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Abstract: Congenital heart defects (CHDs) are the most prevalent and serious of all birth defects
in the United States. However, little is known about the impact of CHD-affected pregnancies on
subsequent maternal health. Thus, there is a need to characterize the metabolic alterations associated
with CHD-affected pregnancies. Fifty-six plasma samples were identified from post-partum women
who participated in the National Birth Defects Prevention Study between 1997 and 2011 and had
(1) unaffected control offspring (n = 18), (2) offspring with tetralogy of Fallot (ToF, n = 22), or
(3) hypoplastic left heart syndrome (HLHS, n = 16) in this pilot study. Absolute concentrations of 408
metabolites using the AbsoluteIDQ® p400 HR Kit (Biocrates) were evaluated among case and control
mothers. Twenty-six samples were randomly selected from above as technical repeats. Analysis of
covariance (ANCOVA) and logistic regression models were used to identify significant metabolites
after controlling for the maternal age at delivery and body mass index. The receiver operating
characteristic (ROC) curve and area-under-the-curve (AUC) are reported to evaluate the performance
of significant metabolites. Overall, there were nine significant metabolites (p < 0.05) identified in
HLHS case mothers and 30 significant metabolites in ToF case mothers. Statistically significant
metabolites were further evaluated using ROC curve analyses with PC (34:1), two sphingolipids SM
(31:1), SM (42:2), and PC-O (40:4) elevated in HLHS cases; while LPC (18:2), two triglycerides: TG
(44:1), TG (46:2), and LPC (20:3) decreased in ToF; and cholesterol esters CE (22:6) were elevated
among ToF case mothers. The metabolites identified in the study may have profound structural and
functional implications involved in cellular signaling and suggest the need for postpartum dietary
supplementation among women who gave birth to CHD offspring.

Keywords: metabolomics; maternal health; congenital heart defects

1. Introduction

Congenital heart defects (CHDs) affect approximately 1% of all births in the United
States [1–3]. These conditions represent a serious public health problem as they are a leading
cause of death by disease in children [4–6], and those who survive often require repeated
surgeries and hospitalizations. While understanding the etiologies of CHDs and outcomes
among these children remains an important focus of research, much less is known about
the outcomes among mothers who have children with these conditions.
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This is particularly important, as disrupted metabolism related to the affected birth
could impact long-term maternal health. Women with pregnancies affected by CHD have
been reported with altered metabolic profiles and were associated with dysregulated
metabolic pathways [7–10]. These markers were often utilized as predictive markers for
fetuses with congenital heart defects. However, limited information is available on the
mothers’ postpartum health outcome, which might influence not only the health of the
mothers but also the children.

Pregnancy is characterized by substantial changes in metabolism and could influence
subsequent health outcomes. Metabolomics is a relatively recent addition to omics-based
platforms [11]. The biochemical pathways related to metabolic byproducts are measured via
chromatographic or nuclear magnetic resonance platforms to estimate the effect of certain
stressors in physiological systems [11–16]. It has been used to study the physiological
impact of toxic exposures [17–19] and environmental pollutions [20–23].

Metabolomics has also been widely used to detect biomarkers in a variety of patholog-
ical conditions, including diabetes and insulin resistance [24–26], pediatric diseases [27,28],
inborn errors of metabolism), cardiovascular diseases [29–31], cancers [32–37], and ag-
ing [38,39] and can serve as useful tools for drug development [40–42]. The change in the
relative abundance of lipids, amino acids, or carbohydrates influenced by external and
internal catalytic processes can offer valuable insights regarding progression of a disease
or severity of their impact [43–45] and has the potential to predict maternal and perinatal
health [46–48].

Recently, there have been important strides in improved detection thresholds, analyses,
and linking biological pathways associated with diseases using metabolomics [49–51]. As
they are likely to be an important biomarker of long-term maternal health, our objective
was to characterize the metabolic alterations associated with CHD-affected pregnancies in
this pilot study among post-partum women who participated in the National Birth Defects
Prevention Study (NBDPS).

