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Abstract—Computer-assisted algorithms have become a
mainstay of biomedical applications to improve accuracy
and reproducibility of repetitive tasks like manual segmen-
tation and annotation. We propose a novel pipeline for red
blood cell detection and counting in thin blood smear mi-
croscopy images, named RBCNet, using a dual deep learn-
ing architecture. RBCNet consists of a U-Net first stage for
cell-cluster or superpixel segmentation, followed by a sec-
ond refinement stage Faster R-CNN for detecting small cell
objects within the connected component clusters. RBCNet
uses cell clustering instead of region proposals, which is
robust to cell fragmentation, is highly scalable for detecting
small objects or fine scale morphological structures in very
large images, can be trained using non-overlapping tiles,
and during inference is adaptive to the scale of cell-clusters
with a low memory footprint. We tested our method on an
archived collection of human malaria smears with nearly
200,000 labeled cells across 965 images from 193 patients,
acquired in Bangladesh, with each patient contributing five
images. Cell detection accuracy using RBCNet was higher
than 97%. The novel dual cascade RBCNet architecture
provides more accurate cell detections because the fore-
ground cell-cluster masks from U-Net adaptively guide the
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detection stage, resulting in a notably higher true positive
and lower false alarm rates, compared to traditional and
other deep learning methods. The RBCNet pipeline imple-
ments a crucial step towards automated malaria diagnosis.

Index Terms—Red blood cells (RBCs), white blood
cells (WBCs), deep learning, faster R-CNN, connected
components, semantic segmentation, superpixel, U-Net.

I. INTRODUCTION

MALARIA is a leading cause of death worldwide [1]. The
parasitic infectious disease can be transmitted easily to

human through mosquito bites that result in over 200 million
infections and 400 thousand deaths every year, with children
under five accounting for the majority of all malaria deaths
worldwide. Although the highest risk region is sub-Saharan
Africa, half the world’s population is at risk. The disease begins
with common cold symptoms such as fever, headache, and
chills; which if not treated, may lead to severe complications
such as kidney failure, anemia, pulmonary edema, abnormal
liver function, cerebral malaria, neuro-disability, seizures, and
ultimately death.

Millions of blood smears are examined for malaria parasites
by microscopists every year to determine whether a person is
infected or not [1], [2]. This procedure requires several steps,
beginning with collecting blood smears, staining them and ex-
amining the slides to identify different cells and observe infected
ones. Manual counting and detection is tedious, costly, slow,
and depends on the skills and expertise of the microscopist.
Automated algorithms based on machine learning and image
processing have the potential to provide fast, cheap, and reliable
malaria diagnosis, avoiding erroneous detections that usually
occur with manual examination. Recently, convolutional neural
networks have become very popular for solving problems in
machine learning and computer vision [3]–[5] as the model
learns and computes distinctive features from the data without
any human intervention. However, these so-called deep learning
techniques (DL) need a large amount of annotated data and
processing power to learn the weights to produce a predictive
model. In the medical field, obtaining labeled data is a bot-
tleneck because it requires expert knowledge. Specifically, for
malaria screening and diagnosis, developing accurate automatic
blood cell detection is particularly challenging. Different blood
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smear images can vary in staining, resolution, illumination, cell
shape, appearance, color, contrast and debris. Furthermore, cells
can clump together, making identification of individual cells
harder, and staining artifacts can confuse fragile image analysis
methods. Nevertheless, several algorithms and techniques [6]
have been developed with the goal to replace manual diagnosis,
decrease cost, and speed up diagnosis.

