DWI is able to use signal intensity
produced by multiple b-values to analyze water/tissue dif-
fusitvity. At low b-values, the signal intensity reflects water
diffusion in tissues as well as microcirculation in a capillary
network. At high b-values, the signal intensity reflects tissue
diffusivity. Through IVIM, biomarkers have been resolved
as the perfusion fraction (PF), water molecule diffusivity
(D), and pseudodiffusion (D∗). Recent studies demonstrate
that the IVIM model is helpful for the differential diagnosis
of breast lesions [27–31]. In general, a MR image can be
viewed as a multispectral remote sensing image, in which
each spectral band image can be considered as an image
acquired by a particular pulse sequence [32]. Hyperspectral
imaging has become an emerging remote sensing technology
that improves traditional multispectral imaging by using
hundreds of contiguous spectral bands. With such fine
spectral resolution, many unknown subtle substances can
be revealed for subpixel detection and mixed pixel analysis
[33]. The application of hyperspectral imaging techniques
in MR brain imaging has also been investigated [33–35].
Many medical imaging techniques are generally supervised
and require training samples provided a priori such as max-
imum likelihood classification (MLC), K-nearest-neighbor
(KNN) classification [36], neural networks [36], support
vector machine (SVM) [36], and Fisher’s linear discrimi-
nant analysis (FLDA) [37]. To avoid this issue, the training
samples should be obtained directly from the data to be
processed in an unsupervised method. In this instance, we
take advantage of the automatic target generation process
(ATGP) developed by Ren and Chang [38] in conjunction
with the spectral angle mapper (SAM) method, which allows
users to select training samples automatically. This procedure
is then followed by a supervised hyperspectral subpixel target
detection technique, called kernel-based constrained energy
minimization (KCEM), developed by Jiao and Chang [39], to
detect breast lesion tissues for quantitative analysis for IVIM-
DWI. This technique considers MR image slices acquired by
pulse sequences and DWI with weighting factors of 12 b-
values as a 12-band multispectral image cube in which each
sequence-acquired image is viewed as a spectral band image.
The data set to be used for experiments was collected from 25
patients for IVIM imaging examinations.

The purpose of this study was three folds: (1) to measure
IVIM parametric maps (i.e., tissue diffusivity [D], perfusion
fraction [PF], pseudodiffusion coefficient [D∗], and slope)
obtained from multiple b values of normal breast tissue,
cysts, and malignant tumors; (2) to determine whether
these parameters can be used to distinguish between benign
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and malignant breast lesions; and (3) to calculate advanced
diffusion MRI metrics from histogram analysis (i.e., mean
and median), and heterogeneity.

2. Background

2.1. Diffusion-Weighted Imaging. Diffusion-weighted imag-
ing (DWI) is sensitive to the thermally driven randommotion
of water molecules. Molecular diffusion is the random
motion of molecules, called Brownian motion [25, 40]. The
motion is modified by the local tissue environment and the
cell membranes. The motion of water molecules is more
restricted in tissues with a high cellular density than in tissues
with low cellularity. Signal intensity in DWI is inversely
proportional to the degree of water molecule diffusion. The
histologic structure is influenced by diffusion. The change
of water diffusion in tissues is useful for MR imaging and
can be used as a multifaceted tool to characterize tissue
structures and identify and differentiate disease processes.
Furthermore, DWI can be used to calculate the ADC, which
can quantitatively measure the degree of tissue diffusivity.

Spin-echo echo-planar DWI is the most popular clinical
technique to produce diffusion-weighted images in which
diffusion is described by the following monoexponential
equation [25]:

ln(𝑆𝑏𝑆0) = −𝑏 (ADC) ⇐⇒ ADC = − ln (𝑆𝑏/𝑆0)𝑏 (1)

with

𝑏 = 𝛾2𝑔2𝛿2 (Δ − 𝛿3) (2)

in which S𝑏 is DWI with diffusion attenuation at the b value
and 𝑆0 isDWIwithout diffusion attenuation,𝑔 is the diffusion
gradient, 𝛾 is the proton gyromagnetic ratio, and 𝛿 is the
diffusion gradient duration. Equation (2) presents b value
(expressed in seconds per square millimeter) and represents
the strength of diffusion weighting in which S𝑏 is the signal
intensity with the diffusion gradient. S0 is the signal intensity
without the diffusion gradient. The monoexponential model
is traditionally used to calculate the decay of ADC in (2) and
results from two b values, b1 and b2, as follows:

D = − 1𝑏1 − 𝑏2 ln(
𝑆 (𝑏1)𝑆 (𝑏2)) (3)

2.2. Intravoxel Incoherent Motion Imaging. Using the value
of ADC in (3) does not sufficiently describe tissue behavior.
To address this issue, Le Bihan et al. [25] proposed a novel
approach, called IVIM MRI, which demonstrated that the
ADC values of data samples obtained at low b values can be
used to measure two IVIM parameters: (1) pseudodiffusion
(D∗) and (2) the perfusion fraction (PF) of pure molecular
diffusion and microcirculation, or blood perfusion [25, 26].
In particular, D∗ and PF can be used as quantitative biomark-
ers to describe changes in diffusivity and microcapillary
perfusion of tissues. Increasing the b-value can change the

values of D∗ and PF and therefore can reflect the diffusivity
of different tissues and tissue microcapillary perfusion.