2. Materials and Methods
2.1. Study Design and Study Participants

Samples on case and control mothers were obtained from the National Birth Defects
Prevention Study (NBDPS). Briefly, the NBDPS was a large case-control multicenter study
of birth defects in the US, funded by the Centers for Disease Control and Prevention (CDC).
The methods have been described previously [52]. Furthermore, subjects selected for this
analysis were included in a subsequent follow-up study conducted in Arkansas (an NBDPS
site) on maternal biomarkers and risk of offspring with CHDs [52].

Specifically, 550 mothers of cases with CHDs and 221 control mothers were recruited
between March 2001 and June 2005. After receiving written informed consent, blood
samples were obtained at least 6 weeks postpartum by standard venipuncture (up to
30 mL) and were immediately placed on ice and delivered to the laboratory for storage.
Processed samples, including plasma, RBC, DNA, and urine, were aliquoted and stored
in locked −80 ◦C freezers, which are only accessible to authorized study personnel and
facility management.

The temperature of the freezer were continuously monitored by an electronic monitor-
ing system and routinely monitored by the biorepository personnel to ensure the integrity
of the samples. Prior to sample collection, participants were asked to refrain from eating
for at least 3 h prior to the blood sample collection. For this assessment, we selected the
following groups: (1) mothers of unaffected offspring (mControl, n = 18); (2) mothers
of offspring with tetralogy of Fallot (mToF, n = 22); and (3) mothers of hypoplastic left
heart syndrome (mHLHS, n = 16). These case groups were selected based on phenotypic
severity. For this analysis, control mothers were matched to mothers of cases on age and
race/ethnicity.
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2.2. Targeted Metabolite Profiling

For the metabolomics assessment, 50 µL of plasma samples from 56 participants were
used for the targeted metabolite profiling, and 26 out of 56 samples were randomly se-
lected as technical repeats in the analytical run. Metabolomic profiling was conducted
using a commercial reverse-phase liquid chromatography and tandem mass spectrometry
(LC-MS/MS) kit (AbsoluteIDQ® p400 HR Kit, Biocrates Life Science AG, Innsbruck, Aus-
tria), including isotope-labeled internal standards of 408 metabolites from 11 compound
classes as well as quality control samples and reagents for the derivatization and extrac-
tion of metabolites using multiple reaction monitoring (MRM) ion pairs for metabolite
identification and quantification.

The complete analytical process was conducted by the Metabolomics Innovation
Centre (TMIC) at the University of Alberta. In brief, the separation of amino acids and
biogenic amines was performed using Thermo Vanquish UHPLC with a C18 column
(Biocrates, Part 9120052121032) and guard column (Biocrates, Part 9120052121049). Analytes
were separated using a gradient from 0.2% formic acid in water to 0.2% formic acid in
acetonitrile as indicated in the gradient table below. The total UHPLC analysis time was
approximately 5.8 min per sample.

Acylcarnitines, monosaccharides (hexose), diglycerides, triglycerides, lysophosphatidyl-
cholines, phosphatidylcholines, sphingomyelins, ceramides, and cholesteryl esters were
analyzed by flow injection analysis (FIA) with a total analysis time of approximately 3.1 min
per sample. Biocrates provided the FIA mobile phase buffer (Part 9120052121018), which
was diluted into LC-MS grade methanol for use with the kit per the manufacturer’s instructions.

Using electrospray ionization in positive ion mode, samples for both UHPLC and
flow injection analysis were introduced directly into Q Exactive™ Orbitrap MS systems
operating in the full scan or parallel reaction monitoring (PRM) mode. Acquisition methods
and tune parameters for all instruments were provided by Biocrates as part of the p400H
kit. Data analysis was performed using MetIDQ provided by Biocrates.

