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Abstract

Pseudomonas aeruginosa, a main cause of human infection, can gain resistance to the anti-

biotic aztreonam through a mutation in NalD, a transcriptional repressor of cellular efflux.

Here we combine computational analysis of clinical isolates, transcriptomics, metabolic

modeling and experimental validation to find a strong association between NalD mutations

and resistance to aztreonam—as well as resistance to other antibiotics—across P. aerugi-

nosa isolated from different patients. A detailed analysis of one patient’s timeline shows how

this mutation can emerge in vivo and drive rapid evolution of resistance while the patient

received cancer treatment, a bone marrow transplantation, and antibiotics up to the point of

causing the patient’s death. Transcriptomics analysis confirmed the primary mechanism of

NalD action—a loss-of-function mutation that caused constitutive overexpression of the

MexAB-OprM efflux system—which lead to aztreonam resistance but, surprisingly, had no

fitness cost in the absence of the antibiotic. We constrained a genome-scale metabolic

model using the transcriptomics data to investigate changes beyond the primary mechanism

of resistance, including adaptations in major metabolic pathways and membrane transport

concurrent with aztreonam resistance, which may explain the lack of a fitness cost. We pro-

pose that metabolic adaptations may allow resistance mutations to endure in the absence of

antibiotics and could be targeted by future therapies against antibiotic resistant pathogens.

Author summary

Our incomplete understanding of complex molecular networks, the collateral effects of

resistance mutations, and unknown functions in bacterial genomes hinders our ability to

prevent and treat antibiotic-resistant infections. Here we combined clinical, experimental

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1007562 December 20, 2019 1 / 25

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Yan J, Estanbouli H, Liao C, Kim W, Monk

JM, Rahman R, et al. (2019) Systems-level

analysis of NalD mutation, a recurrent driver of

rapid drug resistance in acute Pseudomonas

aeruginosa infection. PLoS Comput Biol 15(12):

e1007562. https://doi.org/10.1371/journal.

pcbi.1007562

Editor: Kiran Raosaheb Patil, EMBL-Heidelberg,

GERMANY

Received: May 17, 2019

Accepted: November 23, 2019

Published: December 20, 2019

Copyright: © 2019 Yan et al. This is an open access

article distributed under the terms of the Creative

Commons Attribution License, which permits

unrestricted use, distribution, and reproduction in

any medium, provided the original author and

source are credited.

Data Availability Statement: The WGS data of

sepsis isolates have been deposited to the PATRIC

(Pathosystems Resource Integration Center)

database and available to public. Our RNAseq data

have been submitted to NCBI with SRA accession#

PRJNA501877. The Python code for our metabolic

analysis is accessible from https://github.com/

liaochen1988/Metabolic_analysis_clinical_

isolates_aztreonam_resistance.

http://orcid.org/0000-0001-6818-9688
http://orcid.org/0000-0002-3895-8949
http://orcid.org/0000-0003-4585-1872
http://orcid.org/0000-0003-3592-1689
https://doi.org/10.1371/journal.pcbi.1007562
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1007562&domain=pdf&date_stamp=2020-01-06
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1007562&domain=pdf&date_stamp=2020-01-06
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1007562&domain=pdf&date_stamp=2020-01-06
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1007562&domain=pdf&date_stamp=2020-01-06
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1007562&domain=pdf&date_stamp=2020-01-06
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1007562&domain=pdf&date_stamp=2020-01-06
https://doi.org/10.1371/journal.pcbi.1007562
https://doi.org/10.1371/journal.pcbi.1007562
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://github.com/liaochen1988/Metabolic_analysis_clinical_isolates_aztreonam_resistance
https://github.com/liaochen1988/Metabolic_analysis_clinical_isolates_aztreonam_resistance
https://github.com/liaochen1988/Metabolic_analysis_clinical_isolates_aztreonam_resistance


and computational approaches to investigate how a recurring loss-of-function mutation

in the transcriptional regulator NalD of Pseudomonas aeruginosa can confer antibiotic

resistance in patients acutely infected by this opportunistic pathogen, driving the rapid

evolution of resistance. Computational modeling revealed metabolic pathways that could

be involved in the pathogen’s response to the antibiotic resistance mutation, and which

may help offset a fitness cost in the absence of antibiotics. These results provide insights

on a recurrent driver of antibiotic resistance in a major human pathogen.

Introduction

The rise of antibiotic resistant bacteria is a major global problem [1,2]. Predicting, preventing

and treating antibiotic resistant infections present challenges that are best addressed with mul-

tidisciplinary approaches combining evolutionary, molecular and computational biology [3].

