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Abstract: In this study, the authors propose a methodology for the estimation of glucose masses in stomach (both in solid and
liquid forms), intestine, plasma and tissue; insulin masses in portal vein, liver, plasma and interstitial fluid using only plasma
glucose measurement. The proposed methodology fuses glucose–insulin homoeostasis model (in the presence of meal intake)
and plasma glucose measurement with a Bayesian non-linear filter. Uncertainty of the model over individual variations has been
incorporated by adding process noise to the homoeostasis model. The estimation is carried out over 24 h for the healthy people
as well as a type II diabetes mellitus patients. In simulation, the estimator follows the truth accurately for both the cases.
Moreover, the performances of two non-linear filters, namely the unscented Kalman filter (KF) and cubature quadrature KF are
compared in terms of root mean square error. The proposed methodology will be helpful in future to: (i) observe a patient's
insulin–glucose profile, (ii) calculate drug dose for any hyperglycaemic patients and (iii) develop a closed-loop controller for
automated insulin delivery system.

1 Introduction
For a healthy human, through a series of physiological control
action, plasma glucose level is maintained between 70 and 165 
mg/dl throughout the day. When it decreases below certain value,
blood supply to brain is restricted, which stimulates the release of
glucagon, adrenalin and cortisol, thus increasing the plasma
glucose concentration. In contrast, if plasma glucose concentration
exceeds optimal range, insulin is released by action of
hypothalamus on β cells and normoglycaemic condition is
maintained by the stimulation of glucose transportation, utilisation
and storage [1]. When the synthesis of insulin by β cell or
sensitivity of cells to insulin is impaired, it leads to hyperglycaemic
condition along with other complications such as uricosuria,
ketoacidosis and negative nitrogen balance, collectively called as
diabetes mellitus (DM) [2]. The associated chronic complications
are diabetic neuropathy, diabetic nephropathy, diabetic retinopathy,
diabetic foot ulcer, increased cardiovascular risks, diabetic coma
etc. DM is primarily classified into two types. Type I diabetic
patients are treated with insulin and type II diabetic patients are
treated with oral hypoglycaemic agents in combination with
insulin. Conventional blood sugar lowering drugs are major causes
of death worldwide due to hypoglycaemia [2]. Moreover, it is
reported that patients’ having blood glucose level below 50–60 
mg/dl for 3 h or more in a day, suffer from arrhythmia,
vasoconstriction, increased cytokine production and other
associated complications [3–5]. So, it is necessary to maintain the
glucose level within optimal range to prevent hyper and
hypoglycaemia-induced death.

A closed-loop automated insulin delivery system, governed by
control algorithm [6] [known as artificial pancreas (AP)] may
become useful in maintaining blood glucose level within the limits
prescribed [7]. An AP requires a control algorithm, which delivers
only fixed amount of insulin. The success of controller mostly
depends on accurate modelling which has been topic of continuous
investigation for past few years. A mathematical model was
developed by Srinivasan et al. [8], where the effect of fatty acid
metabolism on plasma glucose–insulin concentration was

illustrated. Later, Bergman proposed glucose–insulin homoeostasis
model [9], where interrelation of plasma glucose, insulin and
interstitial insulin was modelled. Furthermore, the model was
modified by including insulin sensitivity and pancreatic
responsiveness against intravenous glucose intake [10, 11]. Other
researchers explored the impact of different hormones [12–14],
different insulin delivery routes [15], glucose metabolism [16], oral
[17] and intravenous glucose tolerance [18] on plasma glucose
concentration. Papers on estimation and prediction of glucose and
other related parameters using soft computing techniques such as
artificial neural network, Fuzzy logic etc. [19–22] are also
available in the literature.

