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Abstract

Objective: It is essential to develop predictive algorithms for Amyotrophic Lat-

eral Sclerosis (ALS) disease progression to allow for efficient clinical trials and

patient care. The best existing predictive models rely on several months of base-

line data and have only been validated in clinical trial research datasets. We

asked whether a model developed using clinical research patient data could be

applied to the broader ALS population typically seen at a tertiary care ALS

clinic. Methods: Based on the PRO-ACT ALS database, we developed random

forest (RF), pre-slope, and generalized linear (GLM) models to test whether

accurate, unbiased models could be created using only baseline data. Secondly,

we tested whether a model could be validated with a clinical patient dataset to

demonstrate broader applicability. Results: We found that a random forest

model using only baseline data could accurately predict disease progression for

a clinical trial research dataset as well as a population of patients being treated

at a tertiary care clinic. The RF Model outperformed a pre-slope model and

was similar to a GLM model in terms of root mean square deviation at early

time points. At later time points, the RF Model was far superior to either

model. Finally, we found that only the RF Model was unbiased and was less

subject to overfitting than either of the other two models when applied to a

clinic population. Interpretation: We conclude that the RF Model delivers

superior predictions of ALS disease progression.
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Introduction

Amyotrophic lateral sclerosis (ALS) is a devastating neu-

rodegenerative disease affecting motor neuron populations

of the cerebral cortex, brainstem, and spinal cord, leading

to progressive disability and death from respiratory failure.

ALS is a highly heterogeneous disease demonstrating varied

clinical phenotypes and rates of disease progression.

Though average survival is 3–5 years after onset, survival is

markedly variable ranging from several months to over a

decade. Because of this heterogeneity, ALS clinical trials are

inefficient, requiring large numbers of participants to ade-

quately power an efficacy study. In addition, this hetero-

geneity is a barrier to clinical care because patients,

caregivers, and physicians are unable to adequately

anticipate the timing of future needs.1,2

With this dire need for ALS prediction tools in mind, a

crowdsourcing competition, the DREAM-Phil Bowen ALS

Prediction Prize4Life Challenge, was launched in 2012

where competitors developed algorithms for the predic-

tion of disease progression using a standardized, anon-

ymized pooled database from phase 2 and 3 clinical

trials.3–5 In this Challenge, competitors were asked to use

3 months of individual patient-level clinical trial informa-

tion to predict the patient’s disease progression over the

subsequent 9 months. The two best algorithms from the

crowdsourcing competition utilized nonlinear, nonpara-

metric methods and were able to significantly outperform

a method designed by the Challenge organizers as well as

predictions by ALS clinicians.6 It was suggested that the

incorporation of these predictive algorithms into future

clinical trial designs could reduce the required number of

patients by at least 20%.6 While impressive, these algo-

rithms are not necessarily applicable in a clinical setting

for several reasons. It has been shown that clinical trial

patients are generally higher functioning and more homo-

geneous than patients from a typical tertiary care clinic

setting.2 Furthermore, patients enrolled in ALS clinical

trials tend to be younger, more likely to be male, and are

half as likely to have bulbar onset disease.7,8 Thus, ALS

patients enrolled in clinical research trials are likely to

exhibit slower disease progression with less severe symp-

toms as compared to a typical clinic population. Addi-

tionally, patients who are not enrolled in clinical trials are

unlikely to have extensive longitudinal data collection

over a 3-month period for use in predictive algorithms.

Therefore, it is unclear that existing predictive algorithms

are relevant in a broader clinical setting.

We hypothesized that the same nonlinear, nonparamet-

ric modeling techniques that were previously effective in

ALS predictive models for clinical research populations 6

could be developed with only baseline data as predictor

variables and validated in a tertiary clinic dataset, demon-

strating usefulness in a broader setting and applicability

to a clinical patient care setting.

Methods

Training and validation data

Data used in training the predictive models for this article

were obtained from the PRO-ACT Database.9 PRO-ACT

contains records from over 10,700 ALS patients who partic-

ipated in 23 phase II/III clinical trials. A majority of these

records were obtained prior to implementation of the

revised ALSFRS scale (ALSFRS-R).10 To set a minimum

data-completeness threshold and to retain more contempo-

rary records, only the 3742 patients with complete forced

vital capacity (FVC) records and ALSFRS-R scores were

used for model training and internal validation. An internal

validation cohort of 353 patients from the PRO-ACT data-

base was selected randomly from the 3742 eligible records

and was used for internal validation and bias estimation.

