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ABSTRACT

Different biological notions of pathways are used in
different pathway databases. Those pathway onto-
logies significantly impact pathway computations.
Computational users of pathway databases will
obtain different results depending on the pathway
ontology used by the databases they employ, and
different pathway ontologies are preferable for dif-
ferent end uses. We explore differences in pathway
ontologies by comparing the BioCyc and KEGG
ontologies. The BioCyc ontology defines a pathway
as a conserved, atomic module of the metabolic
network of a single organism, i.e. often regulated
as a unit, whose boundaries are defined at high-
connectivity stable metabolites. KEGG pathways are
on average 4.2 times larger than BioCyc pathways,
and combine multiple biological processes from
different organisms to produce a substrate-centered
reaction mosaic. We compared KEGG and BioCyc
pathways using genome context methods, which
determine the functional relatedness of pairs of
genes. For each method we employed, a pair of
genes randomly selected from a BioCyc pathway is
more likely to be related by that method than is
a pair of genes randomly selected from a KEGG
pathway, supporting the conclusion that the BioCyc
pathway conceptualization is closer to a single
conserved biological process than is that of KEGG.

INTRODUCTION

Pathway bioinformatics has become an increasingly active
area of research in the past 5 years, yet different researchers
mean very different things by the word ‘pathway’. For exam-
ple, ‘pathway’ can denote a metabolic pathway involving
a sequence of enzyme-catalyzed reactions of small mole-
cules, or a signaling pathway involving a set of protein-
phosphorylation reactions and gene regulation events.

We argue that understanding the notion of pathways used
by each pathway database (DB) is a critical part of under-
standing that resource. Furthermore, we argue that the use
of different pathway conceptualizations can lead to different
outcomes from a computational study that relies on path-
way databases. By analogy, just as a study of associations
between single-nucleotide polymorphisms and disease preva-
lence must pay extremely careful attention to the human
populations from which the sequence data were drawn, stud-
ies using pathway data, or computational tools based on path-
way data, must ensure that the conceptualization of pathway
data that they choose is appropriate for the question or task
at hand. Different pathway ontologies are best suited for
different tasks, and can often be complementary.

We explore these issues in the context of two well-known
metabolic pathway databases, KEGG (1) and BioCyc (2). We
show how their pathway ontologies differ, and we investigate
the suitability of different conceptualizations for different
computational uses of pathway data.

METHODS

Datasets utilized

Our experiments employed Lisp queries against version 9.0
of the BioCyc DBs within the software/database bundle that
combines BioCyc DBs with the Pathway Tools software. Bio-
Cyc is a collection of >200 databases (2) where each database
describes one organism; e.g. EcoCyc describes E.coli. Eco-
Cyc is a manually curated DB, whereas the metabolic net-
works in the other BioCyc DBs used in this study were
predicted computationally based on the MetaCyc pathway
DB, followed in some cases by limited addition of pathways
from the literature for a given organism (3). To identify the
genes in each KEGG pathway for each organism, we used
the KEGG KGML v.0.4 dataset of metabolic pathways.
KEGG metabolic networks are generated by a combined
computational and manual approach (1). Table 1 summarizes
the datasets used in our experiments including the number of
metabolic genes and pathways in each organism.

Each genome-context experiment was performed against a
single dataset, where a dataset is considered to be a database
description of the metabolic map of a single organism as
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derived from KEGG or BioCyc, such as the EcoCyc dataset,
the CauloCyc dataset for Caulobacter crescentus, the KEGG
E.coli dataset, or the KEGG dataset for C.crescentus. Each
experiment considered either chromosomal proximity, phylo-
genetic profiles, gene clusters or gene fusions. And each
experiment considered pairs of genes from different regions
of the metabolic map, such as pairs of genes within the
same EcoCyc pathway or pairs of genes within the same
KEGG map, or pairs of genes within the same KEGG map
that are not in the same EcoCyc pathway.

Genome context experiments

We used data from Prolinks (4) to determine if two genes
were related by one of the four genome context methods.
Each method uses a different metric to compute functional
relatedness as described by Bowers et al. (4). In each experi-
ment our program chose 10 000 pairs of genes A and B at ran-
dom from a region of a metabolic pathway or map, and
counted the occurrence of one of the following:

� The number of times that genes A and B are conserved gene
neighbors, meaning that the two genes are found in close
proximity across multiple genomes. In the Prolinks data-
base, the probability that the genes are functionally related
(P-value) is computed based on the number of intervening
genes in each organism and the number of organisms
including homologs to both genes. Bowers et al. (4) have
shown that conserved gene neighbors provided the most
accurate and extensive coverage in recovering protein pairs
assigned to the same COG pathway when compared with
phylogenetic profiles, gene clusters and gene fusion events.

� The number of times that genes A and B have similar
phylogenetic profiles. In the Prolinks dataset, the prob-
ability that the two genes have coevolved has been
computed based on the numbers of genomes containing
homologs of each protein and the number of genomes
containing homologs of both proteins.