Unfortunately, none of the methods considered the effect of
glucose absorption from meal, which is obvious in real life. To
address the shortcomings, a glucose hoemostasis model [23] has
been developed for type I DM patients incorporating the rate of
absorption of glucose from meal. Later on, another homoeostasis
model [24] was proposed for type I DM patients, considering the
rate of glucose appearance in plasma via. parenteral route.
However, as the insulin production and release by the β cells are
not included in these models, these could not be suitable to use for
controlled delivery of insulin to type II DM patients. It is reported
that basal insulin administration along with oral hypoglycaemic
agents gives significant improvement in glycaemic control of type
II DM patients [25]. Therefore, it became imperative to develop a
model (incorporating meal) for any kind of hyperglycaemic
persons including type II diabetes.

Cobelli et al. introduced a dynamic model [26] of glucose–
insulin homoeostasis for normal as well as type II DM patients.
The model considered necessary parameters such as oral glucose
intake, its amount in stomach (Qsto(t)), intestine (Qgut(t)), plasma
(Gp(t)) and tissue (Gt(t)); endogenous production of glucose by
liver (EGP(t)), new insulin production in response to meal (Y(t)),
insulin concentration in various body compartments such as portal
vein (Ipo(t)), hepatocytes (Il(t)), hepatic vein (I1(t)), plasma ((Ip(t))
and interstitial fluid (X(t)); insulin delay (Id(t)) and their
interconnecting relationship with plasma glucose level.
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For treatment purpose, knowledge of the above-mentioned
parameters at any instant is required. The main constrain is that
most of the blood glucose regulating parameters could not be
measured. The challenge is to determine all the parameters without
actually measuring them.

In this paper, a method has been proposed to estimate (know)
the above-mentioned parameters without actually measuring them
with the sensor. It is true that the non-linear filters are available in
the literature, but their application to determine glucose regulating
parameters is limited. More specifically, almost no work is
available which describes a methodology to know glucose
regulating parameters for type II diabetes patients in the presence
of oral glucose intake.

Here, we propose a methodology which fuses the meal model
(for both healthy persons and diabetic patients) with plasma
glucose measurement with the help of two non-linear filters,
namely the unscented Kalman filter (UKF) and cubature
quadrature Kalman filter (CQKF). The performance is compared in
terms of root mean square error (RMSE), calculate out of 50 Monte
Carlo (MC) runs. The filters estimate all the above-mentioned
physiological parameters at each instant of time in the presence of
meal intake. Moreover, the plasma glucose level and other related
physiological parameters vary considerably among individuals,
depending on diet, duration of fasting, exercise, social and mental
status, proper functioning of neuro-endocrine system and body
metabolic system [4]. To incorporate the variability, process noise
has been added with the meal simulation model. Inaccuracy in
glucose measurement sensor is modelled by sensor noise. Under
such circumstances, it has been observed that the proposed
methodology estimates the truth for both normal persons and
diabetic patients.

2 Body compartments for glucose–insulin
homoeostasis
To understand the fate of glucose and insulin in human body at
normal physiological condition, it is important to develop and
validate a glucose–insulin homoeostasis model. The major sources
of glucose in plasma are diet and glucose produced by the liver.
The disappearance of glucose from plasma is associated with the
utilisation by cells and storage in skeletal muscle and liver. Fig. 1
represents the fate of glucose in biological compartments. This

section summarises the dynamic equations presented in [26, 27]
with more physiological explanations. 

2.1 Glucose subsystem

2.1.1 Glucose absorption from intestine to extracellular
fluid: After having a meal, solid glucose (Qsto1(t)) is accumulated in
the stomach and gradually converted into liquid glucose (Qsto2(t))
to form a chyme. Later the chyme is transferred to the intestine
through peristaltic movement three per minute. So, at any time, t,
the total glucose present in the stomach Qsto(t) = Qsto1(t) + Qsto2(t).
The rates of change of solid glucose and liquid glucose in stomach
are given by

Q˙
sto1(t) = − kgriQsto1(t) + Dδ(t), (1)

