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Therapeutic Advances in 
Musculoskeletal Disease

Introduction
While computed tomography (CT) of the periph-
eral skeleton was for a long time reserved for 
imaging trauma, dual-energy computed tomogra-
phy (DECT) has gained increasing importance in 
recent years and has already become established 
for diagnostic assessment in several other condi-
tions in clinical routine.1 This is particularly true 
for gout, as DECT reliably detects monosodium 
urate (MSU) crystals,2 distinguishes them from 
other crystal species, and can quantify their vol-
ume or mass.3,4 Furthermore, DECT’s role in the 
diagnostic process is fully recognized by the 2015 
ACR/EULAR classification criteria,5 the 2018 
EULAR imaging recommendation for gout,6 and 
the 2023 EULAR imaging recommendation for 
crystal arthropathies.7 With its high spatial 

resolution and direct depiction of bone, CT is 
considered the reference standard for evaluating 
bony structural changes, such as erosions. CT 
thus allows more accurate serial monitoring of 
joint damage, as may occur when patients with 
rheumatic diseases are not treated adequately, 
compared with the current standard of ultrasound 
and X-ray.8,9

In contrast to conventional CT, DECT captures 
the attenuation of high- and low-energy X-ray 
photons separately. Photon attenuation in bio-
logical tissues is influenced by the Compton effect 
and the photoelectric effect, which, in turn, 
depend on tissue material properties (i.e., the 
effective atomic number) and X-ray beam energy, 
respectively.10 Moreover, various reconstruction 
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methods can be applied to extract additional 
information on morphological changes from 
DECT scans.11

Until recently, DECT did not play a significant 
role in arthritis imaging outside the context of 
gout because of limitations in the detection of 
inflammatory joint changes.12,13 However, the 
applications of DECT in arthritis imaging have 
significantly increased in recent years, not solely 
due to ongoing technical development. Initial 
studies demonstrate promising results in detect-
ing active inflammation.14,15 Various reconstruc-
tion methods are of particular interest, including 
subtraction techniques16 and specific iodine 
maps.15,17 With these methods, it is possible to 
measure contrast agent uptake in the synovium of 
joints or tendon sheaths, providing information 
on tissue perfusion and inflammatory activity.18

Another advantage of DECT in musculoskeletal 
imaging is the option of enhancing image quality 
by subtracting metal artifacts, which can be caused 
by implants or osteosynthesis materials.19 In ultra-
sound and magnetic resonance imaging (MRI) 
examinations, metal artifacts often lead to consid-
erable uncertainties in the assessment of subtle 
changes, especially in early arthritis. An essential 
concern in the use of CT imaging is radiation 
exposure. However, state-of-the-art CT protocols 
and reconstruction algorithms, such as low-dose 
CT techniques and reconstruction with iterative 
or artificial intelligence algorithms, significantly 
reduce radiation exposure to levels similar to those 
of conventional radiography.20 Iterative recon-
struction improves image quality compared with 
the former standard filtered back projection.21 
One of the advantages of CT imaging is its rapid 
availability and short acquisition time. Similar to a 
conventional X-ray examination, a CT scan 
including positioning takes about 5 min, com-
pared to approximately 30 min for an MRI and 
around 15 min for an ultrasound examination, 
depending on the sonographer’s experience.16

All technical advances outlined above have con-
siderably expanded the role of CT imaging in 
clinical practice beyond its sole use in gout. This 
review aims to provide an overview of the range of 
applications of CT in arthritis imaging today.

Detection of structural changes
In addition to inflammatory changes, reliable 
demonstration of structural lesions in peripheral 

joints is crucial for the differential diagnosis and 
of particular significance in the clinical setting. 
DECT imaging offers a crucial advantage in the 
detection of such structural changes, not least due 
to its superior spatial resolution.

Erosion
Erosions are among the hallmarks of the different 
forms of arthritic conditions.22 They typically 
occur after a prolonged episode of disease activity 
or in patients with inadequate therapy.23 The 
development of erosions is often accompanied by 
progressive joint dysfunction. Accordingly, their 
detection and monitoring over time by imaging 
plays a crucial role in clinical practice. For this 
reason, a highly standardizable imaging technique 
is necessary to differentiate these changes reliably 
and as early as possible.