� The number of times that genes A and B appear in the same
gene cluster. In the Prolinks dataset, the gene cluster
method computes the probability that a pair of adjacent,
closely spaced genes is part of an operon based on the
probability of finding a smaller gap distance.

� The number of times that genes A and B, expressed as
separate proteins in the organism of interest, exist as a
fused gene in another organism. In the Prolinks dataset,
these pairs are ranked by the probability that the two genes
might be found linked by chance, based on the number of
homologs to genes A and B in the database.

For each organism we retrieved from Prolinks a list of gene
pairs, where each pair is related by one of the above methods

(gene neighbor, gene cluster, phylogenetic profile and gene
fusion). In each experiment we performed, we deemed all
retrieved pairs as related by the stated relationship regardless
of the confidence level of the association as scored in the
Prolinks dataset (confidence levels reflect the recovery of
COG pathway assignments at a certain P-value). Hence, a
gene pair has similar phylogenetic profiles if the pair is
related by the phylogenetic profile method in the Prolinks
dataset for the organism. Note that a pair of genes may be
related by multiple genome context methods. The Supple-
mentary Data file for each organism includes two tables
showing all pairs of genes from the same KEGG or BioCyc
pathway for which we found data in the Prolinks dataset
(i.e. all gene pairs occurring in the same KEGG or BioCyc
pathway that are related according to one or more of the
Prolinks methods).

Data availability

Virtually all BioCyc DBs, including EcoCyc, are freely and
openly available to all users, and may be redistributed. To
further facilitate use of EcoCyc as a training set for genome
context methods, we have created a new flat file that contains
all of EcoCyc’s functional associations among E.coli genes.
The file (func-associations.col) is available through the
Software/Data Download section of the EcoCyc website
(http://BioCyc.org/download.shtml). This file includes genes
grouped by metabolic pathway and protein complex, as well
as pairs of transcription factor genes and regulated genes.

RESULTS

Conceptualizations of metabolic pathways in
KEGG and BioCyc

To understand the ontologies of metabolic pathways used
by a given database project, we must understand the rules
or principles used by that project to determine what will
and will not be defined as a metabolic pathway in their data-
base. The more precise and rigorous those rules are, the more
clearly articulated is the conceptualization. We note that
most pathway databases do not provide a clear statement of
the pathway conceptualization that they use.

Pathways of small-molecule metabolism are generally con-
sidered to have the following properties. These pathways
involve two types of chemical entities: the small molecular-
weight chemical compounds that are transformed by the
pathway, and the enzymes that accelerate the biochemical
reaction steps within the pathway but that are unchanged
by the pathway. There are rare exceptions to these rules,
for example, in some cases protein substrates to metabolic

Table 1. Summary of each organism’s metabolic network as defined in KEGG and BioCyc

Organism Number of genes
in organism

Number of KEGG
metabolic genes

Number of BioCyc
metabolic genes

Number of KEGG maps/
number of BioCyc pathways

E.coli K12 4475 833 684 98/162
C.crescentus 3818 595 475 88/138
M.tuberculosis 3966 702 525 96/154
H.pylori 1609 323 259 66/96
V.cholerae 3950 623 499 84/171
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pathways are found (often as carriers of small molecules),
and a small number of reactions within small-molecule meta-
bolic pathways occur spontaneously (with no enzyme).

Metabolic pathways consist of linked sequences of
enzyme-catalyzed reactions—linked in the sense that the
small-molecule product (output) of one reaction in the path-
way becomes the reactant (input) of the next reaction in
the pathway. Metabolic pathways are not always linear
sequences—some pathways exhibit a branching tree struc-
ture, whereas other pathways contain cycles.

A critical notion in defining pathways concerns how
to define their start and end points. Put another way, how
do we choose to divide the complete metabolic reaction
network of the cell, which for a typical bacterium will
include 500–1000 reaction steps, into fragments that we
call pathways? Pathways after all connect to one another to
form a large biochemical network, but what rules are used
to separate the connection points from the interior nodes of
pathways? Do hard-and-fast rules exist, which are firmly
grounded in biological principles, or are pathway boundaries
purely arbitrary human constructs? One argument that these
boundaries are not arbitrary is that in our experience, the
same pathway start and end points are often identified by
multiple criteria for delimiting pathways.

Recent advances have resulted in mathematical methods
for defining pathway boundaries, termed extreme pathways
and elementary modes (5). We are unaware of any analysis
of how the pathway boundaries inferred from these methods
correspond to experimentally elucidated pathways or to the
BioCyc or KEGG conceptualizations; therefore, it is unclear
whether these methods can contribute to the problem of
delimiting pathway boundaries.