Q˙
sto2(t) = − kempt(Qsto)Qsto2(t) + kgriQsto1(t), (2)

where kgri is the rate constant for the glucose grinding in stomach.
δ(t) is a Dirac delta function, which is defined as infinite at t = 0
and 0 elsewhere with the area unity. It is worthy of mention here
that the units of the all the constant values are listed in Table 1,
hence not mentioned in the text individually. The constant,
kempt(Qsto), is the gastric emptying rate. It is a non-linear function
of Qsto, defined as [27]

kempt(Qsto) = kmin +
kmax − kmin

2
{tanh[α(Qsto − bD)]

−tanh[β(Qsto − cD)] + 2},

where α = (2.5/D(1 − b)) and β = (2.5/Dc). kmax is the maximum
value of kempt(Qsto), in both the conditions, when D milligrams of
glucose are present in stomach (Qsto = D) or no glucose is present
in stomach (Qsto = 0). kmin is the minimum value of kempt(Qsto).
(kmax − kmin/2) is the value of kempt(Qsto), which exists in two
situations, when, b and c% of meal (D) are present in stomach, i.e.
Qsto(t) = c × D and Qsto = b × D. Liquid glucose is transferred into
the small intestine with the help of sodium glucose symporter,
present in intestinal epithelium [5]. The rate of change of glucose
in intestine is represented as

Fig. 1  Fate of glucose in biological compartments
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Q˙
gut(t) = − kabsQgut(t) + kempt(Qsto)Qsto2(t), (3)

where kabs is the rate constant of glucose absorption from intestinal
epithelium. It is considered that a fraction of the total absorbed
glucose appears in plasma. So, the rate of glucose appearance in
plasma, Ra(t) is calculated as per

Ra(t) =
f kabsQgut(t)

BW
.

Here, f is the percentage of absorbed glucose that reaches in
plasma after t time and BW is the body weight.

2.1.2 Glucose distribution in body compartments: Glucose
transportation, use or storage in skeletal muscle and adipose tissue
is dependent on insulin, expressed as Uid(t), whereas its
transportation into brain, red blood corpuscles, white blood cells,
renal medulla and hepatocytes is independent of insulin, expressed
as Uii(t) [4, 5]. The rate of change of Gp(t) and Gt(t) are expressed
as

G˙
p(t) = EGP(t) + Ra(t) − Uii(t) − E(t) − k1Gp(t) + k2Gt(t), (4)

G˙
t(t) = − Uid(t) + k1Gp(t) − k2Gt(t) . (5)

Table 1 Values of constants used in [26]
Processes Parameters Normal Type II DM Units
glucose kinetics VG 1.88 1.49 dl/kg

h/Gb 75.177 181.4737 mg/dl
k1 0.065 .042 m−1

k2 0.079 0.071 m−1

insulin kinetics VI 0.05 0.04 l/kg
Ib 25.556 59.875 pmol/l

m1 0.190 0.379 m−1

m2 0.484 0.673 m−1

m3 0.285 0.5685 m−1

m4 0.194 0.269 m−1

m5 0.0304 0.0526 m kg
pmol

m6 0.6471 0.8118 —
HEb 0.6 0.6 —
Sb 1.549 4.027 pmol/kg/m

rate of appearance kmax 0.0558 0.0465 m−1

kmin 0.008 0.0076 m−1

kabs 0.057 0.023 m−1

kGri 0.0558 0.0465 m−1

f 0.9 0.9 —
b 0.82 0.68 —
c 0.01 0.09 —

endogenous production kp1 2.7 3.09 mg
kg m

kp2 0.0021 0.0007 m−1

kp3 0.009 0.005 mg/kg m
pmol/l

kp4 0.0618 0.0786 mg/kg m
pmol/kg

ki 0.0079 0.0066 m−1

EGPb 1.8 2.1 mg/kg/m
utilisation Fcns 1.0 1.0 mg/kg/m

Vm0 2.5 4.65 mg/kg/m
Vmx 0.047 0.034 mg/kg/m

pmol/l

Km0 225.59 466.21 mg/kg
Kmx 0 0 mg/kg
P2u 0.0331 0.0840 m−1

secretion K 2.3 .99 pmol/kg
mg/dl

A 0.05 0.013 m−1

B 0.11 0.05 pmol/kg/m
mg/dl

γ 0.5 0.5 m−1

renal elimination ke1 0.0005 0.0007 m−1

ke1 339 269 mg/kg
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E(t) is the elimination of glucose which is 0 in case of normal
individuals. Glucose is eliminated in urine, if plasma glucose
concentration exceeds renal threshold level, 339 mg/dl [26, 28]. k1