2.3. Metabolomics Data Analysis

Metabolomics data were processed using MetaboAnalyst 4.0 [53]. Metabolites below
the limit of detection (LOD) were replaced by a value half of the minimum peak intensity of
the entire dataset. Quantile normalization was conducted to reduce sample-to-sample vari-
ation, followed by log2 transformation to ensure that the data followed the assumptions of
normality and further by mean center scaling to diminish the error in multivariate analysis.

Principal component analysis (PCA) as well as hierarchical clustering were constructed
using the Partek Genomics Suite (St. Louis, MO) to obtain a 2- and 3-dimensional visu-
alization of the profiles. Analysis of covariance (ANCOVA) adjusting for maternal age
at delivery and body mass index (BMI) with Fisher’s least significant difference contrast
method was used to assess the differential metabolites univariately.

A significance level of p < 0.05 was used to define statistical significance. Based on
the significant metabolites (p < 0.05), we developed a classification model using a logistic
regression with the receiver operating characteristic curve (ROC curve) and the associated
area under the curve (AUC) to estimate the predictive accuracy for differentiating between
cases and controls. The flowchart describes the primary steps involved in the data-analyses
(Figure 1).

2.4. Pathway Analysis

The pathway enrichment was performed using the set of significant metabolites from
the following comparisons (1) mControls compared to mToF and (2) mControls compared to
mHLHS. The HMDB IDs were mapped onto their corresponding KEGG IDs. The pathway
enrichment followed the associated diffusion matrix threshold using the selection criteria of
enrichment p < 0.01 with a minimum of 20 pathways and 250 individual nodes comprised
of pathways, enzymes, compounds (metabolites), and associated reactions. Final list of
pathways were manually rendered based on most relevant metabolic networks associated
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with the maternal health affected by the CHD pregnancies. Separate network graphs were
generated for the two comparisons described using Cytoscape v.3.8.2.
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3. Results
3.1. Characteristics of Study Participants

Participants in this study (n = 56) were predominantly of European descendent (91%,
see Table 1). The mean age of study participants was 26.5 (range 16–36, SD = 5.5) years, with
an average pre-pregnancy BMI of 25.8 kg/m2 (range 16.1–44.6 kg/m2, SD = 6.5), average
post-partum BMI of 30.5 kg/m2 (range 21.3–46.9 kg/m2, SD = 5.8), and weight change of
12.7 kg (range 0–38.6, SD = 7.0). High blood pressure was observed among nine women.
Notably, none of the variables were significantly different while comparing mHLHS and
mToF with mothers of controls (Table 1).

3.2. Targeted Metabolomics Profiling

A total of 408 metabolites were assayed, with an average limits of detection (LOD)
detailed in the Table S1. Eight metabolites were not detected in all of our samples, including
PC (30:3), PC-O (33:4), TG (56:9), acetyl-Ornithine, carnosine, dopamine, histamine, and
phenylethylamine. Therefore, 400 metabolites were included in the final analysis. Summary
of data processing results, including the number of metabolites imputed due to missing or
below LOD value can be seen in Table S2.

Twenty-six samples serving as technical repeats were randomly selected and dis-
tributed among all samples. The high correlation between samples and its repeats repre-
sented the reliability of the detection technology (Figure S1). The year of sample collection
from 18 control samples ranged from the year 1999 to 2008 and did not show any mass
spectrometer variations base on the PCA plot shown in Figure S2.
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Table 1. Maternal demographic factors among the CHD control and cases from the Arkansas site of
NBDPS (1997–2011) included in the study.

mControl 1 (18) mHLHS 2 (16) mToF 3 (22)
p *

Mean ± Std/Counts

Pre-pregnancy BMI 4 25.9 ± 6.6 24.5 ± 4.6 26.6 ± 7.6 0.6
Post-partum BMI 31.6 ± 6.0 28.6 ± 3.7 31.0 ± 6.8 0.3

BMI change 5.8 ± 2.7 4.2 ± 2.4 4.4 ± 2.2 0.1
Weight change (kg) 15.4 ± 8.0 11.3 ± 6.8 11.6 ± 5.9 0.1