Here we present the rules used by the BioCyc family of
databases to conceptualize metabolic pathways (the rules
are used most actively in curation of the EcoCyc and Meta-
Cyc DBs, which are the most intensively curated DBs in
the BioCyc collection.) The goal of our pathway curation
efforts is to define metabolic pathways that correspond to
individual biological processes, and to conserved, functional,
atomic modules of the metabolic network. We note that few if
any of these rules are absolute within biology (or BioCyc),
and that some of these rules are new to the BioCyc curation
methodology, and are therefore not reflected in the definitions
of some older BioCyc pathways.

BioCyc Rule 1: Find a common biological process

BioCyc pathways consist of a linked set of reaction steps that
participate in a single biological process, such as biosynthesis
of tryptophan, or degradation of arginine. For a set of reac-
tions to be part of the same process, most or all of those reac-
tions must be active simultaneously, i.e. we cannot refer to a
pathway as a single biological process if different parts of the
pathway are expressed or activated at very different points
in time, or under different growth conditions, or are mutually
exclusive, or do not occur together in the same organism.

In contrast, KEGG maps contain large segments that
cannot be part of a single process because they are mutually
exclusive (e.g. biosynthesis and degradation of the same meta-
bolite), and because different segments of a KEGG map are
found in different organisms. That is, KEGG reference

maps are mosaics that combine pathway information from
multiple organisms. KEGG uses the term reference map to
refer to a single pathway diagram on a single KEGG web
page, which, again, integrates information from multiple
organisms. Note that KEGG maps can be colored to show
which reactions within a given reference map occur in a
given organism, based on the set of enzymes identified in
its genome.

BioCyc Rule 2: Define pathway boundaries at
high-connectivity substrates

BioCyc defines pathway boundaries at high-connectivity
metabolites—branching points within the metabolic network.
Such branching points typically correspond to decision
points within the cell, or to junctions between different pro-
cesses. The most common high-connectivity metabolites
are 13 metabolites of central metabolism within glycolysis,
the TCA cycle and the pentose phosphate pathway. The 13
metabolites are glucose-6-phosphate, fructose-6-phosphate,
ribose-5-phosphate, erythrose-4-phosphate, triose phosphate,
3-phosphoglycerate, phosphoenolpyruvate, pyruvate, acetyl
CoA, alpha-oxoglutarate, succinyl CoA, oxaloacetate and
sedoheptulose-7-phosphate.

Because those 13 metabolites supply the carbon skeletons
of all cellular components manufactured by the cell, BioCyc
biosynthetic pathways typically begin with these intermedi-
ates and end with a building block of macromolecules, a
cofactor or a coenzyme. BioCyc catabolic pathways typically
end at one of the 13 central metabolites.

BioCyc Rule 3: Define pathway boundaries at stable
substrates rather than transient intermediates

BioCyc defines pathway boundaries at stable metabolites
rather than at metabolites that decay quickly.

BioCyc Rule 4: Pathway steps share common regulation

BioCyc pathways are often regulated as a unit, through a vari-
ety of biological mechanisms. For example, the five reactions
of tryptophan biosynthesis in E.coli are regulated as a unit
at the level of substrate-level enzyme inhibition. In addition,
the genes that code for the enzymes within the pathway are
regulated within a single operon by both repression and
attenuation. All three regulatory mechanisms delimit the
same pathway boundaries.

Note that a hierarchy of levels of genetic regulation exists,
including the operon level (contiguous genes that are expres-
sed within a single transcript), the regulon level (multiple
operons regulated by the same transcription factor) and the
stimulon level (all responses to a common stimulus). There
is no consistent rule as to which of these levels maps to a
single pathway. For example, sometimes all genes within a
pathway are within a single operon, sometimes they are
within a single regulon, and sometimes they are within a
single stimulon.

Entire KEGG maps are rarely if ever regulated as a unit
because they combine segments from different biological
processes, and segments that occur in different organisms.
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BioCyc Rule 5: Pathways exhibit evolutionary
conservation

Another criterion for delimiting pathway boundaries comes
from evolutionary conservation of pathways, whereby the
same set of reactions is either present or not present in multi-
ple organisms as an atomic unit. Evolutionary considerations
shape BioCyc pathway boundaries, and our experiences in
pathway prediction across many genomes sometimes lead
our curators to partition pathways into smaller units when
those units are found to occur independently in different
organisms. For example, our curators had originally defined
a single pathway for the synthesis of coenzyme A from
2-keto-isovalerate, with pantothenate as an intermediate in
the pathway (Figure 1A and B). Although that entire pathway
was present in many organisms, we noticed some organisms
that contained only the first half of the pathway producing
pantothenate (such as Helicobacter pylori), and other organ-
isms that contained only the second half of the pathway
starting from pantothenate (such as Homo sapiens). These
observations led us to split this pathway into two new
pathways—pantothenate biosynthesis and coenzyme A
biosynthesis—and to define a superpathway that combines
the two pathways in organisms that have both. This approach
allows more accurate prediction of which individual path-
ways are present in a given organism.