DWI is influenced by the diffusion of water molecules,
which is affected by microcapillary blood in the capillary
network in tissue structures. Both processes cause phase
dispersion in DWI, and consequently signal attenuation.
Le Bihan et al. [25] described the behavior of protons
that displayed signal attenuation in DWI as IVIM imaging,
which does not represent a linear relationship as shown in
Figure 2. The biexponential model involves curve fitting for
IVIM imaging to separate the estimation of tissue diffusivity
from perfusion by using multiple b values, in the following
equation:

𝑆𝑏𝑆0 = (1 − PF) exp (−𝑏D) + PF exp (−𝑏D∗) (4)

where D is the pure diffusion coefficient, S𝑏 is the signal
intensity in the pixel with diffusion gradient, and S0 is the
signal intensity in the pixel without a diffusion gradient. This
biexponential analysis, based on the IVIM sequence, can
be used to describe the mixture of perfusion and diffusion
resulting from DWI in three parameters: pure diffusion
coefficient [D], perfusion fraction [PF], and pseudodiffusion
coefficient [D∗].
2.3. Band Expansion Process. Intravoxel incoherent images
do not provide sufficient spectral information to be pro-
cessed as hyperspectral images; therefore, the band expan-
sion process (BEP) developed by Ren and Chang [41] is
used to resolve this issue for IVIM analysis. This process
produces new images from the original IVIM images via
nonlinear functions. Its premise is similar to the moment
generating function used by a random process that makes
use of the statistics of all orders to describe probabilistic
behaviors of a random process. In the BEP, only the statistics
of the second order of IVIM images, autocorrelation, and
cross-correlation functions are used for this purpose. Such
nonlinearly generated images provide nonlinear spectral
information contained in IVIM images and can help improve
data analysis.

The BEP presented in this section is a nonlinear process
using correlation functions to generate new band images
from the original set of multispectral images.

The BEP for IVIM images is as follows.

Step 1. The 1st-order IVIM images are obtained as follows:{𝐵𝑙}𝐿𝑙=1 = the set of original IVIM images

Step 2. The 2nd-order correlated IVIM images are obtained as
follows:

(i) {B2𝑙 }𝐿𝑙=1= the set of autocorrelated IVIM images;

(ii) {B𝑘B𝑙}𝐿,𝐿𝑘=1,𝑙=1,𝑘≠𝑙 = the set of cross-correlated IVIM
images.

In case a rescaling is needed, auto- or cross-correlated
IVIM images can be normalized by variances in the IVIM
images such as (𝜎2𝐵𝑙)−1{𝐵2𝑙 } and (𝜎𝐵𝑘𝜎𝐵𝑙)−1{𝐵𝑘𝐵𝑙}.
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Figure 2: The graph of curve fitting of IVIM imaging used the biexponential model to separate the estimation of tissue diffusivity and
perfusion based on multiple 𝑏 values.

Step 3. The 3rd order correlated IVIM images are obtained as
follows:

(i) {B3𝑙 }𝐿𝑙=1 = the set of autocorrelated IVIM images;
(ii) {B2𝑘B𝑙}𝐿,𝐿𝑘=1,𝑙=1,𝑙≠𝑘 = the set of two cross-correlated IVIM

images;
(iii) {B𝑘B𝑙B𝑚}𝐿,𝐿,𝐿𝑘=1,𝑙=1,𝑚=1,𝑘≠𝑙 ̸=𝑚= the set of three cross-cor-

related IVIM images.

As in Step 2, auto- or cross-correlated IVIM images can
be similar. Therefore, it may require normalization by the
variances in the IVIM images. For example,

(𝜎3B𝑙)−1 {B3𝑙 } ,
(𝜎2B𝑘𝜎B𝑙)−1 {B2𝑘B𝑙} ,

(𝜎B𝑘𝜎B𝑙𝜎B𝑚)−1 {B𝑘B𝑙B𝑚} .
(5)

Step 4. Nonlinear correlated IVIM images are obtained as
follows:

(i) {√B𝑙}𝐿𝑙=1 = the set of IVIM images stretched out by the
square root;

(ii) {log√B𝑙}𝐿𝑙=1 = the set of IVIM images stretched out by
the logarithmic function.

Figure 3 shows an example of IVIM images (a) ground
truth (b) compared to the one in (c) without using BEP.

2.4. Automatic Target Generation Process. Once IVIM images
are nonlinearly expanded, they are then processed by an
unsupervised target detection algorithm, called automatic
target detection algorithm (ATGP), to detect potential

unknown targets without prior knowledge. The procedure is
briefly described as follows.