Bacteria can acquire resistance through horizontal gene transfer, but they can also repurpose

mechanisms they already possess. Chromosomal point mutations, in particular, enable rapid

rewiring of bacterial regulatory networks [4] and provide means to evolve antibiotic resistance

rapidly—a major risk for patients receiving therapy.

P. aeruginosa is a Gram-negative pathogen and a main cause of hospital-acquired infections

[5]. This pathogen is often studied in the context of chronic lung infections of cystic fibrosis

patients where infections can last decades; during that time patients receive frequent and

aggressive treatments that select for antibiotic resistance [6] and biofilm formation [7]. On the

other hand, P. aeruginosa causes acute infections in immune-compromised patients where

everything happens quicker [8,9]. Acute P. aeruginosa infection of cancer patients receiving

immuno-suppressive therapy for bone marrow transplantation, for example, has the highest

7-day mortality rate among all infections that afflict these patients [10]. The mechanisms driv-

ing evolution of P. aeruginosa resistance in vivo in acutely-infected patients—even as they

receive treatment—has arguably received less attention.

Aztreonam, a monobactam derivative of beta-lactams with low susceptibility to beta-lacta-

mases, is an important defense against Gram-negative bacteria including P. aeruginosa [11].

Its use in cystic fibrosis patients started in 2010 and has increased steadily since then [12]. But

recent work has shown that P. aeruginosa can acquire rapid resistance against aztreonam in
vitro, often through chromosomal mutations in one of 19 genes linked to overexpression

of efflux systems or on the cellular target of aztreonam [13]. These mutations reportedly

decreased in vitro growth rates in the absence of antibiotics, indicating an associated fitness

cost. Similar chromosomal mutations were also found in isolates from cystic fibrosis, which

highlights their clinical relevance for the treatment of P. aeruginosa chronic infections [13].

Could the same type of chromosomal mutations drive a rapid evolution of antibiotic resistance

in acutely infected patients, even as they receive antibiotic treatment? And if so, what system-

level changes enable the pathogen to thrive?

Here we present a comparative analysis across dozens of clinical isolates to show that

NalD—a transcriptional repressor of the MexAB-OprM efflux system—has the strongest asso-

ciation with aztreonam resistance in isolates from acutely infected patients. Then, we dissect

the case of one particular acutely-infected patient in whom aztreonam resistance evolved in
vivo during aztreonam therapy. We demonstrate that the resistance was acquired due to a loss-

of-function mutation in NalD and caused overexpression of the MexAB-OprM efflux pump

consistent with the known mechanism of resistance. However, we found no fitness cost in the

aztreonam-resistant strain in the absence of the drug comparing to its closest susceptible

P. aeruginosa drug resistance

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1007562 December 20, 2019 2 / 25

Funding: This work was supported by NSF award

MCB-1517002/NSF 13-520 to JBX and WQ, by the

National Institutes of Health grant U01 AI124275

and grant R01 AI137269 to JBX. The funders had

no role in study design, data collection and

analysis, decision to publish, or preparation of the

manuscript.

Competing interests: The authors have declared

that no competing interests exist.

https://doi.org/10.1371/journal.pcbi.1007562


isolate. By integrating a genome-scale metabolic model with transcriptomics data, we explored

whether the resistant strain has developed metabolic adaptations to compensate for the resis-

tance. The model revealed system-level changes beyond the primary mechanism of resistance

that included adaptations in major metabolic pathways, which may explain the lack of a fitness

cost. We discuss how understanding the metabolic adaptations that offset the fitness cost of

resistance may pave the way to future therapies against antibiotic resistant infections.

Results

Aztreonam resistance is associated with NalD mutation in acutely-infected

patients

To identify genomic features related to aztreonam resistance in patients acutely infected with

P. aeruginosa, we started by measuring the minimum inhibitory concentration (MIC) of

aztreonam in 31 P. aeruginosa isolates from cancer patients that we had previously sequenced

[14]. Plotting the MIC levels next to a phylogenetic tree constructed from the core genome of

the 31 isolates showed no discernable association between aztreonam MIC and phylogeny (Fig

1A). It is possible that the large genome-scale differences among the clinical isolates obscured

the relationship between causal genetic variants and the desired phenotype. Therefore, we

narrowed down the analysis to a smaller set of genes by focusing on the 19 genes where muta-

tions emerged recurrently in vitro under aztreonam selection [13]. We tested the association

between aztreonam MIC and the variation in the protein sequence coded by each of the 19

genes using a rank sum test (S1 Table). To our surprise, only one—NalD—passed the signifi-

cance test (p = 0.0046), and associated with a>2-fold increase in average MIC.