As a second example, consider the pathway teichoic acid
(poly-glycerol) biosynthesis in Figure 2. Our Pathway Tools
software predicts (2) this pathway to be present in Sinorhizo-
bium meliloti because enzymes catalyzing two steps in this
pathway are present in S.meliloti. However, those two steps
form a branch of the teichoic acid biosynthesis pathway
that synthesizes UDP-D-glucose, which is one of several
inputs in the formation of teichoic acid. Because UDP-D-
glucose is involved in many other metabolic pathways (it is
a reactant in 49 MetaCyc pathways), and because none of
the enzymes that synthesize compounds along the main back-
bone of the teichoic acid biosynthesis pathway is present,
we consider it incorrect to state that S.meliloti has a pathway
for biosynthesis of teichoic acid. Biosynthesis of UDP-D-
-glucose should be treated as a separate biochemical module,
and therefore in the latest version of MetaCyc we have
defined a separate pathway for its biosynthesis, and removed
this branch from the pathway for biosynthesis of teichoic
acid. These changes should in the future prevent the false-
positive prediction that teichoic acid biosynthesis is present
in S.meliloti.

Summary of rules of pathway conceptualization

BioCyc pathways, like pathways defined in the experimental
literature, correspond to single biological processes that take
place in a single organism. They are evolutionarily conserved
and are regulated as a unit. Their boundaries are defined at
stable, high-connectivity chemical substrates.

As will become clear from the examples that follow, the
KEGG conceptualization of pathways shares few if any of
these principles. We have not been able to find a statement
of the principles underlying the KEGG pathway ontology
in KEGG publications or on the KEGG website. Therefore,
the following statements are based on our inferences of the
KEGG pathway ontology.

We infer that KEGG metabolic pathways are designed
to be mosaics of related groups of reactions from multiple
organisms that accomplish similar functions or that accom-
plish the biosynthesis, degradation or interconversion of
related substrates; i.e. KEGG pathways are substrate-centric,
and are aggregated from multiple organisms, thus integrating
all possible transformations of a given substrate in all known
organisms.

Global properties of KEGG and BioCyc pathways

We explore the effects of these different conceptualizations
by examining different global properties of KEGG and
BioCyc pathways that we believe stem in large part from
the different conceptualizations that these databases employ.

KEGG maps tend to be much larger than the BioCyc path-
ways (Figure 3). For example, if we compare the E.coli
KEGG maps with the EcoCyc DB, we see that KEGG con-
tains 102 maps with at least one reaction marked as present
in E.coli, whereas EcoCyc contains 162 metabolic pathways.
The average KEGG reference map (i.e. the organism-
independent maps used for pathway prediction) contains
21 reactions; the average KEGG E.coli map contains 9.1
reactions (i.e. KEGG finds E.coli enzymes for on average
9.1 reactions in each reference map, because a reference
map usually combines reactions from many organisms, not
all of which occur in E.coli). In contrast, the average EcoCyc
pathway contains 5.0 reactions. EcoCyc partitions the E.coli
metabolic network into a larger number of smaller pathways
than does KEGG.

KEGG maps tend to be larger because many KEGG maps
combine reactions from multiple biological processes. For
example, the single KEGG map entitled ‘arginine and pro-
line metabolism’ contains reactions found in the following
EcoCyc pathways: ‘proline biosynthesis I’, ‘proline degrada-
tion I’, ‘arginine biosynthesis II’, ‘arginine degradation VI’
and ‘arginine degradation XII’. It also contains reactions
for charging of prolyl- and arginyl-tRNAs. Similarly, the
KEGG map entitled ‘cysteine metabolism’ contains reactions
from the following EcoCyc pathways: ‘cysteine biosynthesis
I’ and ‘L-cysteine degradation II’. It also contains a reaction
for charging of cysteinyl-tRNA. These observations reinforce
our conjecture that KEGG pathways are designed to be
mosaics that integrate information from many organisms
about those biological processes that impinge upon a given
substrate, or a combination of substrates.

Comparison of example KEGG and BioCyc pathway

Here we illustrate the different pathway conceptualizations of
KEGG and BioCyc by comparing the E.coli version of the
‘Aminosugarsmetabolism’map from KEGG (eco00530) with
the corresponding EcoCyc pathways. The KEGG Aminosug-
ars metabolism map includes 21 genes for E.coli. These
21 genes occur in six different EcoCyc pathways, as shown
in Table 2. Considering genes from EcoCyc pathways that
contain more than one of the genes in the list of genes in
Table 2, we computed the number of pairs of conserved
gene neighbors (Methods) and genes with similar phyloge-
netic profiles within the ‘Aminosugars metabolism’ KEGG
map, and within the individual EcoCyc pathways. The Eco-
Cyc pathways considered were ‘UDP-N-acetylglucosamine
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Figure 1. (A) Pathway for biosynthesis of pantothenate from 2-keto-isovalerate. (B) Pathway for biosynthesis of coenzyme A from pantothenate. Of the 204
BioCyc organisms, 31 include the pathway for biosynthesis of coenzyme A, but lack the pantothenate biosynthesis pathway. Another 21 organisms include the
pathway for pantothenate biosynthesis, but lack the coenzyme A biosynthesis pathway. A total of 108 organisms include both pathways, while 44 lack both
pathways.
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biosynthesis’, ‘peptidoglycan biosynthesis’ and ‘glucosamine
degradation’.