Let X be a data matrix formed by data sample
vectors,{r𝑖}𝑁𝑖=1, (i.e., X = [r1r2 ⋅ ⋅ ⋅ r𝑁].)The norm of the
data matrix X is defined by the equation, as follows:

‖X‖ = max
1≤𝑖≤𝑁

r𝑖 (6)

where ‖r𝑖‖ is the length of the vector r𝑖 = (𝑟𝑖1, 𝑟𝑖2, ⋅ ⋅ ⋅ , 𝑟𝑖𝐿)𝑇
as defined by ‖r𝑖‖2 = ∑𝐿𝑙=1 𝑟2𝑖𝑙 and assuming that 𝑖∗ =
arg {max1≤𝑖≤𝑁‖r𝑖‖}. The norm of data matrix X in (6) can
further be expressed by

‖X‖ = r𝑖∗ (7)

which is exactly the brightest pixel r𝑖∗ and its normhas the
maximum vector length. The maximum l2 norm defined by
(7) is indeed themaximum pixel vector length corresponding
to the brightest pixel vector in the data set.

Using (7), the ATGP produces a sequence of orthogonal
subspace projections (OSPs) as follows:

𝑃⊥U = I − UU# (8)

Thus, if X is the original hyperspectral image cube, the ATGP
first selects an initial target pixel 𝑡𝐴𝑇𝐺𝑃0 that yields the norm
of the space X, denoted by ‖tATGP0 ‖ = ‖X‖ via (6). It then
projects the space X into a subspace orthogonal to ⟨tATGP0 ⟩
via 𝑃⊥U0 with U0 = [tATGP0 ]. The resulting subspace is denoted
by X1 = ⟨tATGP0 ⟩⊥. The ATGP selects a first target pixel that
yields the norm of space X1, denoted by ‖tATGP1 ‖ = ‖X1‖ via
(7), and then projects space X into a subspace orthogonal to⟨tATGP0 , tATGP1 ⟩ via 𝑃⊥U1 with U1 = [tATGP0 tATGP1 ]. The resulting
subspace is denoted by X2 = ⟨tATGP0 , tATGP1 ⟩⊥. The same
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Figure 3: An example of using BEP to generate left breast malignant tissue in (a) ground truth (b) an image compared to image (c), and (c)
not using BEP.

procedure is repeated until the stopping rule is satisfied, (i.e.,
the number of target pixels for the ATGP required to extract).
The details of its algorithmic implementation are as follows.

(1) Initial condition: the variable 𝜀 is the prescribed error
threshold, and t0 is a pixel with the brightest intensity value
(i.e., the maximal gray level value.) Set k=0.

(2) For 𝑘 ← 𝑘+1,𝑃⊥t0 is applied via (8) withU=[t0] to all
image pixels; r in the image. The 𝑘th target t𝑘 is generated at
the 𝑘th stage, which has the maximum orthogonal projection,
as follows:

t𝑘 = arg {max
r
[(𝑃⊥[U𝑘−1t𝑘]r)𝑇 (𝑃⊥[U𝑘−1t𝑘]r)]} (9)

If 𝑚(t𝑘−1, t𝑘) > 𝜀 in which 𝑚(⋅, ⋅) can be any target discrim-
ination measure, then Step 2 is repeated. The algorithm is
otherwise terminated. At this point, all generated target pixels
t0, t1, ⋅ ⋅ ⋅ , t𝑘−1 are the desired targets.

2.5. Spectral Angle Mapper. The targets generated by ATGP
are single targets. To find other targets that have spectral
signatures similar to those of the ATGP-detected targets, we
used the SAM [42] as a spectral measure to calculate the
similarity between two vectors by finding their angles [33].
In particular, s and twere two vectors.The SAM is defined by

SAM (s, t) = cos−1 ( sTt
‖s‖1/2 ‖t‖1/2) in radians (10)

In general, it is used to compare a spectral vector against a
reference vector in terms of their between angle. Therefore,
the larger the angle is in (10), the less is the similarity.

2.6. Kernel-Based Constrained Energy Minimization. Once
targets were determined and identified by using SAM, a
target detector was further designed for target detection.
In this section, a finite impulse response (FIR) linear filter,
called constrained energy minimization (CEM) developed in
several studies [42–44], was used for this purpose.