and k2 are the rate constants for the transfer of glucose from plasma
to tissue and tissue to plasma, respectively. Plasma glucose
concentration G(t) = Gp(t)/VG, where VG is the volume of glucose
distribution.

2.1.3 Endogenous glucose production: Apart from diet,
endogenous glucose production in liver is a major source of
available glucose. About 20 mg/dl decrement from the basal value
inhibits insulin release and glucose uptake in hypothalamus of
brain that leads to release of several hormones, responsible for
stimulation of endogenous glucose production [29–31]. EGP(t) is
expressed as EGP(t) = kp1 − kp2Gp(t) − kp3Id(t) − kp4Ipo(t). Here, kp1

is the extrapolated EGP(t) at zero glucose and insulin level in
plasma. kp2 is the liver glucose effectiveness, kp3 is the parameter
governing amplitude of insulin action on the liver kp4 is the
parameter, governing the amplitude of portal insulin action on
liver. The rate of change of Id(t) could be expressed as

I˙d(t) = − ki[Id(t) − I1(t)], (6)

where ki is the rate parameter for delay between insulin signal and
action. The change of I1(t) is written as

I˙1(t) = − ki[I1(t) − I(t)], (7)

where I(t) is the plasma insulin concentration, calculated as
I(t) = (Ip/VI), VI is the volume of distribution of insulin.

2.1.4 Utilisation of glucose: Total utilisation of glucose
U(t) = Uii + Uid(t), where Uid(t) = Vm(X(t))G(t)/Km(X(t)) + Gt(t)).
The first step of glucose utilisation is the conversion of glucose
into glucose-6-phosphate by hexokinase, synthesised by the action
of insulin. Glucose-6-phosphate is used for adenosine triphosphate
generation in tissue and excess is converted into glycogen.
Therefore, the utilisation of glucose in muscle is stimulated by
insulin action. Vm(X(t)) is the reaction velocity of glucose
conversion. It becomes faster in the presence of hexokinase,
accelerated by insulin. Vm0 and Vmx are the initial and maximum
values of Vm(X(t)). The overall reaction velocity is:
Vm(X(t)) = Vm0 + VmxX(t). The Km(X(t)) is the Michaelis constant,
dependent on the availability of the glucose [32]. The value of
Km(X(t)) at the initial point is Km0. The reversible reaction stops
after reaching to the equilibrium and the value of kmx collapses to 0
after a certain time and Km(X(t)) = Km0 + KmxX(t). X(t) is
dependent on I(t) as well as basal insulin level, Ib, and expressed as

X˙ (t) = − p2uX(t) + p2u[I(t) − Ib], (8)

where p2u is the rate constant for insulin action on peripheral
utilisation of glucose.

2.1.5 Glucose elimination in urine: When plasma glucose
reaches above the renal threshold ke2, glucose starts getting
eliminated in urine, which may be represented as

E(t) =
ke1[Gp(t) − ke2] if Gp(t) > ke2

0 otherwise,

ke1 is the rate constant of glomerular filtration of glucose.