Within the KEGG map, out of a total of 210 gene pairs
there are 5 conserved neighbor pairs, 3 pairs with similar phy-
logenetic profiles, 1 pair related by gene fusion and 2 pairs
related by gene clusters. Among the set of EcoCyc pathways,
there are a total of 70 gene pairs. From these 70 pairs, 29
pairs are conserved gene neighbors, 39 pairs have similar
phylogenetic profiles, 4 pairs are related by gene fusion and
8 pairs are related by gene clusters. Clearly, in this case Eco-
Cyc’s pathways, each corresponding to a single biological
process, include a greater number of gene pairs that are
deemed as related by one of these genome context methods.
(Note that the EcoCyc pathways include 10 genes not found
in this KEGG map, thus permitting the higher number of gene
pairs related by genome context methods.)

Functional relatedness of genes within KEGG and
BioCyc pathways

Consider the question of which conceptualization of path-
ways corresponds more closely to a functional biological
unit of the cell? And which conceptualization corresponds
more closely to atomic biological processes that are con-
served as a unit through evolution? One way to address
these questions is to choose pairs of genes at random, within
a single KEGG pathway, or within a single BioCyc pathway,

and to evaluate the relative frequency with which those genes
are functionally related.

Genome-context methods (4,6–22) infer that two genes A
and B are functionally related based on evidence from pat-
terns conserved across many genomes. Two example genome
context methods are the conserved chromosomal proximity
method (4,8,10,20), which infers that genes A and B are func-
tionally related if orthologs of A and B across many organ-
isms are nearby on the chromosome; and the phylogenetic
profile method (4,12,19), which infers that genes A and B
are functionally related if orthologs of A and B have
similar patterns of presence and absence across many gen-
omes. We use genome context methods to evaluate the
degree to which randomly chosen genes within a KEGG or
a BioCyc pathway are functionally related, as detected by
these methods.

For the KEGG E.coli dataset and the EcoCyc pathway-
genome database (PGDB), we compared the number of
times genes A and B appeared to be conserved chromosomal
neighbors out of 10 000 random selections of pairs of genes
occurring in the same EcoCyc pathway, or in the same
KEGG E.coli metabolic map. Similarly, we assessed whether
gene pairs chosen from the same pathway/map had similar
phylogenetic profiles, appear in a gene cluster, or are related
by gene fusion as defined in the methods section. As shown
in Figure 4, two genes chosen at random from the same Eco-
Cyc pathway were 3.8 times more likely to be conserved

Figure 2. Predicted pathway for teichoic acid biosynthesis in S.meliloti. Only where enzyme names and gene names are shown has an enzyme catalyzing a
reaction in this pathway been identified in S.meliloti. Of the 204 BioCyc organisms, 155 include the branch of the teichoic acid biosynthesis pathway that
synthesizes UDP-D-glucose. Only 38 organisms include any of the remaining reactions in the pathway, and only 31 of these include reactions from both branches.
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chromosomal neighbors than two genes chosen at random
from the same E.coli KEGG map. Figure 5 shows that two
genes chosen at random from the same EcoCyc pathway
were 2.3 times more likely to have similar phylogenetic pro-
files than two genes chosen at random from the same E.coli
KEGG map. Figures 6 and 7 show the results from the
gene cluster and the gene fusion methods. Two genes from
the same EcoCyc pathway were 4.8 or 3.8 times more likely
to be in a conserved gene cluster or to be conserved gene
neighbors.

The black bars in Figures 4–7 display a third group of gene
pairs, namely, pairs that lie in the same KEGG map but
that do not appear in the same EcoCyc pathway. This third

group essentially represents those gene pairs for which the
KEGG map asserts a functional relationship but no EcoCyc
pathway supports that relationship. The genome context
methods show a very small degree of functional associations
for these genes.

For several organisms in addition to E.coli, we repeated the
same comparisons using data from each organism’s respec-
tive KEGG or BioCyc dataset, and Prolinks data. The results
for these organisms are also shown in Figures 4–7. In each
case, we observe the same trend that was observed for
E.coli. The greatest number of conserved neighbor gene
pairs is found in sets of genes drawn from the same BioCyc
pathway. Considerably fewer pairs of conserved neighbor
genes are selected from a set of genes drawn from the same
KEGG pathway map and even fewer from the set of genes in
the same KEGG pathway map that do not occur together in a
BioCyc pathway. Two genes chosen at random from path-
ways in BioCyc DBs other than EcoCyc were 2.6 times (com-
pared with 3.8 times for EcoCyc) more likely to be conserved
gene neighbors than two genes chosen at random from the
KEGG map for that organism. This lower number may result

Figure 3. Size distribution of the KEGG and EcoCyc metabolic pathways.