In clinical practice, X-ray has established itself as 
the initial imaging modality for patients present-
ing with arthritis.9 However, X-ray has a notori-
ously low sensitivity for joint erosion compared 
with cross-sectional imaging techniques.9 While 
ultrasound can provide a more sensitive depiction 
of these lesions compared to X-ray, there is a risk 
of overestimating imaging findings for nonspe-
cific structures, such as bone canals. Similar limi-
tations have been reported for erosion detection 
by MRI.24,25 Initial studies have investigated opti-
mized sequence techniques with CT-like images 
using susceptibility-weighted sequences26,27 or 
ultra-short echo time28 and zero echo time,29 
incorporating artificial intelligence algorithms.30 
While these techniques show promise for future 
improvement of MRI protocols, they have not yet 
been widely investigated and established in clini-
cal routine and merely try imitating the original 
CT scan. With its high spatial resolution and the 
ability to directly depict the cortical bone, CT 
detects these changes more accurately than ultra-
sound, X-ray, and MRI. CT has thus emerged as 
the reference standard in erosion detection.

Detection of dynamic wrist instabilities  
using four-dimensional CT
The future of CT imaging promises significant 
progress through innovative technologies such as 
four-dimensional CT (4D-CT).31 4D-CT opens 
new dimensions for imaging by enabling excellent 
assessment of both static and dynamic phenom-
ena of three-dimensional structures within com-
plex anatomy,32,33 see also Figure 1. The latest 
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CT detectors allow the acquisition of images dur-
ing motion,32 which provide deeper insights into 
pathobiomechanical joint changes.34 Use of 
4D-CT in the detection of scapholunate interos-
seous ligament injuries demonstrates its potential 
utility in diagnosing wrist injuries. In the context 
of peripheral joint imaging, 4D-CT allows differ-
entiated detection of static and dynamic joint 
instabilities, which can lead to accelerated degen-
erative changes over time.35 This is particularly 
important in calcium pyrophosphate deposition 
(CPPD) arthropathy, where crystal deposits in 
the wrist can lead to changes in ligamentous 
structures and wrist biomechanics, causing wrist 
instabilities.35,36 The carpal region is a key focus 
for 4D-CT imaging due to the limitations of tra-
ditional techniques in accurately capturing cer-
tain motion patterns, particularly in patients with 
distal radioulnar joint instability.

Crystal arthropathies—the potential  
of two-material decomposition
A crucial strength of DECT over conventional 
CT is its ability to differentiate between two dif-
ferent substances based on their distinct attenua-
tion coefficients. This involves comparing the 

attenuation coefficients of individual voxels 
within a defined density range. For instance, it 
enables the assignment of values for calcium 
(~0.69) or MSU (~1.07).37 This additional infor-
mation is helpful for a wide range of applications 
in clinical routine, especially the differential diag-
nosis of inflammatory joint changes in a single 
imaging examination.

Calcium pyrophosphate deposition.  CPPD 
arthropathy is characterized by the accumulation 
of crystals in the ligaments of the wrist, resulting 
in inflammation and ligament damage mediated 
by interleukin-1β.38 With its acute inflammatory 
(pseudogout) and chronic inflammatory (pseudo-
RA) subtypes, CPPD is another differential diag-
nosis of rheumatoid arthritis (RA), particularly in 
older patients. The underlying cause is disturbed 
calcium metabolism with increased calcium 
deposition, especially in peripheral ligaments and 
joints. These crystalline calcium pyrophosphate 
(CPP) deposits can rapidly progress to irrevers-
ible cartilage destruction, significantly limiting 
joint function. With its high spatial resolution, 
DECT can reliably detect these calcifications and 
determine crystal species through two-material 
differentiation.39,40 For this reason, DECT also 