NalD is a transcriptional repressor of the efflux system MexAB-OprM and mutations in

NalD have been linked to multi-drug resistance, including to aztreonam [15,16]. However, the

other two regulators of MexAB-OprM mutated in experimental evolution [13], NalC and

MexR, were not significantly associated with aztreonam MIC in our clinical isolates (both with

p>0.5). We then tested all the known proteins in the MexAB-OprM pathway [15,17] including

the efflux pump coding proteins themselves (Fig 1B). Again, of the 7 proteins only NalD

passed the association test. To confirm the association further, we downloaded NalD

sequences of 126 P. aeruginosa isolates which had published aztreonam MIC values from the

PATRIC database [18]. This collection, which has isolates from many sources including acute

and chronic infections, showed again that NalD is significantly associated with aztreonam

resistance (p<0.01).

This robust association suggested that mutations in NalD are main drivers of parallel evolu-

tion of aztreonam resistance in multiple lineages of P. aeruginosa. We compared the NalD pro-

tein sequences among our 31 clinical isolates including three type strains of P. aeruginosa
(PA14, PAO1 and PA7). These NalD sequences are highly conserved, with only a few varia-

tions from the consensus (S1 Fig). Nonetheless, the strains that do vary from the consensus

tend to rank high in terms of aztreonam MIC. One of the most resistant isolates, X9820, carries

a copy of NalD with a deletion of residues 1~134 (>60% of the full length NalD) which plausi-

bly causes loss of NalD function. Three other strains tested (W70322, W60856 and the type

strain PA7) have mutations also in the 10th alpha helix of the protein’s structure, and two

strains (H27930, F23197) carry point mutation close to the C-terminus. Four strains (M55212,

F30658, W91452, W25637) have mutation T11N located in the first residue of the first alpha

helix, which likely impairs the DNA binding function of NalD.

Still, NalD variation alone explains only part of the aztreonam MIC. For example, two iso-

lates that have the top aztreonam MIC, T38079 and T6313, have the same NalD sequences as

the consensus (S1 Fig). Could variation in other transcriptional regulators explain aztreonam

P. aeruginosa drug resistance
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MIC? To address this question we comprehensively examined all annotated transcriptional

regulators (>300) in the P. aeruginosa genome [18]. Thirty-one of these regulators were signif-

icantly associated with aztreonam resistance according to the rank sum test, but NalD still

topped the list (Fig 1C).

Fig 1. Aztreonam resistance is associated with variation in NalD across independent clinical isolates from acute

P. aeruginosa infection. (A) Phylogenetic tree of isolates from acute infections of cancer patients reconstructed from

core genes, including the type strains PA14, PAO1 and PA7. The minimal inhibitory concertation (MIC) of the

aztreonam varies significantly across the phylogenetic tree, showing it is not a phylogenetically conserved trait. (B)

NalD protein is the only protein in the mexAB-oprM efflux pathway that is strongly associated with aztreonam MIC in

a rank sum test (���, p = 0.005). The table on the bottom shows the p-values for rank sum tests conducted on other

proteins known from the mexAB-oprM efflux system and its regulatory pathway. (C) Expanding the analysis to all the

transcriptional regulators encoded by the P. aeruginosa genome revealed 30 candidates whose protein sequences

variation were associated with aztreonam MIC (see S2 Table), but NalD remained the strongest correlate.

https://doi.org/10.1371/journal.pcbi.1007562.g001
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Evolution of P. aeruginosa aztreonam resistance within a patient

To detail the drastic effects of aztreonam resistance in vivo we analyzed isolates obtained from

a patient who died with an aztreonam resistant P. aeruginosa. The patient had been diagnosed

with pre B cell acute lymphoblastic leukemia and was admitted (day -10 relative to day of

transplantation) to Memorial Hospital for hematopoietic cell transplantation after undergoing

first chemo remission (Fig 2A). As standard of care, the intense conditioning regimen compro-

mises the patient’s immunity and can lead to life-threatening complications [19,20]. Therefore

routine antibiotic prophylaxis with vancomycin, ciprofloxacin and pip-tazobactam was

Fig 2. P. aeruginosa infection of a cancer patient hospitalized to receive hematopoietic cell transplantation evolved resistance to aztreonam in the

course of therapy. (A) Timeline shows clinical events: conditioning regimen (myeloablation), hematopoietic cell infusion, location in the hospital

(bone marrow transplantation unit [BMT] or intensive care unit [ICU]), the period of neutropenia, antibiotics administered, the day (relative to the day

of transplant, day 0) and body site of origin (rsw: rectal swab; spt: sputum; bld: blood) of the eight P. aeruginosa isolates analyzed here. (B) Antibiotic

resistance profiles of blood isolates measured by the clinical microbiology laboratory as the infection progressed; the profiles informed clinicians that

the infection was multi-drug-resistant but also that it was initially sensitive to aztreonam (isolates D+3bld, D+4bld and D+5bld). As the disease

progressed to become life-threatening sepsis, the patient was transferred to the ICU and was given aztreonam; however, the isolate D+7bld

demonstrated resistance to aztreonam. The patient died on day +8.