The remaining 3389 records were used for training.

Test data

Data from 630 patients who were treated at the Emory

University ALS clinic between 1998 and 2012 were used

as the external, test dataset.11 All patients in the external

dataset had multiple entries beginning from their first

visit to the clinic. The median intervisit time between first

and second visit was 121 days, and generally included the

full ALSFRS-R questionnaire, FVC, and vital signs. A goal

of this study was to assess the performance and character-

istics of models generated using patient features collected

during a typical clinic visit.

Predictor variables

A panel of 21 predictor variables was compiled from base-

line visit data for the clinic patients (Table 1). These data

points consisted of static variables (e.g., gender and height)

and temporally sensitive variables, such as FVC, weight,

and ALSFRS-R score. Dimension reduction and variable

selection techniques were followed according to standard

practice.5,6 Variables were cleaned and standardized

between the PRO-ACT and Emory Clinic datasets, and

descriptive statistics were generated to assess the degree of

similarity between the training and test datasets (Table 1).

Models

A nonlinear, nonparametric random forest (RF)12 algo-

rithm was trained using the PRO-ACT dataset 9 and the
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“randomForest” R package13 (Fig. 1). A preliminary

model was trained using 21 available predictor variables

from the baseline visit, and the relative contribution of

each variable to reducing model accuracy was determined

by quantifying the error rate for each variable (Table 2).14

A second RF model using only those variables that con-

tributed more than a 2% reduction in model error was

retrained and used for further testing on the clinic popu-

lation (Table 2, upper non-gray area). This variable

reduction step was included to reduce the chance of

model overfitting. The final model consisted of 13 predic-

tor variables. Performance of the random forest model

was compared to the pre-slope model and a parametric

generalized linear (GLM) model.

The pre-slope model is a nonparametric linear model

that is often used in a clinical or research setting (Fig. 1).

It did not use the PRO-ACT data, but rather it was calcu-

lated for every patient using a presumed perfect ALSFRS-R

score the day before time of onset and the score at base-

line; all patients had a y intercept of 48. This model is

not based on any assumptions about population-level dis-

ease characteristics, rather, it is based on calculating a

patient’s ALSFRS-R slope over time by assuming full

functionality prior to the first onset of symptoms and

extrapolating a future score based on the presumed linear

trajectory of ALSFRS-R progression.

The parametric generalized linear (GLM) model was

developed using PRO-ACT patient data and the “LM”

function in the base R package15 (Fig. 1). The model was

fit using four variables, including the time since baseline,

time from symptom onset to baseline, the ALSFRS-R

score at baseline, and the slope of the ALSFRS-R score at

baseline (calculated using a score of 48 the day prior to

the day of symptom onset). These four variables were

selected based on the four most important noncollinear

variables revealed by the variable importance list

generated from the RF Model (Table 2):

ALSFRSRi;T ¼ �3:443� 0:02ðTÞ � 0:0027ðtÞ
þ 1:044ðALSFRSR0Þ � 61:94ðmALSFRSR0

Þ
þ e

where,

ALSFRSRi,T is the predicted ALSFRS-R score for patient

i at time T.

T is the time since baseline.

t is the time from symptom onset to baseline.

ALSFRSR0 is the ALSFRS-R score at baseline.

mALSFRSR0 is the slope of the ALSFRS-R score at base-

line.

e is ~N(0, 5.9022).

Model evaluation

The performance of the models was assessed qualitatively

using visual checks and quantitatively by assessing the

error between predicted and observed ALSFRS-R scores

Table 1. Patient characteristics.