Table 2. Genes from the ‘Aminosugars metabolism’ map in KEGG and

the EcoCyc pathway(s) that include each gene

Gene KEGG EC
number

EcoCyc pathway(s) that include the gene (gene name
shown when not in a pathway, with EC number
in EcoCyc when available)

b0211 3.2.1.- mltD
b0271 3.2.1.- yagH (3.2.1.37)
b0677 3.5.1.25 Glucosamine degradation
b0678 3.5.99.6 Glucosamine degradation
b0679 2.7.1.69 nagE (transporter)
b1084 3.1.4.- rne
b1107 3.2.1.52 nagZ
b1193 3.2.1.- emtA
b2340 3.1.3.- ArcAB two-component signal

transduction system
b2701 3.2.1.- mltB
b2813 3.2.1.- mltA
b2963 3.2.1.- mltC
b3189 2.5.1.7 Peptidoglycan biosynthesis
b3223 5.1.3.9 N-acetylglucosamine, N-acetylmannosamine

and N-acetylneuraminic acid dissimilation
(superpathway)

b3225 4.1.3.3 N-acetylglucosamine, N-acetylmannosamine
and N-acetylneuraminic acid dissimilation
(superpathway)

b3247 3.1.4.- Rng
b3729 2.6.1.16 UDP-N-acetylglucosamine biosynthesis
b3730 2.7.7.23 Peptidoglycan biosynthesis, UDP-N-acetylglucosamine

biosynthesis
b3786 5.1.3.14 Enterobacterial common antigen biosynthesis
b3972 1.1.1.158 Peptidoglycan biosynthesis
b4392 3.2.1.- Slt

Figure 4. Number of conserved gene neighbors. Each pair of genes is
selected randomly from a single KEGG metabolic map or from a single
BioCyc metabolic pathway.

Figure 5. Number of gene pairs with similar phylogenetic profiles. Each pair
of genes is selected randomly from a single KEGG metabolic map or from a
single BioCyc metabolic pathway.
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from the fact that the other BioCyc DBs have undergone
much less literature-based curation than has EcoCyc.

How do EcoCyc ‘superpathways’ compare?

Could the differing size of KEGG and EcoCyc pathways
alone be responsible for the preceding results?

Several of the metabolic pathways in the EcoCyc database
are organized into entities referred to as ‘superpathways’. A
superpathway is an aggregation of two or more base
EcoCyc pathways that are related in some way, usually
because the pathways are connected through common sub-
strates. Superpathways are intended to convey relationships
among base pathways to the user. EcoCyc contains 31 super-
pathways. The average number of reactions per superpathway
is 14.4, compared to 5.1 reactions per regular EcoCyc pathway
and 9.1 reactions for the average KEGG pathway for E.coli.

We performed the same type of experiment on all of
EcoCyc’s 31 superpathways, counting the number of con-
served gene neighbor pairs in 10 000 randomly selected
gene pairs, where each pair of genes was drawn from the

same superpathway. Figure 8 displays the data for EcoCyc’s
superpathways, EcoCyc’s standard pathways and KEGG’s
metabolic maps. The number of gene neighbor pairs ran-
domly selected from the same EcoCyc pathway is about
twice the number of gene neighbor pairs randomly selected
from the same EcoCyc superpathway, which in turn is also
approximately twice the number selected from the same
KEGG pathway. Therefore, although EcoCyc superpathways
are on average larger than KEGG pathways, more gene pairs
in each pathway are related by genome context methods than
are genes within a KEGG map.

DISCUSSION

The preceding statistics clearly show that KEGG pathways
are on average significantly larger than BioCyc pathways.
Our analysis of example pathways indicates that the reason
for this size difference is that individual KEGG pathways
are substrate-centric—they combine multiple biological pro-
cesses that impinge on a single substrate, such as the biosyn-
thesis, catabolism and tRNA-charging of an amino acid.
Individual KEGG pathways can contain alternative routes
of biosynthesis (or catabolism) of a substrate, either from
one organism or from multiple organisms.

Our experiments with genome-context methods have
shown that the likelihood that a pair of randomly chosen
genes from the same BioCyc pathway is functionally related
is much greater than that of a pair of randomly chosen genes
from the same KEGG pathway map. This result is consistent
with the notion of KEGG pathway maps as mosaics that com-
bine multiple biological processes.

What do these differences in pathway conceptualization
imply about the suitability of BioCyc or KEGG pathways for
particular computational purposes in bioinformatics? Here, we
consider several uses of pathway databases in bioinformatics
and the possible utility of these conceptualizations for each.

Purpose: encyclopedia of distinct metabolic processes
present in a given organism

One goal for a pathway DB is to precisely encode all meta-
bolic processes present in a given organism, as determined

Figure 6. Number of gene pairs occurring in a predicted gene cluster. Each
pair of genes is selected randomly from a single KEGG metabolic map or
from a single BioCyc metabolic pathway.