https://doi.org/10.1371/journal.pcbi.1007562.g002
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administered. This particular patient developed tachycardia on the day of stem cell infusion

(day 0), followed by fever one day later (day +1). Blood cultures were drawn and cefepime and

imipenem were administered to treat a plausible bacterial infection. On day +4 the patient

worsened and developed sepsis, requiring transfer to the intensive care unit (ICU). On day +5,

antimicrobials were changed to meropenem, amikacin and polymyxin. Blood cultures at this

time tested positive for P. aeruginosa with resistance to multiple antipseudomonal agents but

sensitive to aztreonam (Fig 2B). On day +6 the patient received aztreonam in addition to mer-

openem and avibactam as a last resort attempt to control the worsening infection. The

patient’s clinical condition deteriorated and the patient eventually expired from sepsis on

day +8.

To better understand the progression of aztreonam resistance, we tracked the origin of the

P. aeruginosa infection by retrospectively culturing the initial rectal swab (day -10) and addi-

tional swabs taken at days -3 and +4, as well as a sputum sample from day +7. All samples pro-

duced P. aeruginosa colonies (Fig 2A). In total, we obtained eight P. aeruginosa isolates from

this patient. We named those isolates by the number of days before (D-) or after (D+) the

transplantation followed by body sites where they were isolated (Fig 2A). Importantly, the

detection of P. aeruginosa on the day -10 rectal swab—obtained at the time of admission to the

hospital—indicated that the patient had carried P. aeruginosa asymptomatically in the gut

when entering the hospital. Of note, the patient’s pre-transplant care was delivered in another

country and no prior rectal swab samples were available to determine the duration of carriage.

We sequenced the whole genomes of eight aforementioned P. aeruginosa isolates (hereafter

called sepsis isolates as a group). To track whether the infection was originated from the

patient or acquired from the hospital, we constructed the phylogenetic tree with the sepsis iso-

lates and isolates from other cancer patients in the same hospital analyzed earlier [14], as well

as the three type strains PA14, PAO1 and PA7 (Fig 3A). The tree revealed that the eight sepsis

isolates belong to the PAO1 clade and are much more similar to each other than to any other

isolates obtained earlier from the same hospital. This supports the notion that the infection

progressed from a single clone that the patient harbored at the time of admission and was not

acquired after admission to Memorial Hospital.

A genome alignment analysis revealed that the eight genomes are remarkably similar to

each other (Fig 3B) with only a total of 12 unique allelic differences among them. We con-

firmed SNPs and small gaps using targeted (Sanger) sequencing (Materials and methods, S3

Table). Isolate D+4rsw is the most phylogenetically distinct strain among the sepsis isolates.

Isolates D+5bld and D-3rsw are identical to each other and harbor only 4 variations from the

ancestral alleles, which we inferred by using PAO1 as a reference. Among those variations are

two discrete insertions greater than 10kb. A BLAST search in NCBI linked one to a transposon

insertion (S6 Table) and another to a duplication of a region of its own genome encoding an

unclear pathway. There is also a deletion homologous to a phage insertion (S6 Table).

Notably, the 12 genetic differences found among the eight isolates showed no pattern of

association with either the time or the body site of isolation (Fig 3B), indicating that the P. aer-
uginosa population had diverged during colonization with multiple sub-clones coexisting at

the same time in a single patient. Similar patterns of within host diversification were reported

in other host-associated bacteria [21].

Mutation in NalD conferred aztreonam resistance

To understand better why many clinical isolates have mutations in NalD, we first confirmed

the mechanism of aztreonam resistance in the sepsis isolates. We conducted detailed measure-

ment of aztreonam MIC for the eight sepsis isolates (Fig 3C, S1 Data). The aztreonam-resistant

P. aeruginosa drug resistance
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D+7bld isolate displayed a higher MIC (between 8–12μg/mL) than the other 7 sepsis isolates

(<8μg/mL) consistent with the clinical report (Fig 2). However, D+7bld was not the isolate

with the highest MIC when compared to the expanded collection comprising isolates from

other cancer patients and the type strains PAO1, PA14 and PA7 (Fig 3C). Two isolates, X9820

and T38079, had MICs higher than 12μg/mL, the highest concentration tested. PA7, a type

strain known for its resistance to a broad spectrum of antibiotics [22], showed similar

Fig 3. Whole-genome sequencing of eight P. aeruginosa isolates pinpointed the mutation NalDF198L responsible for aztreonam resistance

detected one day before the patient died. (A) A genome-based phylogenetic tree shows that the eight sepsis isolates are highly related to each other

compared to other clinical isolates and type strains. (B) Genomic analysis revealed that the aztreonam-resistant isolate (D+7bld) had only two unique

variations compared to aztreonam-sensitive isolates. Vertical dashed lines highlight the common presence of a given variation across multiple isolates.