A. Related Work

Most malaria screening and diagnosis algorithms [6] begin
with finding the foreground masks using simple thresholding
methods such as Otsu’s method [7]–[10], k-means [11], [12],
adaptive histogram thresholding [13]–[15], or Zack threshold-
ing [16], followed by different techniques to separate touching
cells, which is arguably the main challenge in cell detection.
Among those methods are distance transform, watershed, mor-
phological operations, and active contours. Watershed [17] and
Active contours [18], [19] are considered superior traditional
techniques for cell detection. Although CNNs are now very
popular and robust in solving various biomedical problems
[20]–[25], there has not been as much work reported for red
blood cell (RBC) detection. Most of the existing methods are for
classification between different types of cell images [26]–[28]
or between infected and uninfected cells, while the core step
for detecting and counting cells still depends upon traditional
methods. In Liang et al. [29], the classification of infected
and uninfected cells relies on a convolutional neural network;
however, Active contour [18], [19] is used to segment the cells.
In Dong et al. [30], the authors studied automatic identification
of malaria infected cells using deep learning methods, but they
segmented images using thresholding techniques and morpho-
logical operations, while their cell separation depends upon
Hough Circle transform. In Bibin et al. [31], the authors propose
a deep belief network (DBN) to differentiate between infected
and uninfected cells, using a level set method to segment stained
objects [32]. In Gopakumar et al. [33], the authors present an
automated CNN-based framework to classify a region around the
candidate locations as either infected or healthy. Those candidate
locations are found by thresholding operations, specifically by
looking only at regional intensity minima since stained parasite
regions usually appear darker than other pixels. In Rajaraman
et al. [34], the authors use a level-set based algorithm to de-
tect and segment the RBCs, and then use several pre-trained
Convolutional Neural Networks (CNN) to classify parasitized
and uninfected cells. In Loganathan et al. [35], the authors use
the entropy estimation method to detect RBCs, then separate
the touching cells using distance transform and random walk
algorithm, followed by diseased RBCs classification by a deep
CNN architecture. In Molina-Cabello et al. [36], the authors use
Hough Circle transform for cell detection and artificial neural
networks for classification as either RBC or not RBC.

There are a few recent papers in the literature that use CNN
for RBC detection. In Faliu et al. [37], the authors present
two models to extract RBCs from holographic images based
on convolutional neural networks. However, in the inference
stage, the trained model was used to predict each pixel in the
image which is computationally expensive and time consuming

for large image sizes. In addition, for their best model, they
also use internal markers from watershed algorithm to separate
the cells. In Yang et al. [38], the authors detect and classify
cells using Faster R-CNN [39]. They use microscopic images
with size equal to 659× 493 which is considered the ideal size
as input for Faster R-CNN network. However, their images
have a small number of cells, while in our paper, the image
size is 5312× 2988 with dense cells. In Hung. et al. [40], the
authors use Faster R-CNN for detecting the cells; nevertheless,
it lacks important details. The authors mention that the network
is trained by cropping tiles with size 448× 448, but it is not
clear how they test their trained model and whether they get
the prediction on the full images or tiles. The authors trained
their network using only four patients and tested only on one
patient. Compared to their work, in our present paper, we train
with 33 patients and test with 193 patients. This manuscript is
an extended version of a brief abstract which has preliminary
results for few experiments published in [41].

B. Contribution and Novelty

In our study, we present RBCNet, a novel algorithm based on
a dual deep-network architecture to segment cells: U-Net [42]
first separates touching cells and cell clusters in the produced
binary mask, followed by Faster R-CNN [39] performing the
final cell detection. The novelty behind combining these two well
known deep learning networks is in detecting highly overlapped
RBCs in large blood smear images. In particular, our approach
is scalable to large blood smear images (5312× 2988 pixels)
featuring high cell densities, where cells are relatively small
objects compared to the overall image size. We train our dual
deep-network architecture with image tiles to ensure fast training
with a reasonable number of cells in each tile and relatively
large tile size to cell size ratio, while presenting connected
components to the network instead of regular tiles in the testing
stage avoids cutting off cells. Detecting small objects in large
images is an ongoing area of research and our study could be
a robust solution that eliminates the limitations of the regular
strategy which is problematic for cells residing on tile boundaries
that usually affect the overall accuracy, as discussed in detail in
Section III. Additionally, we compare our work with 11 methods
(traditional and deep learning) with several combinations and
testing strategies. We have made the RBCNet code available
here: https://github.com/nlm-malaria/RBCNet

C. Motivation, Challenges, and Proposed Pipeline

There are several challenges that motivated us to build our
dual pipeline: Our image size is large 5312× 2988 compared
to the relatively small cell size; further, microscopy smears
vary in cell shape, density, illumination, and color. Applying
Faster R-CNN or any other object detection network directly to
an entire image is computationally expensive, especially with
recent object detection networks that have multiple training
stages as Faster R-CNN. Object detection networks are usually
applied to images for which the shortest side is around 600
pixels, whereas the shortest side in our images is 2988.