Maternal age at delivery 25.8 ± 5.6 27.3 ± 5.5 26.6 ± 5.6 0.7
Maternal age at EDD 5 25.9 ± 5.7 27.3 ± 5.5 26.6 ± 5.6 0.8

Maternal age at conception 25.2 ± 5.7 26.8 ± 5.5 26.0 ± 5.7 0.7
Maternal age at delivery 25.8 ± 5.6 27.3 ± 5.5 26.6 ± 5.6 0.7

Race 0.6
Non-Hispanic white 17 14 20
Non-Hispanic black 1 1 2

Asian/Pacific Islander 0 1 0
Alcohol consumption 0.2

Yes (B1-M3) ** 10 6 6
No 8 10 16

Maternal smoking 0.9
Heavy smokers or 15+ cigs per day 2 1 2

Medium smokers or 5–14 cigs per day 3 3 2
Light smokers or ≤1–4 cigs per day 1 2 3

No smoking 12 10 15
High blood pressure during pregnancy 0.7

Yes 1 3 5
No 1 1 1

No answer 16 12 16
High blood pressure medicine use 0.3

Yes 0 1 0
No 1 3 6

No answer 17 12 16
Type II Diabetes 0.9

Yes 2 2 2
No 16 14 20

* p-values represent differences between groups. Continuous variables were evaluated by ANOVA, and chi square
(X2) tests were used to investigate the differences in distributions of categorical variables. 1 mControl: mothers
of unaffected offspring; 2 mHLHS: mothers of offspring with hypoplastic left heart syndrome; 3 mToF: mothers
of offspring with tetralogy of Fallot; 4 BMI: body mass index; 5 EDD: estimated due date. ** One month before
conception to end of first trimester.

3.3. Maternal Metabolites Associated with CHD-Affected Pregnancies

PCA modeling and hierarchical clustering of the significant metabolites demonstrated
separation of metabolomic profiles between mControl vs. mHLHS (Figure 2a,b). In the
ANCOVA model, adjusting for maternal age at delivery and BMI (Figure S3a), we identified
nine metabolites that were significantly different between the mothers of cases vs. mothers
of controls (p < 0.05).

Among those metabolites, PC (34:1), PC (41:4), SM (31:1), SM (42:2), and PC-O (40:4)
were consistently higher among HLHS. TG (52:6), PC (41:1), glutamine, and PC (35:0)
were lower among mHLHS than mControls (Table 2). In the assessment of ToF-affected
pregnancies (Figure 3a,b), we identified 30 metabolites that were significantly different
between mToF and control mothers (p < 0.05) using the ANCOVA model adjusting for
maternal age at delivery and BMI (Figure S3b). Among those metabolites, six were higher
in mToF, whereas 24 were lower among mToF (Table 3). When comparing significant
metabolites from both analyses, PC (35:0) was the only metabolite consistently lower
among mHLHS and mToF women compared with mControls (Figure 4).
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3.4. Biomarker Analysis

Based on the ROC analyses among mHLHS, four out of nine metabolites presented
with higher classification potentials (AUC values > 0.70). These included: PC (34:1) (AUC:
0.74, 95%: 0.56–0.89); SM (31:1) (AUC: 0.72, 95%: 0.52–0.88); SM (42:2) (AUC: 0.70, 95%:
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0.51–0.87); and PC-O (40:4) (AUC: 0.76, 95%: 0.59–0.90) (Figure 5a–d). For mothers of ToF
cases, 5 out of the 30 significant metabolites presented with higher classification potentials.
These include: LPC (18:2) (AUC: 0.71, 95%: 0.54–0.87); TG (46:2) (AUC: 0.71, 95%: 0.54–0.86);
LPC (20:3) (AUC: 0.71, 95%: 0.52–0.85); CE (22:6) (AUC: 0.74, 95%: 0.57–0.89); and TG (44:1)
(AUC: 0.73, 95%: 0.55–0.88) (Figure 6a–e).