2.2 Insulin subsystem

The rate of change of Ip(t) is

I˙p(t) = − (m2 + m4)Ip(t) + m1Il(t), (9)

where m1 and m2 are the rate constants for insulin transfer from
liver to plasma and plasma to liver, respectively. m4 is the rate
constant for peripheral degradation of insulin. The rate of insulin
change in liver is written as

I˙l(t) = − (m1 + m3(t))Il(t) + m2Ip(t) + S(t), (10)

m3 is the rate parameters for the degradation of insulin in liver
cells. It depends on the hepatic clearance or extraction of insulin,
HE(t) at that time: m3(t) = HE(t)m1/(1 − HE(t)). HE(t) is the ratio
of irreversible hepatic efflux of insulin and total efflux of insulin
from liver. At steady state, the insulin clearance via liver is 60%,
that is, HEbasal = 0.6. Again, S(t) = (m6 − HE(t)/m5), where m5 is
the rate constant for the transfer of insulin from pancreatic burst to
portal vein [33]. m6 is the rate constant for hepatic insulin
clearance. S(t) is the total insulin secretion.

2.3 Insulin secretion

S(t) is directly proportional to Ipo(t), i.e. S(t) = γ ⋅ Ipo(t). Here γ is
the rate constant for insulin transfer between portal vein and liver.
Ipo(t) follows the following differential equation:

I˙po(t) = − γIpo(t) + Spo(t), (11)

where Spo(t) is the secretion of insulin above basal value and is
expressed as

Spo(t) =
Y(t) + KG˙ (t) + Sb if G˙ (t) > 0,

Y(t) + Sb otherwise .

Here, K is the pancreatic responsiveness to rate of change of
glucose. Sb is the basal insulin secretion which follows
HEb = − m5Sb + m6. Now, replacing Spo(t) in (11), we obtain

I˙po(t) =
−γIpo(t) + Y(t) + KG˙ (t) + Sb if G˙ (t) > 0,

−γIpo(t) + Y(t) + Sb otherwise .
(12)

 
Remark 1: The model presented above is for the type II DM
patients. Models of the type I DM are also available in the
literature. The papers [23, 24] explicitly developed models for the
type I DM patients. Moreover, many others models [8, 9, 12–16]
could easily be modified for such patients.
 
Remark 2: As we know that type I DM patients cannot generate
insulin in their body, the model used in the present paper can also
be modified for type I DM patients. In that case we have to omit
the equations describing insulin production and secretion. More
explicitly, the model could be utilised successfully for type I DM
patients if Section 2.3 is removed.

3 Estimation of physiological parameters
3.1 Problem formulation

Let us assume the state vector,
x = [Qsto1 Qsto2 Qgut Gp Y Ipo Id I1 Il Ip Gt X]T. Equations (1)–(12)
can be represented as ẋ(t) = f (x(t)), where f(.) is a non-linear
function. As we mentioned earlier, a process noise is added in the
model to capture the uncertainty

ẋ(t) = f (x(t)) + ω, (13)

where ω is the process noise; assumed as white and following a
Gaussian distribution of 0 mean and Q covariance, i.e.
ω ∼ N(0, Q). Plasma glucose is measured at a fixed interval of
time. Measurement at any time step k is expressed as

yk = Hxk + vk, (14)
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where H = [0 0 0 1 0 0 0 0 0 0 0 0] is the measurement matrix and
vk is the measurement noise assumed as Gaussian, i.e. vk ∼ N(0, R)
and uncorrelated with ω. So, the problem reduces to estimate the
state variable x from the noisy measurement (14). Here, we solve
the estimation problem with two non-linear filters, namely UKF
and CQKF, which are the popular Bayesian filters in the literature.

3.2 Non-linear Bayesian filters

The objective of the work is to estimate blood glucose regulating
parameters continuously from inaccurate plasma glucose
measurement. The problem is cast as a classical non-linear
estimation problem. Literatures exist [34, 35] to solve such
biological problems with non-linear filters, which use Bayes’
theorem and Chapman–Kolmogorov equation. These two equations
combined together form a framework which is known as Bayesian
framework of filtering.

For linear system and Gaussian noises those two equations
could be solved analytically. However, for non-linear systems those
equations are intractable. Many approximate solutions are available
in the literature which combined known as Bayesian non-linear
filter. Here, we used two of such filters, namely the UKF and
CQKF.