Clinic data PRO-ACT data

P Value

PRO-ACT data Clinic data

Variable Mean (� SD) Mean (� SD)

Range

Min – Max

Patients Outside

Range

Age 51.5 � (32.3) 55.8 � (11.3) P < 0.01** 18–82 56

Height (cm) 172 � (11) 171 � (9.9) P < 0.05* 131–205 2

Weight (kg) 79 � (16.8) 78 � (15.9) ns 40–138.1 5

Diastolic BP 79 � (8.3) 80 � (10) P < 0.01** 50–118 1

Systolic BP 131 � (15.4) 130 � (16) ns 88–216 1

Pulse 77 � (9.9) 75 � (11.8) P < 0.01** 41–135 0

Baseline FVC (L) 3.23 � (1.26) 3.44 � (1.04) P < 0.001*** 0.02–7.37 0

Time Since Diagnosis (d) 239 � (827) 234 � (226) ns 1666–131 28

Time Since Symptom Onset (d) 824 � (1185) 578 � (322) P < 0.001*** 2173–70 49

Gender (F:M) 0.39:0.61 0.37:0.63 ns NA 0

Bulbar Onset (%) 25% 17% P < 0.001*** NA 0

Baseline ALSFRS-R Slope (pts/d) �0.029 � (0.039) �0.022 � (0.017) P < 0.001*** �0.19–0 3

Baseline ALSFRS-R 35.5 � (8.2) 37.8 � (5.4) P < 0.001*** 16–48 17

Baseline Trunk Sub-score 5.5 � (2.1) 5.7 � (1.8) P < 0.01** 0–8 0

Baseline Bulbar Sub-score 9.4 � (2.7) 10.2 � (2.2) P < 0.001*** 0–12 0

Baseline Respiratory Sub-score 10.5 � (2.3) 11.4 � (1.2) P < 0.001*** 0–12 0

Baseline Fine Motor Sub-score 5.6 � (2.3) 5.8 � (2) P < 0.01** 0–8 0

Baseline Gross Motor Sub-score 4.6 � (2.4) 4.8 � (2.2) ns 0–8 0

Riluzole Use (%) 30% 82% P < 0.001*** NA 0

ALSFRS-R at 1 year 27 � (10) 28.5 � (10) P < 0.05* 0–48 0

FVC, forced vital capacity; *P < 0.05; **P < 0.01; ***P < 0.001.
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via root mean square deviation (RMSD).16 Estimation of

model bias was performed by calculation of mean predic-

tion error via bootstrap resampling.17

Model validation

Internal model validation was performed using the ran-

domly selected internal validation cohort of PRO-ACT

patients not used in model training. Predictions were gen-

erated for patients directly (pre-slope model) or using the

internal validation cohort (GLM and RF models), and

overall model performance was qualitatively assessed by

plotting predicted versus observed scores as well as quan-

titative assessment of model error via descriptive statistics

and bootstrap analysis.

Model testing on clinic data

7The proposed use of the models would be to generate

actionable predictions about disease progression for individ-

ual patients. Features collected at the first clinic visit were

used to predict ALSFRS-R scores at regular intervals between

2 and 36 months. After predictions were generated, predic-

tion accuracy was assessed using observations for patients

who visited the clinic within 45 days of the predicted time

points. More rigorous assessment of model behavior was

then performed at the 6-month time point.

Bootstrap analysis of mean error

The population means and confidence intervals of predic-

tion errors for the models were assessed by bootstrap

analysis of mean prediction error. Prediction error from

the population of patient predictions was sampled from

the dataset with replacement and was used to calculate a

mean prediction error. This process was repeated 5000

times to establish distributions and 95% confidence inter-

vals of mean errors. A mean error of zero within the con-

fidence interval of the distribution was the threshold for

determining model bias.17

Computational details

All computations were performed using the R statistical

computing system (version 3.1.0)15 and the R base pack-

ages and add-on packages randomForest,13 plyr,18 and

ggplot2.19 The data are available to registered PRO-ACT

users.9

Figure 1. Model Development Schematic. Schematic showing the relationship between the PRO-ACT database, the Emory Clinic data, and the

three models developed for testing.
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Results

Comparison of tertiary clinic and research
datasets

The clinical and demographic differences between

research patients who enroll in clinical trials and in

patients from the general population have been described

in detail (Table 1). To establish the degree of discontinu-

ity between the datasets, the mean and distributions of

each patient attribute was tested and found to be signifi-

cantly different for 13 of the 17 continuous variables and

for 2 out of 3 proportional distributions (Table 1), con-

firming earlier reports of the substantial differences

between research and clinic populations.2,7,8,11,20,21 In par-

ticular, significant differences between the two popula-

tions are observed for most of the features that would be

included as independent variables for a parametric

predictive model.