Table 2. Significant metabolites between the mothers of control infants (mControl) compared to the
mothers of infants with hypoplastic left heart syndrome (mHLHS), Arkansas site of NBDPS, 1997–2011.

Metabolites
mControl mHLHS mControl vs. mHLHS (mControl/mHLHS)

Mean ± Std (µM) p * FC * Trend

PC (34:1) 149.56 ± 29.13 157 ± 36.54 0.014 −1.03 Controls down
TG (52:6) 2.98 ± 1.44 2.81 ± 2.03 0.016 2.02 Controls up
PC (41:4) 1.65 ± 0.67 1.90 ± 0.62 0.020 −1.27 Controls down
SM (31:1) 0.49 ± 0.26 0.48 ± 0.25 0.023 −1.43 Controls down
SM (42:2) 39.98 ± 7.62 41.38 ± 6.63 0.027 −1.07 Controls down
PC (41:1) 0.66 ± 0.36 0.40 ± 0.36 0.029 1.38 Controls up

Glutamine 548 ± 73.95 484.10 ± 63.81 0.046 1.04 Controls up
PC (35:0) 0.12 ± 0.18 0.008 ± 0.009 0.046 1.39 Controls up

PC-O (40:4) 0.95 ± 0.28 1.20 ± 0.49 0.049 −1.10 Controls down
* FC = fold change. Raw p-values and FC represent differences between groups.

Table 3. Significant metabolites between the mothers of control infants (mControl) compared to the
mothers of infants with Tetralogy of Fallot (mToF), Arkansas site of NBDPS, 1997–2011.

Metabolites
mControl mToF mControl vs. mToF (mControl/mToF)

Mean ± Std (µM) p * FC * Trend

LPC (18:2) 14.62 ± 7.17 9.87 ± 3.76 0.004 1.15 Controls up
Asparagine 45.87 ± 7.47 39.85 ± 10.07 0.006 1.08 Controls up

PC (31:0) 0.54 ± 0.22 0.37 ± 0.18 0.010 1.16 Controls up
LPC (24:0) 0.105 ± 0.11 0.111 ± 0.10 0.014 −2.11 Controls down
PC (40:8) 6.96 ± 5.94 3.71 ± 4.23 0.014 1.36 Controls up

PC-O (40:0) 0.006 ± 0.003 0.004 ± 0.003 0.017 −2.54 Controls down
TG (52:7) 1.20 ± 0.82 1.86 ± 0.95 0.017 −2.33 Controls down
TG (44:1) 1.86 ± 1.59 0.78 ± 1.39 0.018 1.55 Controls up

LPC (20:3) 2.42 ± 1.11 1.54 ± 0.73 0.020 1.20 Controls up
PC (38:1) 0.59 ± 0.22 0.42 ± 0.23 0.021 1.17 Controls up

LPC (15:0) 0.59 ± 0.19 0.44 ± 0.13 0.025 1.08 Controls up
PC-O (30:2) 0.008 ± 0.001 0.007 ± 0.001 0.025 1.07 Controls up

PC (38:0) 0.66 ± 0.31 0.46 ± 0.31 0.026 1.20 Controls up
PC-O (33:2) 0.005 ± 0.001 0.004 ± 0.001 0.028 1.08 Controls up
PC-O (35:4) 0.29 ± 0.35 0.15 ± 0.05 0.032 −1.82 Controls down

Phenylalanine 65.61 ± 13.5 52.38 ± 8.63 0.032 1.04 Controls up
PC (33:0) 0.85 ± 0.25 0.69 ± 0.17 0.034 1.05 Controls up
TG (48:3) 5.78 ± 6.72 2.60 ± 5.63 0.037 1.59 Controls up
PC (44:3) 1.65 ± 2.7 4.89 ± 5.42 0.038 −1.82 Controls down