(C) Aztreonam MIC confirmed the clinical laboratory results for the eight sepsis isolates. (D) Experimental validation in PA14 showed that mutation in

NalD but not in peg.4653 (PA14_50010) confers aztreonam resistance. “-”and “+” denote absence or presence of mutation found in D+7bld; “Δ”

denotes deletion of the 10th alpha helix in NalD protein. (��, p-value<0.01).

https://doi.org/10.1371/journal.pcbi.1007562.g003
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aztreonam MIC to the 7 sepsis isolates that were considered clinically susceptible to that drug.

The two widely used laboratory strains, PAO1 and PA14, had very low MICs.

The aztreonam-resistant sepsis isolate D+7bld has only two genetic variations from its most

closely related isolates, D+5bld and D-3rsw. One of those two mutations is a 10bp deletion in a

dehydrogenase of unclear function. To determine if this mutation alone could have increased

P. aeruginosa resistance to aztreonam we introduced the same 10bp deletion in the corre-

sponding dehydrogenase gene (PA14_50010, or peg.4653 in D+7bld) in the laboratory strain

PA14 (Materials and methods, S4 Table). This mutation did not increase aztreonam MIC

(Fig 3D, S2 Data).

The other mutation was a point mutation F198L found in NalD, a mutation that has not

been reported nor selected through in vitro experiments before [13]. To confirm that this

mutation alone could have caused aztreonam resistance we engineered the same NalDF198L

mutation into PA14 and the MIC increased 3-fold from 4μg/mL to 12μg/mL, a MIC similar to

the MIC of the terminal sepsis isolate D+7bld (Fig 3D). This confirmed that the NalDF198L

mutation alone is sufficient for the observed aztreonam resistance in D+7bld, and is consistent

with our finding that NalD mutation can increase aztreonam MIC on average by >2-fold

(Fig 1B).

NalD variation linked to multi-drug resistance

Our data suggests that NalD is a recurrent driver for aztreonam resistance in P. aeruginosa
acute infection. NalD is not the only transcriptional regulator where mutations can drive anti-

biotic resistance. In cystic fibrosis patients treated with ciprofloxacin and azithromycin during

chronic P. aeruginosa infection, mutations accumulate in transcriptional regulator NfxB,

which negatively regulates another efflux pump, MexCD-OprJ [23]. Can mutations found in

transcriptional regulators be used to predict the antibiotic resistance of a P. aeruginosa isolate?

To address this question we posed two related but more specific questions: First, is there a way

to predict aztreonam resistance from sequence variation in all transcription factors? Second,

does NalD variation alone predict resistance to other antibiotics besides aztreonam?

To answer the first question, we used a machine learning approach called LASSO (least

absolute shrinkage and selection operator) [24]. We checked if this method could select tran-

scriptional regulators based on their sequence variation to explain the aztreonam MIC data in

our P. aeruginosa acute infection isolates. The LASSO produced a model where only two tran-

scription factors (out of>200) explained more than 60% of variation in aztreonam MIC (R2 =

0.65, Fig 4A): NalD and PA14_37120, a probable LysR-type transcriptional factor. As expected,

the coefficient for NalD was positive, implying that mutations in NalD tend to increase aztreo-

nam MIC and therefore confer aztreonam resistance by>2x. By contrast, PA14_37120 had a

negative coefficient, indicating that isolates that contain PA14_37120 different from the con-

sensus have lower aztreonam MIC and, therefore, tend to be more sensitive to aztreonam. The

negative relationship seems to be common for LysR-type proteins which are positive regulators

of enzymes that degrade antibiotics [25], suggesting that this specific type of transcriptional

factors could potentially be explored as a target to sensitize P. aeruginosa to aztreonam.