More specifically, CEM is derived from the linearly
constrained minimum variance originally proposed by Frost
for adaptive beam forming [45]. If a hyperspectral image is

represented by a collection of image pixel vectors, denoted
by {r1, r2, ⋅ ⋅ ⋅ , r𝑁} in which r𝑖 = (𝑟𝑖1, 𝑟𝑖2, ⋅ ⋅ ⋅ , 𝑟𝑖𝐿)𝑇 for 1 ≤𝑖 ≤ 𝑁 is an L-dimensional pixel vector, then N is the total
number of pixels in the image and L is the total number
of spectral channels. Furthermore, d = (𝑑1, 𝑑2, . . . , 𝑑𝐿)𝑇is
specified by a desired signature of interest to be used for target
detection. The goal is to find a target detector that can detect
data samples specified by the desired target signal d via a
FIR filter with L filter coefficients, {𝑤1, 𝑤2, ⋅ ⋅ ⋅ , 𝑤𝐿}, denoted
by an L-dimensional vector w = (𝑤1, 𝑤2, ⋅ ⋅ ⋅ , 𝑤𝐿)𝑇, which
minimizes the filter output energy, subject to the constraint
d𝑇w = w𝑇d = 1. More specifically, if y𝑖 denotes the output of
the designed FIR filter resulting from the input ri, then y𝑖 can
be expressed by the following equation:

𝑦𝑖 = 𝐿∑
𝑙=1

𝑤𝑙𝑟𝑖𝑙 = (w)𝑇 r𝑖 = r𝑇𝑖 w (11)

The average energy of the filter output is given by (12), in
which (13) provides the autocorrelation sample matrix of the
image:

( 1𝑁) 𝑁∑
𝑖=1

𝑦2𝑖 = ( 1𝑁) 𝑁∑
𝑖=1

(r𝑇𝑖 w)2

= w𝑇 [( 1𝑁) 𝑁∑
𝑖=1

r𝑖r
𝑇

𝑖 ]w = w𝑇Rw

(12)

R = ( 1𝑁) 𝑁∑
𝑖=1

r𝑖r
𝑇

𝑖 (13)

The goal was to solve the following linearly constrained
optimization problem:

minw {w𝑇Rw}
subject to d𝑇w = w𝑇d = 1 (14)

in which w𝑇RW is the variance resulting from signals not
passing through the filter. The optimal solution to (14), as
described in [17–19], is presented in (15) and (16), as follows:
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wCEM = (d𝑇R−1d)−1 R−1d (15)

min
𝑤

wR−1w = (wCEM)𝑇 R−1wCEM = 1
d𝑇R−1d

(16)

which is the CEM error considered as the least energy
resulting from unwanted signal sources impinging on an
array of sensors. With the optimal weight, wCEM, specified by
(15), a filter, called CEM and denoted by 𝛿CEM(r), was derived
from a previous study [43] and can be specified by

𝛿CEM (r) = (wCEM)𝑇 r = (d𝑇R−1d)−1 (R−1d)𝑇 r (17)

Constrained energy minimization is a linear filter and IVIM
images are nonlinearly generatedmultispectral images; there-
fore, nonlinear separability may present an issue for CEM.
To mitigate this problem, CEM was further expanded to a
kernel version of CEM, called kernel CEM (KCEM), which
was derived as follows [39]: Φ : R𝑁 → 𝐹 by r → Φ(r).
TheR in (13) can be expanded in feature space F as presented
in

R
Φ
= 1𝑁

𝑁∑
𝑖=1

Φ
𝑇 (r𝑖)Φ (r𝑖) (18)

The CEM derived from (17) can be extended to a kernel
version of CEM (KCEM), given by

𝛿K-CEM (r) = Φ𝑇 (d)R−1Φ Φ (r)
Φ
𝑇 (d)R−1

Φ
Φ (d) (19)

By virtue of (19), the KCEM can be calculated in feature
space F via the kernel trick without mapping the original
data sample vectors into the feature space. Several commonly
used kernel functions can be used for (19). In this paper, the
Gaussian-based radial basis function (RBF) kernel is given by

𝑘 (x, y) = exp(−x − y22𝜎2 ) , for 𝜎 ∈ R (20)

which was used for experiments to implement KCEM.There
are two reasons for choosing Gaussian-based RBF kernel:
(1) it is a translation invariant kernel, and (2) its associated
nonlinear map is smooth. Even when the spectral signatures
of a given hyperspectral data set are subject to irregular
illumination, the translationally invariant kernels typically
provide robust detection. This finding is because it depends
only on the difference between x and y, not the absolute
positions of a single spectral vector. The smooth nonlinear
mapping associated with the Gaussian RBF kernel means
that, after nonlinear mapping, the topographic ordering of
the data in the input space is preserved in the feature space.
The mapped data sample vectors in the feature space also
occupy the small subspace of the feature space, in which data
belonging to different classes can be separated to a larger
extent than in the input space. As a result, the Gaussian RBF
kernel-mapped feature space in the target detection task is
more effective.

2.7.resholding. TheKCEM-generated detectionmap is real
valued; therefore, it requires a thresholding technique to
produce a binary image to show detected lesion tissues. In
the literature, many thresholding techniques have been pro-
posed such as Otsu’s method [46], two entropic thresholding
methods, local entropy and joint entropy methods [45], and
three relative entropy methods, local relative entropy, joint
relative entropy, and global relative entropy methods in [47,
48]. Based on our extensive experiments, the local entropy
method [45] was the best among entropy-based methods
and outperformed the most widely used Otsu’s method.
The local entropy method was consequently selected as the
thresholding technique to segment lesions from the KCEM-
produced detection maps.