LPC (18:0) 22.04 ± 8.58 17.62 ± 6.67 0.040 1.09 Controls up
LPC (17:0) 1.43 ± 0.45 1.144 ± 0.44 0.041 1.08 Controls up
PC (35:2) 8.02 ± 2.15 6.43 ± 1.57 0.041 1.06 Controls up
CE (22:6) 65.41 ± 23.51 75.38 ± 21.32 0.041 −1.08 Controls down
PC (35:0) 0.12 ± 0.18 0.03 ± 0.09 0.042 1.36 Controls up
PC (30:1) 0.009 ± 0.002 0.008 ± 0.001 0.045 1.07 Controls up
TG (48:2) 13.74 ± 8.14 9.71 ± 8.08 0.047 1.13 Controls up
TG (46:2) 3.72 ± 2.61 2.30 ± 3.28 0.047 1.36 Controls up
TG (48:1) 15.35 ± 9.04 10.49 ± 8.54 0.048 1.14 Controls up
DG (32:2) 0.77 ± 0.40 0.55 ± 0.37 0.048 1.12 Controls up
PC (46:2) 8.91 ± 4.99 6.26 ± 4.14 0.049 1.12 Controls up

* FC = fold change. Raw p-values and FC represent differences between groups.
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Figure 4. Box plot of significant metabolite overlapping between two comparisons (mControls
vs. mTOF and mControl vs. mHLHS). Levels of PC (35:0), a glycerophospholipid lecithin, were
significantly higher in the mControl compared to mHLHS and mToF.

Metabolites 2022, 12, x FOR PEER REVIEW 9 of 16 
 

 

3.4. Biomarker Analysis 
Based on the ROC analyses among mHLHS, four out of nine metabolites presented 

with higher classification potentials (AUC values > 0.70). These included: PC (34:1) (AUC: 
0.74, 95%: 0.56–0.89); SM (31:1) (AUC: 0.72, 95%: 0.52–0.88); SM (42:2) (AUC: 0.70, 95%: 
0.51–0.87); and PC-O (40:4) (AUC: 0.76, 95%: 0.59–0.90) (Figure 5a–d). For mothers of ToF 
cases, 5 out of the 30 significant metabolites presented with higher classification poten-
tials. These include: LPC (18:2) (AUC: 0.71, 95%: 0.54–0.87); TG (46:2) (AUC: 0.71, 95%: 
0.54–0.86); LPC (20:3) (AUC: 0.71, 95%: 0.52–0.85); CE (22:6) (AUC: 0.74, 95%: 0.57–0.89); 
and TG (44:1) (AUC: 0.73, 95%: 0.55–0.88) (Figure 6a–e). 

 
Figure 5. Biomarker analysis for the predictive values metabolites for mHLHS. The sensitivity (true 
positive rate) is on the y-axis, and the specificity (one minus the false positive rate) is on the x-axis, 
with the area under the curve (AUC) > 0.70 on four metabolites, including (a) PC (34:1), (b) SM 
(31:1), (c) SM (42:2) and (d) PC-O (40:4). A horizontal line in red in the box plots indicates the optimal 
cutoff of between two groups. 

Figure 5. Biomarker analysis for the predictive values metabolites for mHLHS. The sensitivity (true
positive rate) is on the y-axis, and the specificity (one minus the false positive rate) is on the x-axis,
with the area under the curve (AUC) > 0.70 on four metabolites, including (a) PC (34:1), (b) SM (31:1),
(c) SM (42:2) and (d) PC-O (40:4). A horizontal line in red in the box plots indicates the optimal cutoff
of between two groups.



Metabolites 2022, 12, 100 9 of 16Metabolites 2022, 12, x FOR PEER REVIEW 11 of 17 
 

 

 

3.5. Pathway Analysis 
From the pathway analysis using the nine metabolites identified in the mHLHS anal-

ysis, 13 pathways were significantly projected to the network (p < 0.01, Figure 7a), with 
the D-glutamine and D-glutamate metabolism, sphingolipid metabolism, sphingolipid 
signaling pathway, glutamatergic synapse, and proximal tubule bicarbonate reclamation 
as the top pathways affected (p = 1 × 10−6). From the pathway analysis using the 30 metab-
olites identified in the mToF analysis, 18 pathways were significantly projected to the net-
work (p < 0.01, Figure 7b) with the glutamatergic synapse, long-term depression, GnRH 
signaling pathway, pancreatic secretion, central carbon metabolism, choline metabolism, 
lipid and atherosclerosis, and acylglycerol degradation as the top pathways affected (p = 
1 × 10−6). 