In addition to the distribution differences, there were a

number of patients in the clinic dataset who had attribute

values that were not represented in the range of values

included in the PRO-ACT data base (Table 1, columns 5

and 6). The variable with the largest number of outliers

was age, with 56 clinic patients either being younger or

older than the minimum and maximum ages represented

in PRO-ACT. Patients who had baseline attributes not

represented in PRO-ACT were not included in subsequent

analyses as none of the models developed were assumed

to be applicable to patients without representation in the

training dataset. The final clinic dataset contained 508

unique patients with multiple records.

An initial consideration for a predictive model was the

use of longitudinal information provided during a run-in

period to generate predictor variables. In particular,

changes in FVC and ALSFRS-R during a several-month

run in have proven valuable in predicting future disease

progression.6 However, an important distinction between

the longitudinal data in PRO-ACT and the clinic data is

the interval between observations. The median interval

between the first and second visits in the PRO-ACT data-

base is 28 days and the median interval in the Emory

clinic data is 121 days. The aim of this study is to validate

actionable predictive models for use in the clinic. By

regarding the median intervisit interval in the Emory

dataset as a reasonable proxy for the general clinic popu-

lation, it would follow that a model requiring two visits

relatively close in time would have limited utility. In

order to train and test a model with maximal practical

utility, all models were developed using information gath-

ered only at the first visit. This first clinic visit was

designated as the baseline visit.

Internal validation and initial assessment of
model performance

Initial assessment of model error for the GLM and RF

models was analyzed via root mean squared deviation

(RMSD)16 on a randomly sampled subset of PRO-ACT

patients that were set aside and not used in model train-

ing (i.e., an internal validation set) (Table 3). This value

allows for quantitative assessment of model accuracy and

served as the baseline measure of model performance.

The GLM and RF models had similar RMSDs for

6 month predictions (4.68 and 4.70, respectively, Table 3)

indicating that both types of models were capable of

achieving similar fits to the internal validation data at this

early time point. When the models were applied to the

clinic datasets, they both exhibited increased error, with

the GLM model error increasing 16.4% to 5.45 and the

RMSD of the RF model increasing less dramatically to

5.28 (12.3%). Both models performed substantially better

at 6 months than the commonly used pre-slope model

(RMSD = 6.68). Homoscedasticity of model error across

predicted scores was tested using the Breusch–Pagan
test,22 which confirmed homoscedasticity for all three

model predictions across the spectrum of observed

ALSFRS-R scores. The homoscedasticity result (as

Table 2. Random forest variable importance of preliminary model.

Variable Importance

Time from Baseline 26.57%

Baseline ALSFRS-R 23.19%

Baseline ALSFRS slope 13.74%

Baseline Trunk Sub-score 6.17%

Time Since Symptom Onset 3.66%

Baseline FVC 2.89%

Baseline Fine Motor Sub-score 2.80%

Time Since Diagnosis 2.64%

Age 2.40%

Baseline Bulbar Sub-score 2.33%

Systolic BP 2.10%

Baseline Gross Motor Sub-score 2.07%

Weight 2.05%

Pulse 1.90%

Height 1.85%

Diastolic BP 1.56%

Baseline Respiratory Sub-score 0.98%

Limb Onset 0.29%

Bulbar Onset 0.29%

Gender 0.27%

Riluzole Use 0.26%

FVC, forced vital capacity.

This table shows the variable importance list for a preliminary 21 vari-

able model. To reduce the possibility of overfitting, variables whose

importance was less than 2.00% were deleted from the final 13 vari-

able model that was used in all the analyses.
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opposed to heteroscedasticity) indicates that the variance

in predicted ALSFRS-R scores is not significantly different

for observed ALSFRS-R scores for any of these models.