3.2.1 Unscented Kalman filter (UKF): The UKF also known as
sigma point KF approximates the posterior and prior probability
density functions (pdfs) of states as Gaussian. The Gaussian pdf is
characterised by few deterministically chosen quadrature points
and weights associated with them. The main advantage of Gaussian
filters is their computational efficiency. Mean value generated from
points and weights are used to describe single point estimation.
Now, we discuss the points and weights generation method.

In unscented transform method [36], the mean x^ and covariance
Px of random vector x are evaluated with 2n + 1 sigma points (n is
the dimension of the system) and its corresponding weights are as
follows: assume 2n + 1 sigma points are scattered around mean in
accordance to square root of the covariance matrix as

ξ0 = x^

ξi = x^ + ( (n + κ)Px)i i = 1, 2, …, n,

ξi + n = x^ − ( (n + κ)Px)i i = 1, 2, …, n .

In ( (n + κ)Px)i, the subscript i represents the ith column or row of
matrix ( (n + κ)Px). The weights of the sample points are
evaluated as

W0 = κ /(n + κ)

Wi = 1/2(n + κ) i = 1, 2, …, 2n,

where κ is the scaling parameter and its recommended value is
κ = 3 − n for Gaussian distribution. Now, each sigma point is
propagated through the non-linear function

ξi = f (ξi) .

Using the sigma points and its corresponding weights, the first two
moments, namely mean x^ and covariance Px of vector x are
computed as follows:

x^ = ∑
i = 0

2n

Wiξi,

Px = ∑
i = 0

2n

Wi(ξi − x^)(ξi − x^)T .

For detail algorithm, readers are requested to see [36].

3.2.2 CQKF: The prior and posterior pdfs are approximated as
Gaussian and realised with CQ points and weights [37]. The CQ
points are generated from third-order cubature and arbitrary-order
Gauss–Laguerre quadrature rule. The steps to generate CQ points
and their corresponding weights are as follows:

• Find the cubature points [ui](i = 1, 2, …, n), located at the intersection
of the unit hyper-sphere and its axis.

• Solve the n′-order Chebyshev–Laguerre polynomial for
α = (n/2 − 1) to obtain the quadrature points (χi′)

Ln′
α (χ) = χn′ −

n′
1!

(n′ + α)χn′ − 1

+
n′(n′ − 1)

2!
(n′ + α)(n′ + α − 1)χn′ − 2 − ⋯ = 0.

• Find the CQ points as ϵj = 2χi′[ui] and their associated weights
as

W j =
1

2nΓ(n/2)
(Ai′) =

1
2nΓ(n/2)

n′!Γ(α + n′ + 1)

χi′[L
˙
n′
α

(χi′)]
2

for i = 1, 2, …, 2n, i′ = 1, 2, …, n′ and j = 1, 2, …, 2nn′.
Readers are requested to follow [37] for detail algorithm.

4 Simulation results
A software simulation of truth state variable and estimation is done
for both the cases normal persons and type II diabetic patients. The
selected case of study has some special importance. The model
considered here is more realistic and almost all important
parameters related to glucose–insulin homoeostasis are considered.
Moreover, solid glucose meal intake as well as intake rate are taken
into account. The case is studied for 24 h.

The values of the model parameters for both healthy and DM
patients are taken as per Table 1 [26]. Truth states are realised by
solving (1)–(12) with the initial values, summarised in Table 2. The
BWs of normal individuals and diabetic patients are taken as 78
and 91 kg, respectively [26]. Both the cases, total 185 g of glucose
are administered in three divided doses. About 37, 74 and 74 g
glucose are served at breakfast, lunch and dinner, respectively, at
the rate of 3.7 g/min. The simulation is started from 6 AM. The
breakfast, lunch and dinner are served at 8 AM, 1 PM and 10 PM,
respectively, shown with the bar plot in the secondary axis of the
figures. The process noise covariance Q is assumed as
diag([1 [0.1]1 × 11]). Measurement data are synthetically generated
using MATLAB software. The measurement noise covariance is
assumed as R = 16. 