2.8. Decision Tree. A decision tree is a nonparametric super-
vised learning method used for classification and regression.
It builds classification or regression models in the form of
a tree structure, in which each internal node denotes a test
on an attribute, each branch represents an outcome of the
test, and leaf nodes represent classes or class distributions.
It breaks a dataset into smaller and smaller subsets while
incrementally developing an associated decision tree at the
same time.

Decision trees can be used for categorical and numerical
data. The goal is to create a model that can be used to predict
the value of a target variable by learning simple decision rules
inferred from the data features.

The lesions detected by the local entropy-thresholder
KCEM were further used as the inputs of a decision tree.
In order to perform breast lesion classification, the decision
tree is specifically developed by a nonparametric supervised
learning method, which is generally used for classification
and regression. It builds classification or regression models
in the form of a tree structure, in which each internal node
denotes a test based on an attribute. Each branch represents
an outcome of the test, and leaf nodes represent classes or
class distributions. Categorical and numerical data can be
used in such decision trees. The goal was to create a model
that could be used to predict the value of a target variable by
learning simple decision rules inferred from the data features.

3. Materials and Methods

3.1. Patient Selection. After obtaining institutional review
board approval to conduct this prospective study, 25 patients
with breast cancer (20 malignant lesions and 5 cysts) under-
went MR examination in our institution from May 2014
to June 2015. Written informed consent was obtained from
all patients. The patient inclusion criteria were as follows:
(1) newly diagnosed with breast cancer confirmed by nee-
dle biopsy; (2) the patient was not receiving neoadjuvant
chemotherapy or hormonal treatment at the time of imaging;
(3) tumor size (solid portion, referring to the T2-weighted
and contrast-enhanced T1-weighted images)> 1 cm in DW
imaging; (4) unilateral breast cancer; (5) no previous breast
surgery history, and (6) no motion artifact. The definitive
diagnosis of cyst was obtained by means of ultrasonographic
(US) and breast MR imaging findings. The simple cyst shows
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thin wall, circumscribed margin and anechoic at US, low
T1 signal intensity, high T2 signal intensity at fat-suppressed
images, and no enhancement at postcontrast fat-suppressed
images. All MRI studies were reviewed by an experienced
radiologist (S.W.C) who had access to all patient information.

3.2. Experimental Materials. MRIwas conducted using a 1.5T
system (Aera; Siemens, Erlangen, Germany) using a body
coil as the transmitter and a dedicated 16-channel receiver
coil. The patient was prone and head first. Conventional T1-
and T2-weighted images were acquired with and without fat
suppression. The axial IVIM images were obtained by using
single-shot spin-echo echo-planar imaging (EPI). The axial
IVIM images with bilateral breast coverage were acquired
(TR/TE: 5800/68 ms; FOV: 320 mm2 x 264 mm2; matrix: 132
x 160 x 30; reconstructed voxel size: 2 mm3×2 mm3×3 mm3;
with spectral presaturation inversion recovery and diffusion
sensitization in the anterior-posterior direction applied with
weighting factors of b = 0, 15, 30, 45, 60, 100, 250, 400, 550,
700, 850, 1000 sec/mm2 . Total scan time required by an IVIM
imaging scan was 6.3 minutes. Axial T1-weighted DCE MRI
(TR/TE, 4.5/1.8 ms; FA, 12; FOV, 320mm2 x 320mm2; matrix
size, 512 x 512; slice thickness, 1.5 mm) was acquired using the
gradient echo sequence. The contrast media were captured
after precontrast and four consecutive time points (i.e., 60-
second interval time) after administrating of gadolinium
(Gadovist, 1.0 mmol/mL) by using a power injector, at a flow
rate of 2.0 mL/s, followed by 20 cc normal saline flush.

Sixteen sets of MR images were used for the experiments,
which were acquired by spin-lattice relaxation time (T1),
spin-spin relaxation time (T2), proton density (PD), and T1-
DCE along with IVIM based DW images, for which T1-DCE
was involved using contrast agents at different times. These
IVIM-DWI images were considered as the multispectral
images.

Image analysis was conducted on a personal computer
using in-house software written in MATLAB (Math Works,
Natick, MA). The IVIM parameters were calculated from
the DW images at all b-values by using the biexponential
model, described by Le Bihan et al. [25, 26]. At first, the
assumption parameters derived from the IVIM image using
all b-values were compared with DCE MRI to obtain reliable
results. A radiologist with 13 years of experience read all MRI
breast images to determine the tumor region of interest (ROI)
and exclude areas of necrosis, bleeding, and edema. After,
parameters were mapped again onto the DCE MRI as the
ground truth. There is no need of ROI in our study because
entire images were processed, pixel by pixel. Therefore,
interobserver variability was limited.