Figure 1.  4D-CT of the wrist in a patient with CPPD disease. (a) Dynamic 3D reconstruction. (b) Dynamic 2D 
reconstruction. In ulnar abduction, a clear dissociation of the SL joint space as a correlate of SL ligament 
rupture (white arrow) is seen. In addition, ligament calcifications characteristic of CPPD are apparent in the 
wrist (black arrows).
CPPD, calcium pyrophosphate deposition; 4D-CT, Four-dimensional computed tomography; SL, scapholunate.
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holds an important role in the diagnostic process 
for CPPD, in accordance with the current ACR/
EULAR criteria.41 Such ligament calcifications 
can be subtle and may elude detection by X-ray 
or arthrosonography when present in anatomical 
structures that are less amenable to the X-ray 
beam or the ultrasound probe such as the palmar 
carpal ligaments. MRI often misses these changes 
as hypointense crystals show low contrast to 
hypointense ligaments, even in images acquired 
with special gradient-echo sequences. Initial clini-
cal studies have additionally demonstrated that 
CPPD exhibits specific DECT attenuation prop-
erties, which can be utilized for more precise 
assessment and characterization of meniscal cal-
cifications.42,43 Although DECT holds promise in 
the characterization of intra-articular mineraliza-
tion within the knee joint,44 this modality cur-
rently lacks the precision to reliably detect early 
calcium crystal accumulation that does not mani-
fest as chondrocalcinosis on standard CT imag-
ing.45 Furthermore, DECT does not sufficiently 
allow to effectively discriminate between CPP 
and basic calcium phosphate crystals.46

Gout.  Gout goes along with MSU crystal deposi-
tions in the body specifically in peripheral joints 
and is an important differential diagnosis in 
patients with peripheral joint diseases.5 DECT 
allows solid differentiation between MSU and 
calcium through its two-material differentiation 
capability.47 This way, gouty tophi can be visual-
ized and quantitatively measured without the 
need for contrast agent administration.48 Fur-
thermore, DECT also allows for a quantitative 
assessment of treatment response, enabling con-
tinuous monitoring of MSU crystals.49 In addi-
tion to detecting these MSU crystals, DECT also 
visualizes typical bone changes in gout.4 First 
studies suggest that DECT may have the capabil-
ity to identify MSU crystal deposits in vascular 
structures,50,51 while there are also concerns 
regarding the specificity in the detection of these 
plaques.52

Collagen mapping
Collagen is the primary constituent of tendons and 
ligaments, which play a critical role in load distri-
bution and force transmission. DECT enables not 
only the visualization of MSU crystal deposition 
but also the generation of collagen maps based on 
its specific capability of three-material differentia-
tion. This technique assumes that X-ray attenua-
tion arises as a composite effect of three substances 

present within the scanned volume. Consequently, 
collagen concentration can be estimated as if col-
lagen were the sole substance within the scanned 
volume. Collagen maps allow noninvasive quanti-
fication of collagen density and provide insights 
into altered biomechanical properties of the 
affected ligaments, facilitating a more precise ana-
tomical–functional characterization of changes 
associated with inflammatory conditions.53 Of 
note, initial studies suggest that, in CPPD, there is 
remodeling of the intrinsic and extrinsic ligament 
apparatus of the carpus, which is detectable using 
DECT-based collagen mapping.36

Recent studies have shown that CT can provide 
insights into the mineralization of cartilage, which 
is particularly relevant in the context of osteoar-
thritis. Specifically, CT-measured mineralization 
of cartilage has been found to correlate with carti-
lage loss, indicating that alterations in mineral 
density may serve as a valuable biomarker for dis-
ease progression.54,55

Periosteal proliferation
Periosteal proliferation, also known as protuber-
ances, is a significant imaging finding typically 
observed in psoriatic arthritis, which is a crucial 
differential diagnosis of RA.56 Unlike RA, psori-
atic arthritis is an enthesitis-associated form of 
arthritis and is characterized by inflammatory 
changes affecting the attachments of tendons, 
ligaments, and joint capsules.57 The protuber-
ances often present as sharp extensions of cortical 
bone with a fuzzy, cloudy character and are 
located at the metaphyses of the phalanges, nail 
processes, and bony prominences such as the sty-
loid process. In conjunction with erosive changes 
at the tendon insertions, characteristic signs are 
detectable by imaging, such as the “morning star” 
at the nail process or the “mouse ears” of the dis-
tal interphalangeal joints. In early disease, clearcut 
differentiation of such protuberances from degen-
erative osteophytic formations or erosions typi-
cally associated with RA may not always be 
possible by conventional X-ray. Conversely, CT 
imaging allows reliable differentiation of these 
distinct entities and also has a role in monitoring 
treatment responses.