To estimate the states, the UKF has been implemented for both
the healthy persons and DM patients. Later on the efficacy of the
UKF is compared with the CQKF to estimate the states for normal
individuals only. The filters are initialised from a Gaussian
distribution with the mean values provided in Table 2, and initial
error covariance P0 =

Table 2 Initialisation of truths and filters
Parameters Normal Type II DM Units
stomach solid glucose (Qsto1) 0 0 g
stomach liquid glucose (Qsto2) 0 0 g
glucose in intestine (Qgut) 0 0 mg
plasma glucose concentration (Gp) 75.18 181.47 mg/dl
new insulin production (Y) 0 0 pmol/l/m
insulin in portal vein (Ipo) 6.04 6.38 pmol/kg
insulin delay (Id) 25.56 59.88 pmol/l
insulin in hepatic vein (I1) 25.56 59.88 pmol/l
insulin in liver (Il) 4.57 5.95 pmol/kg
insulin in plasma (Ip) 25.56 59.88 pmol/l
tissue glucose (Gt) 106.16 144.46 mg/kg
interstitial insulin (X) 0 0 pmol/l
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diag([4002, 0.1, 0.1, 0.1, 2002, 0.3, 100, 10, 10, 30, 0.1, 0.5]). The
sampling time of the state estimators is taken as 1 min. As the
filters start from 6 AM after overnight fasting, initial glucose mass
in stomach and intestine are taken as 0. The dimension of the
system is 12, so there are 25 numbers of sigma points and weights
are taken in case of UKF and 48 numbers of points are taken in
case of CQKF.

Figs. 2a–c represent the truth and estimated solid and liquid
glucose masses in stomach and glucose mass in intestine for both,
the healthy persons and DM patients. The figures show that the

estimated values follow the truth. It is observed that after having a
glucose meal there is no difference in rate of chyme formation in
stomach in case of diabetic patients and normal people. It is
justified, because the food degradation in stomach does not depend
on the plasma glucose or insulin concentration. Once the chyme is
formed in the stomach, it is absorbed in the plasma following its
transfer into the duodenum. Chronic elevated blood glucose level
causes the formation of glycated haemoglobin (HbA1c) and its
deposition in capillaries of body tissues including gastric epithelial
which further provokes the necrosis of corresponding tissues [2].
So, the autonomic reflex of gastro-intestinal track is lost along with
swelling in small intestine, which collectively called diabetic
gastropathy [38]. As a consequence, the absorption of glucose from
the intestine is delayed in chronic type II DM patients, that is,
reflected in Fig 2c. 

Figs. 3a and b represent the truth and estimated plasma and
tissue glucose for healthy human beings as well as DM patients. It
is observed that in both the cases the estimator tracks the truth.
Insulin reduces plasma glucose by means of its transportation to
liver, fat cells and striated muscle for utilisation as well as
promoting its utilisation and inhibiting endogenous glucose
production in liver. So, plasma insulin concentration is a rate
limiting step for glucose transportation in muscle and fat cells and
glucose utilisation in liver. In type II DM, the insulin
responsiveness is impaired. Consequently, the plasma glucose
concentration is increased markedly. The intervention of insulin is
essential to use the glucose by various body tissues. When insulin
sensitivity is impaired, the glucose uses by liver and skeletal
muscle are interrupted. So, overall tissue glucose mass becomes
high for chronic DM patients. This fact is reflected in figures. 