Interestingly, the absolute prediction error between the

GLM and RF models is significantly different when

applied to the clinic population (P = 0.004, mean of dif-

ferences = �1.01, paired t-test), but is not different when

tested on the internal validation data (P = 0.0537). The

lower RMSD and significantly reduced model error of the

RF model when compared against the GLM model pro-

vides initial evidence that the RF model is less prone to

overfitting. Taken together, these results indicate that the

overall prediction accuracy and model performance of the

three models was high enough to support further analysis,

and that a model trained using the research patient data

contained in the PRO-ACT data base can be applied to

making predictions for tertiary ALS clinic patients. In

fact, such models can achieve superior predictive accuracy

compared to the pre-slope model, a currently used

predictive tool.

Longitudinal RMSD evaluation

Evaluating the longitudinal predictive component of

models developed to predict ALS disease progression is of

particular interest because of the chronic progressive nat-

ure of the disease. To evaluate model stability over the

range of relevant times for which predictions might be of

use, RMSD was assessed for nonduplicated patient obser-

vations within 6-month windows ranging from 6 to

36 months following the initial baseline visit. All three

models demonstrated an increase in error over time, with

the pre-slope model showing the highest initial error and

most rapid increase in error with time (Fig. 2, red line).

The GLM (Fig. 2, green line) and RF (Fig. 2, black line)

Models had very similar RMSDs at 6 and 12 months but

the RF Model showed increased temporal stability at

18 months and beyond with a 33% lower RMSD at the

36-month prediction window (RF RMSD = 7.9, GLM

RMSD = 12.1). The performance of the RF model across

all time points makes it the preferred model for near-

and long-term applications. Since most follow-up visits

occur within 6 months of an initial clinic visit, we

reasoned that a clinician may want a tool that can assist

in advising patients in the near-term. For this reason,

subsequent analyses focused on model performance

within the 6-month window.

Six-month scatterplot analysis of model
performance

A reasonable proxy for the spectrum of ALS disease states

is the range of the 48-point ALSFRS-R scale. To investi-

gate model performance across this scale at 6 months, we

plotted the predicted score as a function of the observed

score for all time points containing ALSFRS-R records

(Fig. 3 A–C). The goodness of fit of observed score as a

function of predicted score for the RF Model demon-

strated a high degree of agreement, with a slope of 0.942,

an R2 = 0.582, and an intercept of �0.227 (Fig. 3C). The

GLM Model (Fig. 3B) had slightly poorer performance

with a fitted slope of 0.86, an R2 = 0.57, and an intercept

of 4.34. As was observed with the RMSD, the goodness of

fit with the pre-slope model was substantially lower by

comparison with a fitted slope of 0.63, an R2 = 0.53, and

an intercept of 11.2 (Fig. 3A).

Six-month bootstrap analysis of mean
prediction errors of clinic models

Bootstrapping is a metric where random samples are

taken from a test set with replacement to calculate an esti-

mated mean error, and this process is repeated many

times as a way to estimate the distribution characteristics

of much larger populations than are actually available.

We used bootstrap sampling to estimate the distribution

of the mean error between predicted and observed scores

Table 3. Model performance at 6 months.

Pre-slope Model GLM Model RF Model

Validation RMSD NA 4.68 4.70

Clinic RMSD

(% change)

6.68 5.45 (16.4%) 5.28 (12.3%)

Heteroscedasticity NS NS NS

GLM, generalized linear models; RMSD, root mean square deviation.

Figure 2. Root-Mean-Square Deviation over Time. Plots of root-mean

square deviation (RMSD) at 2-month intervals for the RF model

(black), GLM model (green), and pre-slope model (red). RMSD was

calculated for single patient records within each time window. RF,

random forest.
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for each of the three models (Fig. 4). Bootstrap resam-

pling of model error was used to test the hypothesis that

a nonlinear nonparametric predictive model (RF Model)

will exhibit less bias than a parametric generalized linear

model (GLM) when predicting disease progression for a

clinic population. A model is determined to be signifi-

cantly biased if a bootstrapped mean error of zero does

not fall within the 95% confidence interval of the boot-

strap sample.17

The bootstrap estimated mean error of the pre-slope

model within the 6-month time window had a negative

value of �0.627 � 0.224, indicating that using the pre-

slope method to estimate disease progression in the clinic

population had a significant tendency to underestimate

disease progression. Conversely, the GLM Model error

had a positive estimated value of 0.573 � 0.24 indicating

a significant tendency to overestimate disease progression

at 6 months. The RF Model error was estimated to be

�0.22 � 0.224, demonstrating that the RF Model was

capable of generating predictions with the lowest mean

error and least bias (Fig. 4). In fact, the 95% confidence

interval of the mean error for the RF Model included the

value of zero, indicating that the slight negative tendency

to underestimate disease progression was not significant.