Figure 7. Number of gene pairs related by gene fusion events. Each pair of
genes is selected randomly from a single KEGG metabolic map or from a
single BioCyc metabolic pathway.

Figure 8. Number of conserved gene neighbors and similar phylogenetic
profiles randomly selected from EcoCyc superpathways compared to standard
EcoCyc pathways and KEGG E.coli metabolic maps.
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either experimentally or computationally. We posit that the
BioCyc pathway conceptualization is better suited to this
task, because each BioCyc pathway database object repre-
sents as closely as possible the set of reactions occurring in
one biological process in one organism. In contrast, a
KEGG reference map by its very nature integrates reactions
from many organisms, and from many biological processes,
and thereby blurs the boundaries between those processes.
A user viewing an uncolored reference map has no way to
ascertain which parts of the map were originally elucidated
in which organism(s), nor to ascertain which parts of the
map work together as a single process. In contrast, every Bio-
Cyc pathway clearly indicates the organism to which it per-
tains. For example, pathways in the MetaCyc DB are each
tagged with the names of the one or more species in which
they were experimentally elucidated.

Although the organism-specific coloring of KEGG maps
does paint a suggestive picture of what pathways might be
present in the organism, the KEGG framework does not
allow a pathway map to be precisely customized to the meta-
bolism of the organism. For example, a pathway that is in fact
absent from the organism, despite the presence in the organ-
ism of several enzymes from the pathway, cannot be removed
(manually or otherwise) from the KEGG map. Nor can a
KEGG map indicate how its component reactions are
assigned to distinct biological processes that are regulated
as a unit, that operate as a functional unit, and that evolve
as a functional unit.

Purpose: encyclopedia of processes impinging on a
given substrate

An alternative goal for a pathway DB is to communicate to
the user all processes that contribute to the metabolism of
a single substrate, or a set of related substrates. The KEGG
pathway conceptualization is well suited to this task, because
each KEGG map combines many processes related to a given
substrate within one diagram.

BioCyc is also well suited to this task, but takes different
approaches, under the philosophy that such relationships
can be detected computationally in a pathway DB. A BioCyc
user can understand the multiple processes impinging on
one substrate by (i) viewing a software-generated compound
page that shows all reactions and pathways that consume or
produce that compound; (ii) viewing a super pathway that
combines multiple pathways in which that compound is a sub-
strate; or (iii) requesting that all occurrences of that com-
pound be highlighted on the cellular overview diagram for
that organism (e.g. http://biocyc.org/ECOLI/new-image?type¼
OVERVIEW) to depict all cellular pathways that metabolize
that compound (such highlighting is supported in the desktop
version of the software, but not through the website).

Purpose: pathway prediction or reconstruction

Pathway databases are commonly used to predict the pathway
complement of a newly sequenced organism by analogy to
known pathways from other organisms. In our opinion, path-
way prediction will be more accurate if the pathway units
used for prediction correspond as closely as possible to
those biological processes that are conserved as units in evo-
lution. When predictions are considered in terms of distinct

biological processes, it is easier to identify cases where
there is insufficient evidence to support the prediction of a
pathway, e.g. when only a few enzymes for a pathway are
present and those enzymes also catalyze reactions in other,
more completely predicted pathways. If the pathways used
for prediction include multiple biological processes, the
probability of false-positive prediction of pathway compo-
nents will be increased because the presence of enzymes
for one process will incorrectly be interpreted as evidence
for another process.

For example, consider the KEGG map ‘Methane metabolism’
as projected into E.coli K-12 MG1655 (http://www.genome.ad.
jp/dbget-bin/get_pathway?org_name=eco&mapno=00680). The
KEGG coloring of this map indicates that six of the enzymes
of this pathway are present in E.coli. But is KEGG in fact
predicting the presence of this pathway? One interpretation
is to say yes, KEGG predicts the pathway as present in
E.coli because the pathway map is selectable for E.coli, in
contrast to the KEGG ‘Photosynthesis’ pathway, which is
selectable only for 11 photosynthetic organisms in KEGG
version 35.1. This interpretation is clearly the correct one
for computational users of KEGG, who perform computa-
tions across all KEGG maps that are provided for a given
organism, because programs do not have the biological wis-
dom that E.coli does not metabolize methane.

Another interpretation is that the inference as to whether
this pathway is present in E.coli is left to the user—that the
purpose of the KEGG site is simply to aid the user in making
this final assessment.

E.coli is not known to produce or catabolize methane, and
most of the six enzymes of this pathway are actually used in
other E.coli pathways, supporting the notion that using such
large pathways as predictive units increases the probability
that some enzymes in the pathway will be present because
of their role in other pathways, leading to false positive
pathway inferences by both end users who visually inspect
KEGG pathways, and by end users who compute with
KEGG pathways.