Figure 6. Biomarker analysis for the predictive values metabolites for mToF. The sensitivity (true
positive rate) is on the y-axis, and the specificity (one minus the false positive rate) is on the x-axis,
with the area under the curve (AUC) > 0.70 on six metabolites, including (a) LPC (18:2), (b) TG (46:2),
(c) LPC (20:3), (d) CE (22:6), and (e) TG (44:1). A horizontal line in red in the box plots indicates the
optimal cutoff of between two groups.

3.5. Pathway Analysis

From the pathway analysis using the nine metabolites identified in the mHLHS analy-
sis, 13 pathways were significantly projected to the network (p < 0.01, Figure 7a), with the
D-glutamine and D-glutamate metabolism, sphingolipid metabolism, sphingolipid signal-
ing pathway, glutamatergic synapse, and proximal tubule bicarbonate reclamation as the
top pathways affected (p = 1 × 10−6). From the pathway analysis using the 30 metabolites
identified in the mToF analysis, 18 pathways were significantly projected to the network
(p < 0.01, Figure 7b) with the glutamatergic synapse, long-term depression, GnRH signaling
pathway, pancreatic secretion, central carbon metabolism, choline metabolism, lipid and
atherosclerosis, and acylglycerol degradation as the top pathways affected (p = 1 × 10−6).
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Figure 7. Metabolic pathways associated with (a) mHLHS and (b) mToF pregnancies when comparing
with normal controls. The depicted networks revealed pathways (orange nodes), enzymes (light
blue nodes), reactions (light green nodes), and metabolites (yellow nodes) that were involved in the
pathways affected (p < 0.01).
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4. Discussion

Overall, we found that mothers of children with CHDs had metabolomic profiles
associated with phospholipid and glutamate metabolism, suggesting that CHD-affected
pregnancies may have an influence on the long-term maternal metabolic health. This is
particularly notable as CHDs are the most prevalent of birth defects [54] occurring in 8–10
of every 1000 live births in the US [55–58]. This is one of the first studies to evaluate
subsequent maternal health in this population, which provides new insights into disrupted
metabolic pathways associated with CHD-affected pregnancies.

Specifically, among mothers with HLHS-affected pregnancies, we observed higher
levels of PC (34:1) (also known as PC aa C34:1) and PC-O (40:4) (phosphatidylcholine
with an alkyl ether substituent, also known as PC ae C40:4) when compared to mothers of
controls. Glycerophospholipids are lipids composed of glycerol, two fatty acids, phosphate,
and an amino alcohol. They are ubiquitous in cell membranes and are involved in the
metabolism of cell signaling and permeability as well as maintaining the structural integrity
of cell membranes.

Phosphatidylcholine (PC) is the most abundant phospholipid in mammalian cell mem-
branes comprising ~50% of the total phospholipid mass of most cells and their organelles
depending on the cell types [59]. Changes in the PC profiles were linked with metabolic
disorders, such as atherosclerosis, insulin resistance, and obesity [60]. Additionally, PC
(34:1) has been identified as part lipid profiles in mother-infant pairs, with levels being
more abundant in mothers than their infants [61].

Levels of PC (35:0), a glycerophospholipid lecithin, is the only metabolite consistently
lower among women who had HLHS- and ToF-affected pregnancies (Figure 4). Lecithin
can be found in many foods, including soybeans and egg yolks, and has been shown to
reduce hypercholesteremia and atherosclerosis [62]. These changes could point to novel
interventions (e.g., dietary supplementation) among women who gave birth to children
with CHDs.