3.3. Preprocessing. Before processing the data, a technique,
called nonparametric nonuniform intensity normalization
(N3),was used to adjust the nonuniformity of theMR images.
Multiple b-values images of IVIM displacement caused by
respiration must be corrected; therefore, an alignment. was
used to register all pixels. Once all images were aligned, an
automatic method to extract the breast region was developed,
as follows. Automatic process to extract the breast region:

Step 1. A high pass filter was used to enhance the
boundary of the breast image.

Step 2. A Sobel edge detector was used to extract the
contour of the breast image.

Step 3. The hit-or-miss transformation function was
applied to the flat area between two breasts to extract
the sternum.

Step 4. Otsu’s method was implemented to produce a
binary image.

Step 5. A morphological opening using a structural
element with a window (size, 2x2 pixels) was used
to detach the connected components in the binary
image.

Step 6. A morphological opening was used to isolate
the largest connected component.

Step 7. A Sobel edge detector was applied again to
obtain the silhouette of the breast image.

3.4. Breast Lesion Tissue Detection. The BEP was used to cre-
ate additional IVIM images for the IVIM-MRI classification.
After BEP, the original images were expanded to 90 band
images. Since KCEM requires the knowledge of the desired
signature d, therefore, we first used ATGP to determine the
initial target pixels. These pixels were further used to find
target pixels with similar spectral signatures measured by
SAM as the training samples that could be used as the desired
d for KCEM. The detected region was further verified by
an experienced breast radiologist and by tumor biopsy. The
detected part of each breast lesion tissue on an ADCmap was
calculated by all b values by using (3). For all lesion tissues, the
D,D∗, PF, and slope values were further calculated on a pixel-
by-pixel basis by using (4). The lesion tissues of 25 individual
patients were tested and the statistical values of all parameters
were used as the standard for the decision tree.

3.5. Quantitative Analysis. This study was conducted on
IVIM-DWI using 12 b values: b=0, 15, 30, 45, 60, 100, 250,
400, 550, 700, 850, 1000 s/mm2 .The biexponential model was
proposed by Le Bihan et al. [25]; microcapillary perfusion of
the blood has no specific orientation, which depends on the
velocity of flowing blood and the vascular architecture. The
effect of pseudodiffusion on signal attenuation in an IVIM-
DWI voxel is also b value dependent. The biexponential
analysis to describe DWI comprises a mixture of perfusion
and diffusion.

The analytic model of IVIM is a biexponential and
monoexponential model, demonstrated in (4). The monoex-
ponential model of IVIM is expressed in (1). The ADC was
obtained by using all b-values (0-1000 s/mm2) and then fitted
to the (4). Four parameters, D (puremolecular diffusion), D∗
(perfusion-related diffusion), PF (perfusion fraction), and
ADC (apparent diffusion coefficient), were determined after
undergoing processing by image preprocessing, detection,
and analysis of the lesion. Through these parameters, the
lesion area could be further compared.
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Figure 4: The flow chart shows the decision tree structure for breast tissue classification using ADC, D, D∗, PF, and slope parameters.

3.6. Histogram Analysis. In this section, a quantitative anal-
ysis was conducted on the IVIM-DWI images obtained by
using 12 diffusion-weighted b values 0, 15, 30, 45, 60, 100,
250, 400, 550, 700, 850, 1000 s/mm2. The faster a molecule
diffuses, the greater is the attenuation and the weaker is
the corresponding pixel signal intensity on a DWI image.
The biexponential analysis used in. (4) to describe DWI
comprises a mixture of perfusion and diffusion, whereas a
simple monoexponential analysis only uses the b-values of 0
s/mm2 and 1000 s/mm2 via (3).

The ADC was obtained by the monoexponential model
in (3) using b-values ranging from 0 to 1000 s/mm2 and then
fitted to the biexponential model in (4). Four parameters
result from the series of processes, preprocessing, detection,
and analysis of the lesion tissue: D (puremolecular diffusion),
D∗ (perfusion-related diffusion), PF (perfusion fraction),
and slope. Figure 4 shows the flowchart for IVIM imaging
processing.

Details of step-by-step implementations are as follows.

Step 1. TheADC, D, D∗, PF, and slope values were calculated
to find the threshold values for central tumor, peripheral
tumor, normal tissue, and cyst.

Step 2. The ADC, slope, D, D∗, and PF values of each pixel
were used to run the decision tree to determine to which of
the three categories a pixel belongs to: tumor, normal tissue,
or cyst.

Step 3. If a pixel indicated a tumor, then histogram analysis
was used to determine whether the pixel indicated a central
tumor or a peripheral tumor.

Step 4. Otherwise, the pixel indicated a nontumor lesion.The
decision tree was then run again to determine whether the
pixel was normal tissue, cyst, or other.

Histogram analysis can provide information beyond the
IVIM parameters in the spatial distribution histogram, such
as the skewness and kurtosis of the parameter distributions.
Skewness is a measure of symmetry, where kurtosis is a
measure of whether the data are peaked or flat relative to a
normal distribution.