A final point related to pathway prediction is that KEGG
maps may have an advantage when the user is trying to
distinguish which of several alternative pathway variants is
present in a given organism. For example, a number of path-
ways of arginine catabolism are present in MetaCyc and in
KEGG. The KEGG arginine catabolism map shows all
these variants simultaneously, and by coloring all enzymes
present in the organism on that map, the user can easily com-
pare the evidence for each variant. In contrast, the BioCyc
approach is to computationally compare the evidence for
each variant, and to predict multiple alternative variants in
a given organism if the pathway predictor finds significant
evidence for more than one. The user must display each vari-
ant separately to manually compare the evidence for them.

Purpose: detection of missing pathway components

Another use of pathway DBs is to detect missing pathway com-
ponents, or ‘pathway holes’ as we have called them in past
work (23). Consider the KEGG pathway for ‘Phenylalanine,
tyrosine and tryptophan biosynthesis’ (http://www.genome.
ad.jp/dbget-bin/get_pathway?org_name=hsa&mapno=00400)
as projected into H.sapiens. That KEGG page shows that 8 of
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the 44 enzymes in this map are present in humans. Straightfor-
ward application of the pathway hole filling approach would
instruct an algorithm to search the human genome for enzymes
that catalyze all the other 36 steps in this KEGG map, even
though it is well known that humans cannot synthesize pheny-
lalanine, and even though, as a mosaic, this KEGG pathway
probably contains reactions known from a wide variety of
other organisms that would not be expected to be found in
humans. One view is that large KEGG pathways are well
suited to this task because it does not hurt to cast a wide net
when looking for missing components. An opposing view is
that the wider a net is cast, the more likely it is that we will
find false positives, and one should search only for compon-
ents of the specific biological processes that are predicted to
be present.

Purpose: gold standard for developing methods that
predict pathways

Developers of computational methods for predicting
pathways train and evaluate their methods with respect to
known pathways in pathway DBs. Developers of such
methods should choose the pathway conceptualization that
is closer to the type of pathway they want to predict. A learn-
ing program that is exposed to instances of the wrong concept
will usually learn the wrong concept.

Purpose: gold standard for developing genome
context methods

Many developers of genome context methods train and evalu-
ate their methods against pathway DBs, under the rationale
that all genes within a single pathway must be functionally
related, and therefore the more frequently their genome-
context method predicts that two genes within the same path-
way are functionally related, the better is their method.
Again, developers of such methods should choose a pathway
DB that uses a conceptualization that is closest to the
notion of ‘functionally related’ that they want to predict.
A researcher who considers ‘functionally related’ to mean
that two genes are involved in separate biological processes
that impinge on a common substrate with no other evolution-
ary or regulatory constraints should choose KEGG pathways.
A researcher who considers genes to be functionally related if
they are involved in a single biological process, are regulated
as a unit, and are conserved evolutionarily should choose
BioCyc pathways.

Because these methods are likely to play a significant role
in genome annotation in the future (24,25), accurate evalua-
tion of the methods is critical in order to maximize their accu-
racy. We note that the definition of a functional association
has always been vague in genome-context research, and
that few publications in the field attempt to define the term
precisely. Clarification of the goals of genome-context meth-
ods would aid in selecting an optimal evaluation strategy.

Purpose: analysis of omics datasets

Some scientists use pathway DBs to analyze large-scale data
such as gene-expression measurements by viewing them
within a pathway context (26,27). Various application pro-
grams perform this analysis by coloring steps within pathway
diagrams with colors corresponding to gene expression

levels. It is not clear that either of the two pathway concep-
tualizations is particularly better suited to this task. KEGG
pathways alone allow the scientist to view data that encom-
passes several related biological processes, and are thus
broader than a single BioCyc pathway. On the other hand,
the BioCyc Omics Viewer allows omics data to be projected
on a pathway map of the entire cell, for a broader view yet,
with the ability to zoom in to see omics data on individual
pathways or clusters of pathways. It is not clear that either
ontology is better suited to this task.

Complementation of pathway databases

Given the complementary strengths and weaknesses of
pathway DBs discussed in this article, it may be that for
certain applications, different pathway DBs will complement
each other and should be combined. Three projects that
would support such complementation are BioWarehouse
(28), which allows BioCyc and KEGG to be loaded side-
by-side into a single relational DB system; BioPAX, a single
format into which both BioCyc and KEGG can be converted
(29,30); and SBML, another common data format for systems
biology (30,31).

Limitations of our approach

We cannot say for certain that there does not exist some
functional relationship between genes in the same KEGG
pathway, but not in the same BioCyc pathway, that remains
undetected using genome context methods. However, the
bulk of available evidence suggests a tighter functional cohe-
siveness among genes within BioCyc than KEGG pathways.

‘Membership in the same metabolic pathway’ carries with
it implications for regulatory and evolutionary relationships.
Our results suggest that the extent to which these relation-
ships hold can be impacted by the demarcation of the path-
ways themselves. Despite its limitations, the results from
our analysis warrant more rigorous consideration of the
types of relationships and degrees of relatedness predicted
by methods developed using the variety of available meta-
bolic pathway databases.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR online.
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