Detection of active inflammation in joints 
and tendons
Active joint or tendon inflammation and its relia-
ble detection are paramount in the initial diagnosis 
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of arthritis for prompt initiation of appropriate 
therapy and justifying the use of sometimes costly 
treatments.58 In clinical practice, ultrasound has 
established itself for identifying joint inflammation 
without administration of contrast agents by the 
presence of synovial thickening and increased 
Doppler signals.12,59 However, ultrasound cru-
cially relies on the examiner’s experience and can-
not easily be standardized. For this reason, 
ultrasound is not recommended for serial monitor-
ing of treatment and disease progression.60

Conversely, MRI examinations can be excellently 
standardized. Its good soft tissue contrast and 
sensitivity to inflammatory changes after contrast 
agent administration make it an excellent tool for 
diagnosing active inflammation. However, a cru-
cial drawback of MRI is its low specificity in iden-
tifying active inflammation. Therefore, current 
guidelines explicitly discourage the use of MRI as 
the primary imaging modality in early arthritis, 
reserving it for more complex and inconclusive 
cases.59

Inflammatory joint/tendon lesions are character-
ized by higher contrast agent uptake compared 
with surrounding tissue on contrast-enhanced 
CT. Especially in anatomically complex regions 

such as the hand, however, this specific contrast 
agent behavior often cannot be reliably identified 
without the use of suitable measurement methods 
due to image noise and intra- and interindividual 
variations in soft tissue density. As a result, CT 
has a somewhat secondary role in diagnosing 
active joint and tendon inflammation in clinical 
practice. Nevertheless, state-of-the-art technol-
ogy and various reconstruction algorithms now 
allow the detection of active inflammation (see 
also Figure 2).

CT subtraction
CT subtraction can significantly improve the 
conspicuity of enhancing structures.15,16 
Subtraction imaging was initially investigated 
using conventional CT, and promising results 
were achieved.16 In this approach, a CT scan is 
acquired before and after intravenous contrast 
agent administration. Subsequently, the unen-
hanced scan is subtracted from the contrast-
enhanced scan, resulting in an image showing 
only the contrast agent. Subtraction imaging ena-
bles not only the detection of joint inflammation 
(synovitis) but also the assessment of inflamma-
tion along tendons (tenosynovitis/peritendinitis) 
and within bones. Initial pilot studies have 

Figure 2.  Reconstruction of CT subtraction and CT perfusion in a patient with severe synovitis of the 
metacarpophalangeal joints and severe tenosynovitis.
CA, contrast agent; CT, computed tomography.
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demonstrated a sufficiently high sensitivity and 
specificity in the assessment of synovitis and teno-
synovitis compared with MRI and ultrasound.15 
Because two scans (before and after contrast 
agent administration) are acquired, patient com-
pliance is of particular importance, as the recon-
structed subtraction datasets are susceptible to 
motion artifacts.

CT perfusion
In addition to qualitative assessment of joint 
inflammation, CT also allows quantification of 
inflammatory activity. For this purpose, dynamic 
contrast-enhanced CT scans can be continuously 
acquired over a specific period of time for meas-
urement of contrast enhancement in the syn-
ovium over time.61,62 The datasets can be used for 
the calculation of perfusion parameters in selected 
joints and tendons using region of interest (ROI) 
analysis.63 This approach facilitates quantitative 
assessment of the severity of inflammatory activ-
ity, providing valuable insights, for example, into 
treatment responses. Dynamic contrast-enhanced 
CT or MRI is predominantly used in research 
settings, particularly for quantitative assessment 
of therapeutic responses in medication studies. 
Furthermore, dedicated acquisition protocols 
and postprocessing software are needed. This 
technical complexity has so far prevented the 
integration of dynamic contrast-enhanced CT or 
MRI into clinical practice.

Virtual monochromatic images
DECT allows the extraction of more in-depth 
information from the acquired image dataset than 

conventional CT alone.64 A case in point is the 
use of virtual monochromatic images (VMIs), 
which confer numerous advantages such as 
enhancing the visualization of iodine contrast and 
minimizing artifacts from metal implants. Low-
energy VMIs imitate low photon energy without 
the drawbacks of a broad X-ray spectrum, result-
ing in better contrast between structures with dif-
ferent effective atomic numbers (Zeff), such as 
iodinated contrast agents and soft tissues. The 
most significant enhancement of iodine contrast 
occurs at energy levels close to the k-edge of 
iodine, between 40 and 60 keV, albeit at the 
expense of increased image noise.65 It has been 
demonstrated that, while VMIs detect inflamma-
tion with sufficient diagnostic accuracy, the 
improved contrast is offset by higher noise levels, 
rendering no discernible advantage for either 
quantitative or subjective evaluation.66