We have developed a novel dual deep architecture based cell
segmentation pipeline for segmenting a dense set of RBCs in

https://github.com/nlm-malaria/RBCNet


KASSIM et al.: CLUSTERING-BASED DUAL DEEP LEARNING ARCHITECTURE FOR DETECTING RED BLOOD CELLS 1737

Fig. 1. Visualization of our RBCNet pipeline with two stages: training and testing. In the training stage, U-Net and Faster R-CNN are used to train
on raw image tiles, while in the inference stage, we apply a Faster R-CNN trained network to cell cluster raw image regions corresponding to the
connected components produced by U-Net.

large thin smear microscopy images as part of an end-to-end
fieldable system for rapid fully automated malaria diagnosis
[43]. The RBCNet pipeline shown in Fig. 1 consists of two
stages including a U-Net architecture with connected component
labeling for detecting and extracting cell cluster foreground
masks. The second stage uses a Faster R-CNN architecture
for refining the cell clusters into individual cells with accurate
boundaries. The two stage cascade architecture is individually
trained using malaria thin smear microscopy imagery as de-
scribed in Section II. The key idea is that U-Net architecture
guides the detection process in the inference stage by providing
robust candidates (clusters of cells) as input to a Faster R-CNN
network rather than the standard way of tiling the image. Our
pipeline is a robust solution to various challenges imposed by
large size images with dense objects.

II. MALARIA DATA SET AND METHODOLOGY

Dataset: We tested our proposed pipeline for RBC cell
detection with archived thin blood smear images from hu-
man patients acquired from Chittagong Medical College Hos-
pital in Bangladesh. Giemsa-stained thin-blood smear slides
were collected from Plasmodium falciparum infected patients
and healthy controls and photographed using a smartphone
camera. The slide images were manually annotated by an
expert, de-identified, and archived. The Institutional Review
Board (IRB) at the National Library of Medicine (NLM),
National Institutes of Health (NIH) granted approval to carry
out the study within its facilities (IRB#12972). We publish
the data here: ftp://lhcftp.nlm.nih.gov/Open-Access-Datasets/
Malaria/NIH-NLM-ThinBloodSmearsPf/

All images have three color channels with image dimensions
of 5312× 2988 pixels. Because images are captured through
the eyepiece of the microscope, the visual region is circular. We
divided the data set into two parts: a polygon set and a point

set. The difference between these two sets lies in the annotation
method. In the polygon set, all red blood cells and white blood
cells (WBC) have been outlined manually with polygons using
the Firefly annotation tool [44],1 whereas in the point set, cells
have been marked by placing a point on each cell, as illustrated in
Figure 2. We use the polygon set for training and the point set for
evaluation. The polygon set consists of 165 blood smear images
from 33 patients, with each patient contributing five slides. The
point set consists of 800 images from 160 patients. The total
number of RBCs is 34,213 and 162,450 in the polygon and point
set, respectively.

RBCNet architecture and training step: RBCNet consists
of U-Net [42] and Faster R-CNN [39]. U-Net [42] is one type
of semantic segmentation networks which means pixel-wise
labeling so that each pixel in the image has a unique class
or category. Most existing networks classify objects such as
cars, people, airplanes, etc. However, U-Net is designed for
biomedical segmentation [45]. U-Net consists of two paths
forming a U-shape: a contraction and an expansion path. The
contraction path consists of four blocks, where each block has
two convolutions, two ReLUs, and one max pooling layer. The
expansion path has also four blocks; however, upsampling is
used rather than downsampling, and concatenation followed by
regular convolution operations. The contraction path enables the
network to learn context, whereas the expansion path preserves
the spatial information. This design is very important for our
work. It allows retrieving high resolution feature maps and
preserving image details such as cell boundaries.

In Faster R-CNN [39], a convolutional neural network like
VGG-16 is typically used as the feature extraction backbone.
VGG-16 is 16 layers deep and has been optimized to classify
images with 1000 classes for the ImageNet competition (ILSVR
2014). However, in our case, we have just a two class task to

1http://www.firefly.cs.missouri.edu

ftp://lhcftp.nlm.nih.gov/Open-Access-Datasets/Malaria/NIH-NLM-ThinBloodSmearsPf/
http://www.firefly.cs.missouri.edu
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Fig. 2. Our Bangladesh data set is divided into two sets according to
annotation scheme: (a) Polygon set, cell outlines annotated by polygons
for network training, contains 165 images from 33 patients, each patient
contributes with 5 images, total number of RBCs is 34,213. (b) Point set,
annotated by placing a dot on each cell, used for network evaluation,
contains 800 images from 160 patients, each patient contributes with 5
images, total number of RBCs is 162,450.

identify RBC versus background; additionally our cells are small
and have a relatively homogeneous appearance and texture. So
instead of using a deep backbone like VGG-16 or ResNet-50 for
Faster R-CNN, we designed a customized CNN backbone with
fewer layers for cell feature extraction consisting of nine layers:
one input layer, two convolutional plus ReLU layers, followed
by one pooling layer, then two fully connected layers, a softmax
layer and a final classification layer. For training RBCNet, we use
labeled fixed size tiles for both U-Net and the customized Faster
R-CNN, 256× 256 and 128× 228 respectively, for fast training
and obtained a robust learned RBCNet model. The details of our
cross validation experiments are in Section II-A.