Lysophosphatidylcholine (LPC), also known as lysolecithins, has received increased
attention in relation to cardiovascular diseases. It is a class of lipid biomolecule derived
by the cleaving of PC through the phospholipase A2 (PLA2) enzyme [63] or through
the conversion of fatty acids to free cholesterol via lecithin-cholesterol acyltransferase
(LCAT) [64]. Plasma LPCs have been shown to be inversely associated with cardiovascular
disease [65–67] but have not been directly implicated in embryonic cardiac development.

In our study, we observed lower levels of LPC (18:2) (also known as lysoPC a C18:2)
and LPC (20:3) (also known as lysoPC a C20:3) among women with ToF offspring compared
with the controls (Table 3 and Figure 6). Bahado-Singh et al. also reported lower levels of
maternal serum LPC (18:2) and LPC (20:3) among mothers of children with CHDs when
compared to the mothers of controls [10]. In their study, 17 out of 27 total CHD cases were
ToF defects, including double outlet right ventricle (DORV)/ToF (two cases), ToF alone
(nine cases), ToF/mitral stenosis (one case), and ToF/pulmonary atresia (five cases) [10].

Complex changes occur in lipid profiles during pregnancy. The TG, total cholesterol
(TC), low-density lipoprotein cholesterol (LDL-C), and high-density lipoprotein cholesterol
(HDL-C) all increase significantly by the third month or at the end of the first trimester in
response to elevated estrogen levels and insulin resistance [68]. The increase in the lipid
metabolism during pregnancy aids the nutrient and energy sources for the fetus. In our
study, lower levels of TG (44:1) and TG (46:2) were observed among women with ToF
offspring than controls (Table 3 and Figure 6), reflecting the altered metabolic health of
CHD-affected pregnancies.

Pathway analyses revealed changes in the D-glutamine and D-glutamate metabolism
when comparing HLHS with controls and the glutamatergic synapse when comparing
ToF with controls. Glutamine is the most abundant amino acid in humans. It plays a
critical role in stimulating blood flow and increases blood fluidity by the synthesis of nitric
oxide [69,70]. It can be transported into cells and further metabolized to glutamate by the
mitochondrial enzyme glutaminase.
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There are strong lines of evidence demonstrating that fundamental role of glutamine
in maintaining cardiovascular health [71], and altered D-glutamine and D-glutamate
metabolisms were identified as significantly impacted pathways among adults with con-
genital heart disease when compared with healthy controls [72]. Furthermore, glutamine
supplements have also been shown to improve the cardiac function of patients with chronic
heart failure [73]. We were unable to find any reports published in English in PubMed
of glutamine among women with CHF-affected pregnancies. Further study is needed to
confirm with the potential of using glutamine as dietary supplement to improve mater-
nal health.

Our study must be considered in the light of certain limitations. The main limitation
from our study was the small sample size for each CHD-subtype, which limits the statistical
precision in our models. The time of blood collection was not available in this study, and
might contribute to the variations in the metabolome.

Although we found no significant differences between the groups regarding pre-
existing metabolic syndromes during pregnancy, such as high blood pressure and Type
II Diabetes, pre-pregnancy plasma samples were not available, and thus the differences
observed may be explained by other factors than CHD-affected pregnancy, such as environ-
mental exposures [74,75], pre-existing metabolic conditions, and lifestyle factors before or
during pregnancy [76–78].

In this pilot study, we demonstrated the feasibility of using targeted metabolomics
to identify biomarkers for cardiometabolic health among mothers with a CHD-affected
pregnancy. Since CHD is a rare condition with various subtypes, it is challenging to obtain
a large patient base in a single biomarker study [10,79,80]. Nevertheless, our assessment
adds to a growing body of literature indicating that mothers of children with birth defects
may be at risk for adverse health conditions. Future studies collaborating with other birth
defect centers are needed to confirm our results and further characterize these affected
metabolic pathways.
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