Iodine maps for synovitis and tenosynovitis
Another method that has been proposed to 
improve the visualization of active inflammation 
is the computation of iodine maps using three-
material decomposition.15,17 This DECT-specific 
reconstruction method provides additional infor-
mation for the assessment and detection of 
inflammatory changes. It applies a three-material 
decomposition algorithm to the DECT dataset 
assuming that X-ray attenuation is determined by 
the sum of three substances present in the imag-
ing volume. In this model, the concentration of 
the contrast agent (iodine) can be estimated, and 
virtual iodine maps can be computed to display 
the distribution and concentration of contrast 
(see Figure 3). The iodine maps facilitate the 

Figure 3.  Dual-energy CT-based three-material decomposition to generate iMap and VNCa. iMap clearly 
shows severe synovitis of the second metacarpophalangeal joint (white arrow) and the wrist (white arrowhead). 
VNCa reveals higher water content in the wrist as a sign of bone marrow edema (gray arrow).
CA, contrast agent; CT, computed tomography; iMap, iodine maps; VNCa, virtual non-calcium images.
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assessment of contrast enhancement and enable 
quantitative measurement of iodine concentra-
tion.18 Consequently, valuable additional infor-
mation regarding organ perfusion is obtained, 
which is also helpful in assessing treatment 
responses. However, inherent features of the 
reconstruction process result in lower sensitivity 
to contrast agent uptake compared with subtrac-
tion and pose disadvantages when other sub-
stances with relatively high atomic numbers (e.g., 
calcium in bones) coexist in an organ.15 On the 
other hand, the method is robust against motion 
artifacts and requires no precontrast scan. Iodine 
maps also facilitate the quantification of iodine 
content through ROI analysis, as suggested by 
initial pilot studies conducted in psoriatic arthritis 
and ongoing investigations.18

Virtual non-calcium images for osteitis
Osteitis, an inflammation of the bone, occurs in 
rheumatic diseases with severe inflammation or 
points to a differential diagnosis (e.g., psoriatic 
arthritis). It is a crucial prognostic indicator of 
impending joint destruction, requiring prompt 
therapeutic management. The bone marrow 
changes in osteitis are typically only detectable by 
MRI while both arthrosonography and conven-
tional CT are clearly limited. However, initial 
studies have shown promising results with 
DECT.67 Three-material differentiation allows 
specific depiction and quantification of calcium, 
quite similar to the iodine maps mentioned 
above.68 Removing calcified bone by subtracting 
the calcium map from the original image improves 
the assessment of bone marrow. A higher propor-
tion of water in the otherwise fatty bone marrow 

in the subtraction image indicates the presence of 
bone marrow edema, for example, due to inflam-
mation or trauma69 (see Figures 3 and 4). 
Moreover, initial studies indicate that the use of 
iterative reconstruction can improve the visualiza-
tion of bone marrow edema.70

Advantages over MRI—imaging pitfalls
CT has several advantages over MRI. It is more 
widely available, and the examination generally 
takes less time than an MRI study. Despite radia-
tion exposure and the administration of a contrast 
agent, patients also prefer CT over MRI, mostly 
because it is more comfortable.16 In the evaluation 
of structural changes, the much better spatial res-
olution of CT can counter the advantage of better 
soft tissue discrimination in MRI. Specifically, CT 
is better suited for differential diagnosis as it pro-
vides information beyond the detection of active 
inflammation and its distribution by allowing the 
identification of mild structural changes such as 
periosteal proliferation or small osteophytes and 
the detection of crystal disease (see Figure 5). 
This makes CT a very promising modality in 
arthritis imaging. For example, gouty tophi are 
difficult to detect by MRI and usually require an 
additional ultrasound or X-ray examination. 
Furthermore, DECT allows robust differentiation 
of the various crystal arthropathies based on their 
tissue properties, which is essential for initiating 
appropriate therapeutic management and preven-
tion of irreversible joint damage.