Inference Step: Using the trained models of U-Net and
Faster R-CNN, we proposed RBCNet, a robust pipeline for
cell segmentation shown in Fig. 3. The flowchart begins with
reading the input image and ends with detecting all RBCs. The
shaded box describes Step 6 which combines the information
from U-Net with Faster R-CNN inferencing. Step 6 loops over
each extracted connected component (image object mask region)
and applies the trained deep architecture of Faster R-CNN to
localize each cell using a detection bounding box. See Figure 6
for some examples.

Post-Processing Step: Our algorithm filters out any bounding
box satisfying Eq. 1 as a leukocyte or white blood cell (WBC)
and saves all remaining bounding boxes for evaluation.

n∑
c=0

f(μ− ε− Ic) > T (1)

Fig. 3. RBCNet inference flowchart starts with reading an input image,
applying U-Net and Faster R-CNN, and ends with saving all detected cell
bounding boxes.

where

f(x) =

{
0 if x ≤ 0 RBC pixel
1 otherwise, WBC pixel

and n is the number of foreground pixels within each detec-
tion, Ic is the intensity value for each pixel, T is a predefined
threshold, and ε is a heuristic estimate on how much darker a
WBC is, on average, compared to the mean intensity μ. WBCs
are up to three times larger than RBCs and are usually darker
than RBCs. We found that thresholding on the number of dark
pixels typically associated with WBC detections using Eq. 1 is
a good solution. According to Eq. 1, we detect and filter out any
bounding box as a WBC object if it contains more than T pixels
of sufficient darkness. See Fig. 4 for some examples of patches
that have both RBCs and WBCs, and where our algorithm filters
out all WBCs successfully.

A. Cross Validation

In our work, we evaluate both the polygon set and the point
set. To evaluate our RBCNet on our polygon set (33 patients),
we apply 11-fold cross validation on patient level. In each fold,
we use the imagery of 30 patients (150 images) for training and
exclude three patients (15 images) for testing. To evaluate the
point set (160 patients), we train all the images in the polygon set.
Table I illustrates the data statistics of our experiments. All ex-
periments ran for 20 epochs on an Nvidia GeForce GTX 1080Ti
GPU. For U-Net and Faster R-CNN, we use implementations
provided by the Neural network toolbox in MATLAB [46].

During training the Faster R-CNN stage, the input images are
rescaled from 5312× 2988 to 0.3 of their original size. Using
128× 228 rectangular tiles, the smaller image size of 1594×
896 results in tiles with a higher density of RBCs (smaller cell
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Fig. 4. Examples of our RBCNet cell detection results showing RBCs and WBCs in different colors, shapes, and illumination conditions (cropped
ROIs at original resolution). Our proposed RBCNet pipeline successfully detects RBCs and filters out WBCs in all these cases.

TABLE I
EXPERIMENTAL SETUP FOR TRAINING OUR DUAL DEEP LEARNING ARCHITECTURE

sizes) within each tile. Specifically, each tile has about 7 to 15
RBCs and there are about 49 tiles per image. However, we only
consider the tiles within the field of view and exclude all of
the black background tiles. So, the number of tiles used per
image is about 25, which leads to a training set of 3750 tiles
(25 tiles/image ×150 images) used in each fold. We use a small
subset of the training tiles for validation (about 100 tiles) to
monitor the accuracy and loss during training, which determines
if more epochs or training samples are needed. For evaluating
on our point set (160 patients with 800 images), we first train on
all the images in our polygon set (165 images from 33 patients)
by generating a training set with 4125 tiles (25 tiles/image×165
images).

Faster R-CNN training happens in four phases: Phase 1 and 2
train the region proposal and detection networks. In the last two

phases a single combined network is trained for detection. We
use a higher learning rate in Phase 1 and 2, equal to 0.001, then
for the last two phases, we decrease the learning rate to 0.0001
because the last two phases are just to fine tune the network
weights. The network is trained from scratch. The number of
layers and parameters have been selected after extensive trials
for several configurations. We train U-Net in a similar fashion
(i.e. same cross validation scheme). Our objective is to learn a
robust U-Net model for predicting accurate foreground masks
because our proposed approach depends on this mask during
the inference stage. We generate training data by randomly
cropping 100 patches per image, with dimensions of 256× 256,
and by augmenting them through random rotation, reflection,
and scaling to increase the number of examples for a more
robust training. In this way, we create eight additional patches
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Fig. 5. Evaluating detection accuracy for counting RBCs using one-
to-one matching assessment with the confusion matrix shown in the
upper right. Upper left figure shows examples of TP, FP, and FN. For
point correspondences we do not use specificity or TN rate as most of
the image pixels are TN. In the bottom row the yellow bounding boxes
are RBCNet algorithm detections and the green points are the expert’s
manual ground-truth point annotations.