To answer the second question, we measured the sensitivities of each P. aeruginosa acute

infection isolate to a panel of eight antibiotics from several classes (ciprofloxacin, gentamicin,

aztreonam, chloramphenicol, ampicillin, tetracycline, meropenem, cefepime) and quantified

the degree of multi-drug resistance by combining those sensitivity values into a multi-drug

resistance index (Materials and methods, Fig 4B, S3 Data). Notably, the group of eight sepsis

isolates showed the highest multi-drug resistance index among all strains. A LASSO analysis

identified six transcriptional regulators that combinatorically explain more than 80% of the

P. aeruginosa drug resistance
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variation (R2 = 0.85) in the multi-drug resistance index (Fig 4C, S7 Table). Strikingly, NalD

arose again as a strong contributor to this signature. To evaluate the contribution of NalD to

the resistance to drugs other than aztreonam, we removed aztreonam from the multi-drug

resistance index and re-ran LASSO regression (S4 Fig). NalD remained an important contrib-

utor to this multi-drug resistance signature, suggesting that mutation in this transcription fac-

tor is relevant for general resistance, not just to aztreonam. These results agree with the broad

substrate specificity of the MexAB-OprM efflux system [26] and with a previous finding that

Fig 4. NalD mutation contributes to a general signature of antibiotic resistance. (A) A signature of aztreonam resistance obtained with LASSO

regression shows only two transcriptional regulators, including NalD, and explains>60% of the variation in aztreonam MIC. The coefficients have

units of fold-change. (B) Antibiotic inhibitions zones were measured using the disk assay for 8 antibiotics from several classes. The inhibition zone

indices (shows as normalized areas of inhibition disk) show that the 8 sepsis isolates are resistant to multiple antibiotics. A resistance index computed

from combining the negative values of the inhibition zone indices shows that the 8 sepsis isolates rank higher in multi-drug resistant than any other

isolate tested. (C) The signature of multi-antibiotic resistance has six transcriptional regulators, including NalD, and explains>80% of the variation in

the multi-drug resistance index. The coefficients have units of integrated fold-change across all the 8 antibiotics.

https://doi.org/10.1371/journal.pcbi.1007562.g004
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aztreonam selection can result in collateral resistance to antibiotics including tobramycin,

colistin and ciprofloxacin [13]. In addition, a transposon mutant in another regulator identi-

fied by our LASSO analysis but with negative coefficient, GlmR, was hypersusceptible to a

range of antibiotics in P. aeruginosa strain PAO1 [27], suggesting its important role in the

development of multi-drug resistance.

NalD structure indicates mechanism of efflux upregulation

To investigate how the NalDF198L mutation alters NalD protein function, we studied a high-

resolution crystal structure of NalD protein from P. aeruginosa PAO1 (PDB id: 5daj) [28],

which has the same sequence as the NalD of D+7bld except for the mutation identified in this

study. Structural analysis showed that the residue F198 lies in the 10th alpha helix, which

locates in the interface of the NalD dimer (Fig 5A). This residue is close to two other residues

in tertiary structure: 205W and 89Y (Fig 5B). All of these three residues have aromatic rings

and the interaction between them could be strong, such as pi-stacking, and stabilize the 10th

Fig 5. Molecular details of mechanism of acquired aztreonam resistance in the sepsis patient infected with P.

aeruginosa. (A) 3D structure of NalD dimer (PDB id: 5daj) with residue 198F (phenylalanine) shown as stick model.

One copy of NalD is rainbow colored, while the other is in gray. The 10th helix is shown in red. (B) A closer look of

residue 198F and possible interaction with two nearby aromatic residues, 89Y (tyrosin) and 205W (tryptophan). Those

three residues are close together and could have aromatic interactions or a possible hydrogen bond (3.2 Å) between

198F and 89Y. 198F also aligns well with 205W, both of which have ring structure and could form a displaced pi

stacking that stabilizes the NalD structure (3). (C) Prediction of mutation effect based on NalD structure. The

mutation F198L would widen the distance between carbon groups and lose the pi-pi interaction, which could

ultimately destabilize NalD dimerization. (D) Wild-type NalD dimer represses transcription of mexAB-oprM operon.

(E) The mutation NalDF198L could interfere with dimerization, and de-repress transcription. (F) MexAB and OprM

form an anti-porter system that exports aztreonam, increasing resistance [29].

https://doi.org/10.1371/journal.pcbi.1007562.g005
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alpha helix facing the dimerization interface of NalD. Changing the residue 198 from F into L

(Fig 5C) likely impairs these aromatic interactions and destabilizes the 10th alpha helix,

impacting dimerization and further de-repressing mexAB-oprM (Fig 5D–5F).

To validate this model, we deleted the 10th alpha helix of NalD in PA14 without shifting its

reading frame (Materials and methods, S4 Table). The deletion increased aztreonam resistance

of PA14 to the same level of the PA14 carrying NalDF198L and the sepsis isolate D+7bld

(Fig 3D). Therefore, the mutation NalDF198L could indeed have conferred aztreonam resis-

tance by loss of function and release of mexAB-oprM expression.