For certain clinical questions, direct intra-articular 
contrast administration in CT can be helpful, for 
instance, when assessing ligamentous structures.72 

Figure 4.  Bone marrow edema in a patient with severe rheumatoid arthritis. Bone marrow edema in the 
carpus is clearly visible in MRI and in dual-energy CT-based VNCa. Bone marrow edema is not visible in 
conventional CT.
CT, computed tomography; MRI, magnetic resonance imaging; VNCa, virtual non-calcium image.
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Figure 5.  Imaging examples of a 73-year-old patient with clinical suspicion of rheumatoid arthritis. CT 
revealed the diagnosis of CPPD arthropathy. (a) CPPD-typical calcifications of the SL ligament (white 
arrowhead) and of the TFCC and lunotriquetral ligament (white arrow) are clearly visible. (b) In the 
corresponding uric acid reconstruction, the calcifications show no uric acid content (white arrow and white 
arrowhead), thus ruling out gouty arthritis. (c) VNCa shows bone marrow edema/necrosis of the lunate (black 
arrow). (d1) Static CT shows a dissociation of the SL joint space (black arrow) with accompanying radiocarpal 
joint osteoarthritis (gray arrowhead), indicative of static SL ligament instability. In addition, there is a 
narrowing of the capitolunate joint space visible, along with the beginning of proximal migration of the capitate 
(black arrowhead). (d2) In the sagittal plane, subluxation of the lunate is recognizable (white arrow). (d3) In the 
axial plane, the position of the DRUJ is normal. (e) 4D-CT in ulnar abduction reveals increasing migration of 
the scaphoid bone during ulnar abduction (white arrow) with a vacuum phenomenon (white arrowhead). (f) 4D-
CT in rotation shows subluxation of the DRUJ in supination using the epicenter method.71 Green line: the line 
between the center of the styloid process to the center of the ulna to determine the center of rotation of the 
DRUJ. It is crucial that the line perpendicular to the chord of the sigmoid notch points to the middle half of the 
sigmoid notch (yellow line). In this example, a deviation of up to 2.5 mm from this point is observed, indicating 
DRUJ instability. (g) CT subtraction with severe synovitis in the radial carpus (white arrow) and the intercarpal 
joint (black arrow). (h1) Sonography of the wrist in the transversal plane with tenosynovitis. (h2) Sonography 
of the wrist in the longitudinal plane showing effusion and crystals in the wrist. (i) X-ray shows crystals in the 
carpus and static SL instability.
CPPD, calcium pyrophosphate deposition; CT, computed tomography; 4D-CT, four-dimensional computed tomography; 
DRUJ, distal radioulnar joint; SL, scapholunate; TFCC, triangular fibrocartilage complex; VNCa, virtual non-calcium image.
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However, it is important to note that this is an inva-
sive procedure with a high risk of complications, 
such as joint infection. In addition, this technique 
requires significant technical resources and trained 
personnel, which significantly influences its use in 
routine clinical practice. Moreover, initial studies 
showed potential chondrotoxicity of certain local 
anesthetics, raising concerns about the use of intra-
articular contrast agents.73 These factors under-
score the need for careful consideration of the 
utility of CT arthrography compared to other imag-
ing modalities, particularly in patients with pre-
existing chondral damage due to arthritis.

Outlook
The field of CT imaging has seen rapid advance-
ments, leading to a deeper understanding of dis-
eases and an expanded range of clinical 
applications. Since its introduction, CT technol-
ogy has significantly improved in terms of speed, 
spatial resolution, and dose efficiency, leading to 
important clinical applications and a large impact 
on medical care. Important advances include 
4D-CT and photon-counting CT (PCCT). 
PCCT has broad potential in clinical practice.74 
Unlike conventional CT, which is based on 
energy integration, PCCT counts individual pho-
tons, resulting in a more precise differentiation of 
energies. This, in turn, leads to improved contrast 
resolution with lower radiation exposure.75 The 
ability to detect individual photons also opens up 
new possibilities for material differentiation and 
was shown to further improve soft tissue imaging, 
contrast agent identification,76 and discrimina-
tion between various crystal arthropathies.77,78 
Furthermore, the assessment of cartilage patholo-
gies using advanced CT arthrography techniques 
is an evolving field of research, with initial experi-
mental studies yielding promising results.79,80

Conclusion
In this review, we explored the different applica-
tions of CT in arthritis imaging and their clinical 
relevance. In conjunction with different recon-
struction algorithms, more information can be 
derived from CT and DECT images, making 
them a crucial tool in multiparametric imaging in 
arthritis. Ongoing technical advances not only 
promise higher diagnostic accuracy but also have 
the potential to significantly expand the applica-
tions of CT in the diagnosis of arthritis and 
patient management in the near future.
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