These results suggest that of the three models tested, only

the RF model was capable of providing nonbiased

predictions for ALS patients in a tertiary care setting.

Discussion

This study supports our hypothesis that a RF algorithm, a

nonparametric, nonlinear machine learning-based model-

ing technique, using only baseline data as predictor

variables can accommodate sources of bias and is capable

of reliably generating predictions for patients with ALS in

a clinic setting. The RF method outperformed the more

conventional pre-slope and GLM prediction methods. An

important consideration in any predictive model is the

risk of model overfitting. The phenomenon of overfitting

is ascribed to a model attributing correlative significance

to random associations in the data, also known as spuri-

ous correlation. In the case of disparate datasets such as a

clinical trial research population represented in PRO-ACT

and a population from a tertiary care clinic, there is

increased risk that overfitting could contribute signifi-

cantly to model error. The choice for mitigating this risk

Figure 3. Model Performance at 6 Months. Plots of observed ALSFRS-R score as a function of predicted score for the pre-slope, GLM and RF

models (A, B, C, respectively). Plotting the predictions with observed ALSFRS-R score on the y-axis allows a visual indication of predicted accuracy

along the spectrum of disease states. In addition to indications of heteroscedasticity along the spectrum of disease states, it is possible to evaluate

global bias such as the tendency to underestimate ALSFRS-R for patients with particularly low scores. RF, random forest.

Figure 4. Bootstrap Mean Prediction Error. Box and whisker plot of

prediction error assessed at 6 months via bootstrap resampling. Mean

prediction error was assessed via bootstrap resampling to gain insight

into model bias. Mean error (solid horizontal line), standard deviation

(box border), and 95% confidence interval (whisker) for the pre-slope,

GLM, and RF models. RF, random forest.
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was to reduce the set of predictive features used in the

model based on the relative contributions of all available

features. By selecting only those features capable of

accounting for more than 2% of relative model error in

the training dataset, we reduced the likelihood of spurious

correlation. The observation that the increase in RMSD

for the RF Model when the model was applied to the

clinic dataset was lower than the increase observed in the

GLM Model supported this decision.

Initial evaluation of the three models suggested that the

RF model had a more stable RMSD across the span of

prediction windows, with the most notable improvement

seen at the 36-month mark. The increased stability of the

RF model could be of particular use when planning for

clinical trials of longer duration or attempting predictions

for distant clinical outcomes in a patient-care setting.

A closer analysis of model error at the 6-month win-

dow provides additional insight into the differences

among the three models. Initial evidence of model bias is

provided by the line of best fit when observed ALSFRS-R

scores are plotted as a function of predictions for each

model. With a fitted slope closest to 1.0 and an intercept

of �0.227, the RF predictions demonstrated the least

biased correlation with observed scores of the three mod-

els. This observation was further supported by plotting

the bootstrap resampled mean prediction error for the

same data. Both the GLM and the pre-slope models

showed significant bias compared to the RF model. Inter-

estingly, the sign of the bias was reversed in the GLM and

pre-slope models. Since the pre-slope model is nonpara-

metric, the potential sources of bias are limited. Presum-

ably, the tendency of the pre-slope model to overestimate

disease progression is evidence of a flattening of disease

course that causes the rate of ALSFRS-R on average to

deviate from a linear trajectory. The bias in the GLM

model likely has a number of potential sources, including

the significant differences between the PRO-ACT and

clinic datasets among the distributions of the independent

variables used in the model. Other potential sources of

bias include differences in standard of care between the

training and test data. Interestingly, the bootstrap esti-

mate of mean error was negative for the RF model and

positive for the GLM Model, indicating that the bias

common to both models is secondary to the less quantifi-

able sources of error within each model.

An objective of the initial crowdsourcing Challenge was

to stimulate research into ALS disease progression.