Acquisition of aztreonam resistance shows no fitness cost

The D+7bld isolates acquired aztreonam resistance through a point mutation in NalD, which

possibly derepressed the expression of an efflux system. Would this mutation carry a fitness

cost in the absence of the antibiotic? To answer this question, we first cultured D+7bld and

D+5bld individually in vitro without aztreonam, where they showed the same growth rate (S2

Fig). We then asked if the D+7bld would be outcompeted by D+5bld when cultured together.

In a competition experiment, we initially mixed D+7bld:D+5bld (1:1000) in a liquid media

without aztreonam (S1 Text); we observed no change in that initial frequency, which con-

firmed that there is no fitness cost in the absence of the antibiotic (S3 Fig). By contrast, in the

presence of aztreonam the NalD mutation confers a huge competitive advantage: when 2μg/

mL or 4μg/mL aztreonam was added to the mixed population, the frequency of D+7bld

increased ~10 fold and>200 fold respectively (S3 Fig). These results suggest that the NalD

mutation in the absence of aztreonam either did not have direct fitness cost or the cost has

been compensated for by other mechanisms. Possible mechanisms included the secondary

10bp deletion in a dehydrogenase, a non-mutational mechanism that changed bacterial physi-

ology globally or through changes in specific pathways.

To understand how the NalD mutation conferred resistance without a fitness cost, we com-

pared the transcriptome of the NalD-mutated D+7bld to the susceptible D-3rsw, which dif-

fered from D+7bld by only two mutations. During exponential growth without antibiotics,

only four genes were significantly differentially-expressed between those two isolates after

multiple hypothesis correction (absolute log2-fold change�0.5 and adjusted p-value�0.05).

Two of those genes were mexB and oprM (Fig 6A), the genes coding for the inner and outer

membrane components of the efflux pump. We then analyzed the transcriptomes of both iso-

lates in the presence of different concentrations of aztreonam. Hundreds of genes showed sig-

nificantly differential expression, as expected from the stress of antibiotic exposure [30]. D

+7bld had less differentially-expressed genes than D-3rsw (136 compared to 300) at the sub-

lethal aztreonam concentration of 2μg/mL. When the concentration of aztreonam increased to

4μg/mL—a level lethal to D-3rsw but not to D+7bld—the differentially-expressed genes in D

+7bld increased to 341, a level of response that is similar to D-3rsw at 2μg/mL aztreonam (Fig

6A). A closer examination of the mexAB-oprM operon showed that none of the operon genes

changed their expressions in D-3rsw exposed to aztreonam (Fig 6B). The efflux system was,

however, over-expressed in D+7bld for all antibiotic concentrations (Fig 6B). Our transcrip-

tomic data support the canonical model whereby the mutation in NalD released the repression

of the mexAB-oprM operon regardless whether aztreonam was added to the medium or not

[15] (Fig 5E).

We clustered expression levels of genes that are differentially expressed in at least one con-

dition relative to the reference (D-3rsw, no aztreonam). The transcriptome of D+7bld was not

much different from the D-3rsw in the absence of aztreonam. The overall expression profiles

compared between D+7bld at 4μg/mL and D-3rsw at 2μg/mL of aztreonam were indeed
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similar to each other (Fig 6C), suggesting that the overexpression of mexAB-oprM had a damp-

ening effect on the response to the antibiotic. The profile of D+7bld at 2μg/mL lies in between

the profile of no aztreonam and of 4μg/mL aztreonam, further supporting that aztreonam

induces a dose-dependent cellular response.

Integration of metabolic network model with transcriptomics data

accurately predicts bacterial growth

Among the differently transcribed genes identified above, the top 3 groups of 107 functionally

annotated genes are “transport and metabolism” (73 genes), “energy production and conver-

sion” (54 genes), and “metabolism” (43 genes) (Fig 6C, S4 Data), suggesting a link between

bacterial metabolism and aztreonam resistance. Metabolic fluxes can be impacted by the tran-

scription of metabolic genes [31]. Therefore we sought to infer flux changes on the basis of

gene expression changes using a computational model of the metabolic network. To study our

Fig 6. RNA-seq analysis shows that the aztreonam-resistant isolate D+7bld up-regulates the mexAB-oprM efflux system and attenuates response

to aztreonam stress. (A) We compared the transcriptomes to reference isolate D-3rsw at 0μg/mL of aztreonam and found hundreds of differentially

expressed genes. (B) The up-regulation of the mexAB-oprM efflux system in D+7bld supported that the NalD mutation released the transcriptional

repression of mexAB-oprM. (C) The transcriptome of D+7bld at 4μg/mL aztreonam resembled the transcriptome of the aztreonam sensitive D-3rsw at

half that dose (2μg/mL), confirming that the aztreonam resistance allows the strain to sustain higher levels of antibiotic challenge. azt, aztreonam. �, p-

value<0.05.

https://doi.org/10.1371/journal.pcbi.1007562.g006
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sepsis isolates, we used a high-quality genome-scale model of Pseudomonas metabolism,

iJN1411 [32], which contains 1411 gene products and 2826 reactions. By combining the RNA-

seq data with the model, we aimed to explore how differential gene expression redistributed

the metabolic fluxes and pathway usages.