4. Results and Discussion

Figure 5 shows a case of breast cancer on IVIM images at
different b values: (a) b = 0 (b) b =15 (c) b = 30 (d) b = 45
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

(m) (n)

Figure 5: The IVIM-DWI images of left breast cancer at different b values: (a) b = 0 (b) b =15 (c) b = 30 (d) b = 45 (e) b = 60 (f) b = 100 (g) b
= 250 (h) b = 400 (i) b = 550 (j) b = 700 (k) b = 850 (l) b = 1000 s/mm2. (m) The dynamic T1-DCE MR image. (n) Lesion mapping with red
and green pixels indicating the central and peripheral tumor regions, respectively.
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Table 1: Monoexponential analysis (i.e., ADC), IVIM parameters (i.e., D, D∗, and PF), and slope in one case of malignant breast cancer cases.

Slice ADC
(10−3 mm2/s) slope D

(10−3 mm2/s)
D∗

(10−3 mm2/s)
PF
(%)

10 1.34 -0.29 0.743 9.21 26
11 1.24 -0.271 0.737 8.8 23
12 1.21 -0.258 0.732 8.57 22
13 1.2 -0.245 0.718 9.88 22
14 1.25 -0.243 0.741 10.18 23
15 1.29 -0.251 0.771 10.15 23
16 1.31 -0.253 0.778 10.09 24
17 1.26 -0.248 0.761 10.15 22
18 1.18 -0.242 0.734 10.15 20
19 1.15 -0.239 0.707 10.15 20
20 1.15 -0.239 0.68 10.13 21
21 1.22 -0.248 0.696 10.31 23
22 1.21 -0.252 0.702 10.05 23
Average 1.23 -0.252 0.731 10.08 22

(e) b = 60 (f) b = 100 (g) b = 250 (h) b = 400 (i) b = 550 (j) b =
700 (k) b = 850 (l) b = 1000 s/mm2. (m)The dynamic T1-DCE
MR image. The lesion mappings are shown in image (n). The
red and green pixels indicate the central tumor region and the
peripheral tumor region, respectively.

Figure 6 shows the ADC, D, D∗, PF, and slope values of
the histogram analysis in the range of the tumor. The red and
green pixels show the central tumor and peripheral tumor
region, respectively.

To automatically find potential lesion pixels, ATGP was
used to find the brightest point, and then the SAM algorithm
was applied to locate the points with spectral signatures
similar to the ATGP-found point that could be used as
desired target signatures for KCEM to detect a suspected
tumor range. However, the signal strength was insufficiently
strong to be curbed and the tumor area could not be fully
detected.Therefore, a local entropic thresholdingmethodwas
applied to KCEM for suspected tumor range improvement.
Figure 7(a) shows the results of tumor detection usingKCEM.

The local entropy method was used to find an appro-
priate threshold value. Threshold results are presented in
Figure 7(b) in which areas with low intensity values could
still be detected by KCEM. However, using the local entropy
method to adjust threshold values could only capture areas
that are different from the background. In addition, in this
technique, the threshold value needs to be manually adjusted
slice by slice; thus, it is also subjective and time consuming.
To address this issue, a histogram analysis using the five
parameters of ADC, D, D∗, PF, and slope was further used
to determine the true scale of the suspected tumor area. As a
result, some dense parts of the tissues could also be detected,
as shown in Figure 7(c).

The monoexponential and biexponential models [i.e., (3)
and (4), respectively] were then applied to the IVIM-DW
images in which the relative signal intensity decays of central
tumor, peripheral tumor, cyst, and normal tissue are specified
by the five parameters of ADC, D, D∗, PF, and slope. We

first obtained MRI-IVIM images and then obtained contrast-
enhanced MR images as the ground truth. We used a patient
with breast cancer to demonstrate how these five parameters
could be used to classify breast tissues. In Figure 7(b), the
tumor area was marked by red pixels and was detected by
the KCEM method using the local entropy method. For the
pixels in the red area, the calculated values of D∗ were larger
than those of other areas without tumor. The D and ADC
values in the tumor area were both lower than those in the
normal breast tissue area. The D, PF, and D∗ values obtained
from IVIM biexponential model fitting and the ADC value
obtained frommonoexponential model fitting were also used
to classify breast tissues into three categories, the tumor
(central and peripheral tumor), cyst, and normal tissues.
These values are tabulated in Tables 1 and 2.

In particular, Table 2 tabulates the average results of ADC,
D, D∗, PF, and slope parameters of the total cases (i.e., test
results of 25 patients) based on mono- and biexponential
model analysis. For all images, each slice contained 12 IVIM
images from b=0 mm2/s to b=1000 mm2/s. Each case may
contain 20 IVIM slices and more than 40 T1, T2, PD, and T1-
delay slices.

A boxplot is a convenient way of graphically depicting
groups of numerical data through their quartiles. Boxplots
can show the minimum (Q1), the medium (Q3), interquartile
range (interquartile range = Q3 – Q1), and maximum values.
The boxplot in Figure 8 illustrates the distribution for all
25 patients of biexponential median values for (a) ADC, (b)
slope, (c) D, (d) D∗, and (e) PF.