for each single patch, which increases our training set to 120,000
patches (150× 100× 8) for training each fold to evaluate the
polygon set. Similarly, to evaluate the point set, we augment the
training data of the polygon set to create a larger training set
consisting of 132,000 patches (165× 100× 8). On this larger
training data, U-Net needs 20 epochs to converge. We trained
the network using stochastic gradient descent with momentum
(SGDM) optimization. The bias term of all convolutional layers
is initialized to zero and convolution layer weights in the encoder
and decoder sub-networks are initialized using the ‘He’ weight
initialization method [47]. We accelerate the training by setting a
high learning rate equal to 0.05; however, to prevent the gradients
of the network from exploding, we enable a gradient clipping
threshold equal to 0.05, and clip the gradients if their L2-norm
exceeds the given threshold.

B. Performance Metrics

We evaluate the red blood cell detection algorithms based
on a one-to-one matching between point annotations in our
ground-truth, which represent individual cells identified by an
expert microscopist, and the detected cells. To evaluate our
cell detection quantitatively, we apply the following evaluation
scheme, which is also visualized in Fig. 5:

1) If a detected bounding box contains just one point in the
labeled data, consider it a true positive (TP).

2) If the bounding box contains more than one point, con-
sider the one which is closest to the center of the bounding
box as a TP. Remaining points are either TP if there are
other bounding boxes containing each of them, otherwise
are missed detections so false negatives (FN).

3) If any point is not contained in a box, label it as a false
negative (FN).

4) If a bounding box does not contain any point, then label
this detection as a false positive (FP).

Our evaluation considers the standard performance metrics
Recall, Precision, and F1-measure for evaluating our RBCNet
cell detection results and comparing them to the expert gold
standard. Recall is a statistical measure used to quantify how
well an algorithm detects objects, or cells in our case. While
Precision assesses how robust it is in avoiding false detections,

Recall =
TP

TP + FN
, Precision =

TP

TP + FP
.

The F1 measure combines Precision and Recall, using the har-
monic mean between the two,

F1-measure = 2 · Recall · Precision

Recall + Precision
.

III. EXPERIMENTAL EVALUATION OF RBCNET

In this section, we first address the various methods and
strategies that we have used to detect the cells in our data set
in III-A, then we describe and discuss the results in III-B.

A. Comparisons and Testing Strategies

Several methods and experiments have been tested and con-
ducted to detect cells in our thin smear data set including our
proposed RBCNet. We divide them into four groups:

1) Traditional methods: We compare our algorithm results
with two state-of-the-art traditional methods in cell detection:
Active contour [18], [19] and Watershed [17]. These two al-
gorithms are the core of most existing papers to localize and
separate cells, as we discussed in Section I-A. They are consid-
ered superior for their efficiency to detect cells based on specific
criteria and without the need to train and validate deep networks
or acquiring GT labeling. However, these methods may fail for
images with extreme and challenging conditions. Furthermore,
the optimization of hyper-parameters for Active contours can be
computationally expensive.

2) Instance segmentation DL methods: Instance segmentation
methods provide automatic delineation for each object in the
image on pixel-level. These methods may fail to produce a robust
separation with images that are too dense with overlapping small
objects such as our cell images. They can succeed in separating
some cells but leave others as clumps of cells. We utilize three
popular deep learning architectures: SegNet [48], U-Net [42],
and DeepLabV3+ [49].