Indeed, in addition to the publication describing the win-

ning models,6 there have been several additional publica-

tions describing the development of predictive ALS

disease progression models using PRO-ACT.23,24 How-

ever, the usefulness of predictive models is defined by the

applications that rely on them. In the case of PRO-ACT,

considerable effort has been put into leveraging the data-

base to aid in clinical trial development and analysis. This

communication seeks to add to the utility of the

PRO-ACT database by demonstrating that a machine

learning-based, nonlinear, nonparametric model using

only baseline data as predictor variables can be developed

using the clinical trials research data, and be applied to a

tertiary care clinic population. The application of models

developed using the PRO-ACT database to data in the

clinic setting may prove to be a useful tool for compar-

ison with smaller clinic-based datasets. Currently, studies

with clinic data have been limited to models built on data

from a single clinic. Examples of single-clinic database

studies include analyses of ALS heritability,25 survival,26

antecedent disease,27 coordinated care,28 and cognition.29

Accurate anticipation of a patient’s ALS disease trajec-

tory, as defined by future changes in the ALSFRS-R score,

will likely facilitate informed decision-making and foster

better standards of clinical care. While the disease course

of ALS is known to be highly heterogeneous, there is

recent evidence from a retrospective analysis that patients

with stereotypical outcomes demonstrate a pattern in

their disease progression.30 In particular, evidence sug-

gested that disease progression rates after disease onset

have a pattern that encompasses both linear and nonlin-

ear components, and further that these patterns are

affected by multiple, as-yet undescribed factors. The

results of our study demonstrate that a nonlinear, non-

parametric predictive model is capable of predicting pro-

gression rates in an unbiased manner. Interestingly, a

noted benefit to the use of a machine learning-based pre-

dictive model such as random forest is that it has been

shown to uncover higher order variable interactions such

as the ones suggested to affect disease progression rates

by Proudfoot et al.30 Further application of machine

learning methods toward uncovering these interactions

and articulating patterns of disease progression represents

an interesting course of further investigation.

An awareness of disease course can help in the plan-

ning for resource allocations and anticipate timing for

when the patient will require additional interventions.31 A

lack of familiarity with ALS disease trajectory has recently

been cited as an impediment to end-of-life discussions

and a barrier to palliative care access, a situation that can

result in added stress at a time of severe crisis.32,33 Car-

reiro et al. 34 have recently developed a constrained hier-

archical clustering model that predicts respiratory

insufficiency. Ultimately, improvements to individualized

care plans that include predicted disease trajectories will

maximize patient and family quality of life.

While the ability to accurately predict a future

ALSFRS-R score has some immediate utility for patients

and clinicians, we anticipate that a more useful decision
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aid will encompass a number of disease attributes to pro-

vide a more comprehensive estimation of disease progres-

sion. As an example, incorporating actionable predictions

about mortality risk would increase the utility of a deci-

sion aid considerably. As a chronic, degenerative disease,

the ultimate outcome of an ALS diagnosis is death. The

model tested in this publication does not factor mortality

into the predictions generated, nor is the anticipation of

mortality used as a metric to test model performance. It

will be important to fully vet and incorporate a survival

model into any future tool or application based on a pre-

dictive model. Additionally, it is possible to extrapolate

information about the occurrence of key events in disease

progression such as the loss of lower limb mobility or the

need for supplemental feeding as surrogates for time-to-

wheelchair and need for a PEG tube, respectively. Using

these events as outcomes upon which to train predictive

models is another potential avenue for deriving value that

can be applied toward meaningful improvements in care,

treatment, and planning for patients and caregivers. An

important factor in considering an eventual clinical appli-

cation is to investigate ways of providing this information

to clinicians or patients in a way that is readily under-

standable and most likely to be useful.

These results indicate that a machine learning-based

predictive model generated using existing patient records

is sufficient to predict the average progression of a patient

population and could make for a suitable decision aid in

clinics. Based on these findings, we suggest that additional

improvements to a predictive model could readily be

achieved by inclusion of additional outcomes and pro-

gression data from a clinic population as well as clinical

trial participants in the training datasets. The continual

addition of contemporary datasets for model training will

remain critical to maintaining models that can account

for updates to standard of care and encompass the range

of patient attributes present in the broader ALS patient

community. The approach used here should serve as a

model for the development of predictive models in addi-

tional neurologic diseases.
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