In practice, the histological features of parameter D in
IVIM are similar to those of parameter ADC in DWI. How-
ever, it is better to use parameter D than to use the parameter
ADC because it can accurately demonstrate true diffusion
without being affected by perfusion-related diffusion. In
this study, we also found that parameter D has significant
differences between malignant tumors and cysts, so the D
value in IVIM can effectively complement existing traditional
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Figure 6: The ADC, D, D∗, PF, and slope parameters of the histogram analysis in the range of the tumor. The red and green pixels indicated
the central and peripheral tumor regions, respectively.



12 BioMed Research International

(a) (b) (c)

Figure 7: (a) Lesions detected by KCEM, (b) lesions detected by thresholding the image in (a) by using local entropy method, (c) lesion
detection by histogram analysis using decision tree.
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Figure 8: Boxplots of the median values of different types of breast tissue, based on (a) ADC, (b) slope, (c) D, (d) D∗, and (e) PF. The
horizontal solid red lines within each box represent the median value.

Table 2:The average values of the monoexponential model (i.e., ADC), IVIM parameters (i.e., D, D∗, and PF), and slope analysis of different
breast tissues in our experimental case.

ADC
(10−3 mm2/s) slope D

(10−3 mm2/s)
D∗

(10−3 mm2/s)
PF
(%)

Central Area of the Tumor 1.23 (±0.9) -0.24(±0.2) 0.76
(±0.6) 9.38

(±1.1) 21.5
(±1)

Peripheral Area of the Tumor 1.5 (±0.13) -0.3
(±0.3) 0.93

(±0.5) 9.02
(±1.03) 25.3

(±3)
Cyst 2.54 (±0.25) -0.45

(±0.4) 1.59
(±0.08) 4.62

(±0.09) 41.1
(±1)

Normal Tissue 1.86 (±0.25) -0.37
(±0.3) 1.14

(±0.21) 5.98
(±0.21) 31.1

(±2.8)
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DCE-MRI and DWI to distinguish between malignant breast
tumors and cysts. The mean D value of cysts is higher than
the mean D value of malignant tumors, close to the result of
Ma et al. [31]. Inconsistent parameter results may be due to
differences in the number and distribution of low and high
b values used in IVIM. From the experimental results, we
also found that the D∗ and f values of benign and malignant
breast lesions have relatively low effects, so the D parameter
is given a higher weight in the part of the detection algorithm
decision tree. One of the main limitations of our study is that
the number of patients is not large enough, including variety
of diseases. Second, the selection and appropriate number of
b values for breast IVIM are still unknown.

Currently DCE-MRI is still one of the most important
and mature methods in breast lesion imaging. Although
DCE-MRI has high sensitivity for detecting breast cancer, its
disadvantage is that it requires injection of contrast agents.
However, the significant association between gadolinium-
based contrast agents and the incidence of nephrogenic
systemic fibrosis (NSF) in patients with advanced renal
disease has been reported. DWI is a noninvasive method that
uses magnetic resonance imaging to observe the diffusion of
water molecules in living tissue. Current results show that
IVIM-DWI helps to understand tissue characteristics and
distinguish between benign andmalignant lesions.Therefore,
DWI may have a role as an alternative diagnostic technique
for detecting breast lesion without the need of contrast agent.

5. Conclusions

In this paper, hyperspectral imaging techniquewas developed
to detect and classify breast tissue lesions, which can be
implemented in two stages. The first stage is the detection of
the breast tissue, followed by the classification in the second
stage. This study makes several contributions to the breast
imaging process. First, the most important contribution
is to process IVIM-DW images as multispectral images,
which can be further extended to hyperspectral images by
BEP. Second, an unsupervised hyperspectral target detection
algorithm, ATGP, was applied to the expanded IVIM-DW
images to determine potential lesion pixels, which can be
used as the desired target knowledge for the follow-up target
detection algorithm, KCEM, to locate suspected areas of
breast cancer lesion tissues. Third, a thresholding technique
was used to extract the lesion areas. Fourth, the detected
lesion pixels were used to calculate five parameters: ADC,
D, D∗, PF, and slope via the biexponential model specified
by (4). The calculated values of ADC, D, D∗, PF, and slope
were ultimately input into a decision tree using histogram
analysis to classify the detected breast lesion tissues into
three categories: malignant tumor (central and peripheral
tumor), cysts, and normal tissue. It is our belief that the work
presented in this paper is the first to process breast IVIM-
DW images as hyperspectral images. Our findings show that
hyperspectral imaging techniques could be used to detect
breast lesion tissues. We also believe that this work is the
first to take advantage of a biexponential model to classify
breast lesion tissue by using the five parameters of ADC, D,
D∗, PF, and slope. This study was limited by its small sample

size and it did not employ multiple comparison correlations.
Therefore, the usefulness of the IVIM parameters for lesion
differentiation requires further investigation.
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