3) Object detection DL methods: We utilize four state of the art
object detection networks: Faster R-CNN [39], You Look Only
Once (YOLO) [50], Single Shot Detection (SSD) [51] , and Mask
R-CNN [52]. They are all trained from scratch using the same
number of tiles and share the same parameters. All networks can
accept a small or regular image size dimension (≤600), however,
they cannot work with extremely large image size dimensions.
The only solution is to train the networks using tiles. However,
tiling can be problematic in the inference stage because of cell
fragmentation, specifically, when object density is high. We
follow four strategies in the testing stage: testing using the
full image after resizing it to smaller dimensions, testing with
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Fig. 6. Three examples of cell clumps of different sizes for which our dual deep network architecture pipeline RBCNet successfully identifies
individual cells. The examples show the connected components generated from the U-Net foreground mask and the bounding boxes of individual
cells detected by our Faster R-CNN model. The first column shows the field of view for the raw image, the second column shows the binary mask
produced by U-Net, and the third column shows the connected component labeling for U-Net’s binary mask. In the fourth column are zoomed-in
examples of connected components for which Faster R-CNN detects all cells. Green dots represent the gold standard ground- truth (GT) annotation.
The last column visualizes all bounding boxes for all cell clumps superimposed on the raw image. Combination of U-Net training using tiles along
with connected component labeling for the output mask enables cells and cell clusters (i.e. touching or overlapping cells) to be accurately detected
and segmented across tile boundaries. The cell clusters identified by U-Net typically have smooth borders and very little fragmentation.

non-overlapping tiles, testing with overlapping-tiles, and finally
testing with overlapping-tiles with non maximum suppression
(NMS) to remove replicated bounding boxes for a cell. NMS
has been widely used as post processing for many computer
vision applications, including object detection [53], [54]. NMS
keeps the bounding boxes with a high confidence score and
eliminates the nearby windows with lower confidence scores.
The testing scores for all testing strategies are discussed in
Section III-B. Our proposed dual network architecture addresses
all the limitations produced by the tiling process and considers
a different strategy in the testing stage.

4) Proposed dual deep learning networks: Our proposed dual
networks solve the detection limitations for the tiling process
in the testing stage for dense and large images. They detect
tiles with cell clumps, obtained by an instance segmentation DL
method, which are not prone to cell fragmentation. Furthermore,
better cell delineation, resulting from Instance segmentation
methods, leads to smaller cell clumps and more accurate detec-
tion results. We use three combined networks: SegNet+Faster R-
CNN, U-Net+YOLO, and our proposed RBCNet (U-Net+Faster
R-CNN). Although several other combinations are possible, we
only try these three combinations for several reasons discussed
in Section III-B.

B. Experimental Results with Discussion

Tables II and III display the experimental results for the exper-
iments conducted using the methods described in Section III-A.

1) Watershed [17] and Active contour [18], [19]: Row 3
and 4 in Tables II and III show the quantitative results for
Watershed and Active contour methods. Traditional methods
may work very well for many images, but can fail suddenly when
encountering challenging conditions because they depend on
specific criteria, such as intensity or energy. This also becomes
evident when comparing the differences between standard de-
viations (SDs). For example, in Table III, the SD for Watershed
and Active contour is around six times higher than the SD
of the results produced by our method. Fig. 7 shows several
examples where our prediction results differ from the predictions
produced by Active contours. Our pipeline works consistently
well for all regions, whereas Active contour results suffer from
either under- or over-segmentation, which typically happens in
regions with challenging conditions such as low contrast or
illumination variation. RBCNet performs more robustly in the
boundary regions, where cells are often only partly visible. For
example, in sub-figure (f) of Figure 7, Active contour produces
over-segmentation for partly visible cells in this region, whereas
our pipeline predicts only the fully visible cells, which is a desir-
able feature closer to the human expert strategy. Comparing our
RBCNet to traditional methods (Active contour and Watershed),
the relative improvement is larger for the point set than for the
polygon set. This is because the point set contains data from
about five times more patients than the polygon set. Having more
patients leads to a higher variability in terms of illumination,
shape, and cell density, which poses problems to traditional
approaches.
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TABLE II
SEGMENTATION ACCURACY FOR OUR RBC POLYGON SET, USING 11-FOLD CROSS VALIDATION. FOR EACH EXPERIMENT, THE TRAINING SET CONTAINS
TILES FROM 150 IMAGES, AND THE TEST SET CONTAINS 15 IMAGES. WE CONDUCTED T-TESTS USING THE F1-MEASURE BETWEEN OUR PROPOSED

RBCNET DUAL NETWORK (U-NET+FASTER RCNN) AND OTHER METHODS. ALL P-VALUES ARE < 0.001, INDICATING THAT THE DIFFERENCES BETWEEN
GROUPS ARE STATISTICALLY SIGNIFICANT

TABLE III
DETECTION ACCURACY FOR OUR RBC POINT SET. ALL TRAINING DATA OF THE POLYGON SET (165 IMAGES) HAS BEEN USED TO GENERATE THE TRAINING

MODEL TO TEST 800 IMAGES FROM 160 PATIENTS. THE T-TESTS BETWEEN OUR PROPOSED DUAL RBCNET AND OTHER METHODS HAVE P-VALUES <
0.001, INDICATING THAT THE DIFFERENCES BETWEEN GROUPS ARE STATISTICALLY SIGNIFICANT

2) Instance segmentation DL methods: Tables II and III
show the evaluation scores of SegNet [48], U-Net [42], and
DeepLabV3+[49]. U-Net performs better than other methods
with F1-measure equal to 87% for the polygon set and 92% for
the point set. For this reason, we choose U-Net to be part of our
final dual network RBCNet.