Figs. 4a and b show the phases of new insulin production and
delayed insulin secretion after meal intake. Insulin mass in portal
vein and liver, insulin concentrations in hepatic vein, plasma and
interstitial fluid are plotted in Figs. 5a–e. The estimator tracks the
truth well. Insulin levels in portal vein, liver, hepatic vein and
plasma for DM patients are maintained above normal basal range
in compensation to insulin resistance. It is known that insulin is
secreted in two phases in response to oral glucose administration.
Glucose stimulates the secretion of glucagon like peptide-1 and
glucagon such as insulinotrophic peptide from gut, which stimulate
the release of one fifth of the stored insulin from pancreas. The
remaining stored insulin and newly synthesised insulin are secreted
in the delayed phase in response to glucose absorption. The first
phase of insulin secretion is impaired in case of the patients,
persisting glucose level very high in plasma for long times.
However, delayed insulin secretion remains unaffected in the
disease condition. These figures support the biological facts. 

Fig. 2  Estimation of glucose distributions in gastro-intestinal track by the
UKF
(a) Solid glucose mass in stomach, (b) Liquid glucose mass in stomach, (c) Glucose in
intestine

 

Fig. 3  Estimation of glucose distributions in body by the UKF
(a) Plasma glucose concentration (b) Tissue glucose mass

 

Fig. 4  Estimation insulin production and secretions by β cells, in two
phases after oral glucose intake, by the UKF
(a) New insulin production after meal, (b) Delayed insulin secretion
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To compare the efficacy of two filters, we calculate the RMSE.
The RMSE of the state, x at any instant k out of M MC runs is
defined as RMSEk = (1/M)∑ j = 1

M (xj, k − x^ j, k)
2. RMSEs of the

tissue glucose mass, the insulin production and secretion by the β

cells and the insulin levels in the portal vein and hepatic vein are
plotted in Figs. 6–8, respectively. From RMSEs, it can be seen that
both the filters converge to the truths successfully. However, the
rate of convergence is little high for the CQKF. As both the filters
show similar RMSEs for other states, so we did not include them as
figures. The relative computational times of the two filters are
given in Table 3. The computational time of the CQKF is almost
double than that of the UKF. 

5 Conclusion
In this paper, we proposed a methodology to estimate several
biological parameters related to DM using only plasma glucose
measurement. The proposed methodology combines the glucose–
insulin homoeostasis model and plasma glucose measurement with

Fig. 5  Estimation of insulin secretions by the UKF
(a) Insulin mass in portal vein, (b) Insulin mass in liver, (c) Insulin concentration in
hepatic vein, (d) Plasma insulin concentration, (e) Insulin concentration in interstitial
fluid

 

Fig. 6  RMSE of estimation of glucose mass in tissue
 

Fig. 7  RMSE of estimation of insulin secretions in two phases after oral
glucose intake
(a) RMSE of estimation of new insulin production after meal, (b) RMSE of estimation
of delayed insulin secretion

 

Fig. 8  RMSE of estimation of insulin secretion in biological compartments
(a) RMSE of estimation of insulin mass in portal vein, (b) RMSE of estimation of
insulin concentration in hepatic vein
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the non-linear Bayesian filters. It is assumed that only solid glucose
is taken in oral route with a specific rate for a certain time. It is
observed that both the filters converge to the truths successfully.
However, the convergence rate is little high for the CQKF. On the
contrary, the execution time for the CQKF is higher than the UKF.
If the designer is ready to afford the higher computational time, the
CQKF may be implemented. The UKF can also be implemented as
only initial few minutes after instalment the estimation error is
little high. Few minutes after installation, the UKF will converge to
truth value and keep on following as long as the algorithm is not
reset or the hardware is not removed from the patients’ body.

Using the proposed method, health care professionals could
know about the variation of several biological parameters without
actually measuring them. This would help them to take proper
decision in managing the DM. Furthermore, the instantaneous
values of the biological parameters will help the AP to calculate
instantaneous dose of insulin, delivered through insulin pump.

The results presented in this paper are simulated with MATLAB
software. However, in real-time implementation, the programme
must be embedded with hardware. The developed code can be
written in hardware description language and it can be burned on a
chip. The measurements will be stored in a buffer memory. The
algorithm (implemented on hardware) will read the buffer and
execute the programme. The hardware resources (which include
memory, processors etc.) must be adequate to support the execution
of the algorithm on hardware platform.
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