3) Object detection networks with different tiling strategies:
We discuss here the four tiling strategies mentioned in III-A
that are regularly used in the inference stage for object detection
networks. We use Faster R-CNN for our analysis, see Table IV.

Faster R-CNN has the advantage that it can accept any input
size. Once the model is trained, we can apply it to both the full
image or image tiles. We test our trained model on the full image
as a first strategy because this is faster and easier. However,
the results were not promising, as can be seen in Table IV.
In particular, the recall is very low for this straightforward
approach. Recall is equal to 66% for the polygon set and 69%
for the point set. This is because the full image has a different
size compared to the tiles used for training. The ratio of image
to cell size is much larger than the ratio of tile size to cell size.
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Fig. 7. Comparison between our RBCNet pipeline results and one of the very popular traditional methods in the literature for cell detection, based
on Active contours [18], [19]. Panels a,c, and e show the results of our proposed processing pipeline applied to several sample images. Panels b,d,
and f show examples for the traditional Active contours method.

TABLE IV
DETECTION ACCURACY FOR OUR RBC POLYGON AND POINT SETS FOR

DIFFERENT TILING STRATEGIES USING FASTER R-CNN [51]

A second strategy is to implement a tile-based inference
stage, which is consistent with our tile-based training. Table IV
shows the performance evaluation for Faster R-CNN on non-
overlapping tiles. It is noticeable that the recall is still low
because some cells are not detected, as they have been cut off
by the tiling process.

Therefore, a third strategy is to use overlapping tiles with an
overlap ratio of 50%. In Table IV, Faster R-CNN on overlapping
tiles shows our evaluation results for this strategy for both

polygon and point set. We achieve a relatively high recall of
93.65% and 96.19%, respectively. However, using overlapping
tiles leads to duplicate detection of some cells. For this rea-
son, this strategy has the worst precision compared to other
approaches in both tables, 59.27% and 57.95%. NMS leads to
relatively good evaluation results, as shown in Table IV for both
polygon and point set. Applying NMS increases the precision by
30% , with only a moderate loss in recall around 1%. We applied
NMS with an overlap ratio of 0.5, which means it filters out all
the bounding boxes that overlap more than 50%. Increasing the
overlap ratio to higher values would decrease the recall because
RBCs can overlap in dense cell clusters. According to our results
listed in Table IV, Faster R-CNN on overlapping-tiles with NMS
produces the best result compared to other tiling strategies. This
has encouraged us to consider this strategy to produce good
results for other object detection networks in Tables II and III.

Figure 9 illustrates the output of Faster R-CNN using these
four different strategies and shows how our RBCNet with
U-Net masks performs significantly better than other infer-
ence approaches. Testing on full images and testing with non-
overlapping tiles lead to a low recall as shown in panels [a and
f] and panels [b and g], whereas testing with overlapping tiles
leads to a low precision because some cells are predicted twice as
shown in panels [c and h]. Applying NMS with an overlap ratio
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higher than 0.5 can remove some of the duplicate predictions;
however, NMS cannot remove all the extra bounding boxes
generated, see panels [d and i]. Our RBCNet in the last column
provides the best detection performance. Red dots correspond
to the cells that have not been detected (FN) while blue dots
represent duplicate detections (FP).

4) Our proposed dual deep network architecture: The first
combined architecture that we have tried is U-Net+YOLO as
those two networks produce the highest DL F1-measure in both
Tables II and III. However, we found that YOLO is sensitive
to tile size and only responds well for tiles that have a similar
dimension as the training tiles. It does not respond well for tiles
with large cell clumps. Although the recall did not improve, it
is noticeable that the precision increased because our method
tested tiles with full clumps; not tiles with fragmented small
cell objects. As a second trial, we choose Faster R-CNN, as
it has the highest recall/detection in Table III. Note that we
did not choose Mask R-CNN because it needs a larger set of
polygon/segmentation mask training data, which is expensive
and its acquisition takes longer. Mask R-CNN is also much
slower than Faster R-CNN. Another advantage of Faster R-CNN
is that it is more versatile and automatically adapts to different
tile sizes. It accepts clumps/clusters with different numbers of
cells or tile sizes for inference.

Our proposed dual deep network architecture RBCNet takes
advantage of U-Net to provide initial foreground masks as input
to Faster R-CNN for cell identification. This dual architecture
has the following advantages:

U-Net can provide a foreground mask with the connected
components of the corresponding image regions as input to
Faster R-CNN. Using connected components as input to Faster
R-CNN has the advantage that no cells will be cut-off, which
happens in tile-based approaches. This results in higher true
positive and lower false positive rates.

Touching and overlapping cells are usually identified as a
single clump by U-Net. Faster R-CNN is able to identify indi-
vidual cells within clumps accurately and rarely produces a false
detection in the background, even in places with illumination
artifacts and other challenging conditions, because it is guided
by the U-Net foreground mask.

U-Net preserves the spatial details lost during down-sampling
by concatenating the cropped feature maps with the correspond-
ing maps through up-sampling. Preserving spatial details of
RBCs improves segmentation because it leads to more robust
candidates for Faster R-CNN. To illustrate this, replacing U-Net
by SegNet [48] shows the effects of preserving details through
concatenation rather than just transferring max pooling indices
to the decoder. Hence, SegNet does not preserve important
neighboring information like U-Net.

For all these combinations, we show the results in the last
three rows of Tables II and III. Our proposed dual deep learning
architecture RBCNet, using U-Net foreground mask with Faster
R-CNN, outperformed all other methods evaluated with the
F1-measure, with a very low standard deviation (SD). Tables II
and III show our experimental results, where numbers in bold
represent our best results. For the polygon set, we achieve an

Fig. 8. F1-measure versus IoU threshold for all experiments using the
polygon set and 34,213 GT cells. The plot shows how the F1-measure
decreases as the IoU threshold or overlap ratio is increased.

F1-measure, precision, and recall of 97.76%, 97.51%, and
98.07%, respectively. For our point set, we achieve 97.94%,
97.54%, and 98.39% correspondingly.

Fig. 8 shows the F1-measure for the polygon set plotted versus
the Intersection over Union (IoU) metric threshold between
detected cells and the corresponding GTs. Although, we cannot
produce the same plot for the point set because we do not
have GT polygon annotations to determine the overlap, this
plot gives us an idea about the robustness and stability of our
architecture. It shows that the F1-measure decreases while the
IoU overlap threshold increases. This is because the number of
TPs decreases, and more cells become FPs, since detections have
less than the required overlap with GT. Our dual RBCNet archi-
tecture is relatively stable against this IoU metric. F1-measure
remains over 90% until the IoU overlap requirement becomes
larger than 0.75. It is also noticeable that U-Net and Deeplab v3+
produce a relatively more stable F1-measure for IoU between
0.8 and 1. However, these two methods have an overall lower
F1-measure.

We also apply a t-Test to determine whether there is a signif-
icant difference between the means of our RBCNet and other
methods in terms of F1-measure. We compute p-values that are
less than 0.001 for all the experiments, which shows that the
differences are statistically significant.

For a straightforward implementation on a regular PC and
without a GPU, the processing time varies between 20 and
60 seconds per image depending on the cell density. However,
our method can be parallelized because RBC clusters can be
processed independently, and in parallel. We estimate that this
would reduce the total processing time significantly.
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Fig. 9. Output of Faster R-CNN for different input configurations: First column (a, f) shows Faster R-CNN applied to the full image, second column
(b, g) shows Faster R-CNN results for non-overlapping tiles, third column (c, h) are Faster R-CNN results on overlapping tiles, fourth column (d, i)
contains results with overlapping tiles and non-maximum suppression, and last column (e, j) shows results for our proposed method. Red dots •
represent false negatives and blue dots • represent false positives. Our results in the last column provide a better F1 measure in all cases compared
to other inference schemes.

IV. CONCLUSION

Our dual deep learning architecture RBCNet, which com-
bines U-Net with Faster R-CNN, provides a robust solution for
detecting RBCs in blood smear images characterized by a small
ratio of cell object size to image size. For automated malaria
screening, we tested our proposed pipeline on 965 images from
different patients to detect single RBCs and to segment over-
lapping RBCs in cell clusters. By applying Faster R-CNN on a
foreground mask produced by U-Net, we are able to outperform
traditional cell detection methods, instance segmentation deep
learning methods, and object detection deep learning methods.
Our cell detection implements a crucial step towards automated
malaria diagnosis. Future work will combine our cell detection
pipeline with a cell classifier to differentiate between infected
and uninfected cells.
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