The method for integrating transcriptomic data with the iJN1411 model involves two major

steps (Materials and methods): (1) building a reference model for D-3rsw at 0μg/mL aztreo-

nam using transcriptomics data in the reference condition, and (2) modifying the reference

model to accommodate gene expression changes measured for D-3rsw at 2μg/mL and D+7bld

at 0, 2, 4μg/mL aztreonam. Under the reference condition, we approximated the flux bounds

of reactions in the iJN1411 model by the optimal flux distribution that is most consistent with

the mRNA levels in that condition, thereby constraining the metabolic solution space (i.e.,

range of feasible steady-state fluxes) to represent the actual metabolic behavior implied by

data. To build metabolic models in other conditions, we incorporated the transcriptional dif-

ferences between these conditions and the reference condition by multiplying the recon-

structed flux bounds of each reaction in the reference model by expression fold-change values

of corresponding genes associated with each reaction.

The resulting 5 metabolic models were validated by comparing the growth rates measured

experimentally at various aztreonam concentrations (Fig 7A) to model predictions (Fig 7B).

Simulations using flux sampling showed that the distributions of biomass flux (i.e., flux

through biomass production reaction) between D-3rsw and D+7bld in the absence of aztreo-

nam overlapped, suggesting that the growth capacity of the resistant strain is likely uncompro-

mised by the development of aztreonam resistance. This is consistent with our finding above

that the sensitive strain did not outcompete the resistant strain in vitro. However, their bio-

mass flux distributions with aztreonam present were truncated and heavily skewed to the left,

indicating that the transcriptomic responses to aztreonam heavily restrict their growth rates.

Using biomass as a proxy of bacterial growth, we showed that the ratios of predicted mean bio-

mass flux (Fig 7C, red bars) agree qualitatively with the experimentally measured growth rates

(Fig 7C, blue bars).

Modeling-based analysis reveals metabolic adaptations in the resistant

strain

Using the validated models, we first assessed the metabolic flux changes across the conditions

of different strains and aztreonam concentrations (Fig 8A). For each condition, we calculated

Fig 7. Validation of metabolic model using experimental growth data. (A) Experimental growth curves of both sensitive (D-3rsw) and resistant (D

+7bld) P. aeruginosa strains at various aztreonam concentrations (μg/mL). (B) Steady state distribution of biomass flux predicted from metabolic

models for the same experimental conditions (except for D-3rsw at 4μg/mL aztreonam). PDF: probability density function. (C) Comparison of the

measured growth rate (blue bars) with the model predictions (red bars). The measured growth rates were obtained by fitting an exponential growth

model to the exponential phase of the growth curves shown in (A). The predicted growth rates were approximated from the mean of the biomass flux

distributions shown in (B). The growth rates are relative to that of the sensitive strain in the absence of aztreonam (S0). Error bars: standard deviation.

https://doi.org/10.1371/journal.pcbi.1007562.g007
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the flux through each reaction as the median of its distribution obtained by uniformly sam-

pling the corresponding solution space 100,000 times. This is different from a typical flux bal-

ance analysis which optimizes a presumed objective function. We chose this method because

biological organisms operate under multiple competing objectives related to fitness (e.g., maxi-

mal growth, fast adaptive response) [33]. Antibiotic challenge may introduce new objectives,

making any single objective function inappropriate to describe the metabolic goal of bacterial

cells.

Metabolic flux changes shown above can be induced by either acquiring mutations, adding

aztreonam to the media, or combination of both. In the absence of aztreonam, the resistant

strain only displayed 12% change of metabolic fluxes relative to the sensitive strain (absolute

flux value >10−3, absolute log2-fold change�0.5 and adjusted p-value <0.05, Materials and

methods). Adding aztreonam induced a system-wide flux rearrangement for both strains: over

50% of all 844 reactions with active fluxes were significantly up- or down-regulated. Our result

thus suggests a much weaker metabolic effects caused by mutations compared to aztreonam,

which agrees with transcriptomic data and could explain the lack of fitness cost of D+7bld

observed in experiments. A Venn diagram (Fig 8B) illustrates the overlaps of reactions whose

flux levels were significantly changed by mutations alone (flux changes between the sensitive

and resistant strain in the absence of aztreonam), by aztreonam alone (flux changes in the

Fig 8. Evolved metabolic-level adaptations in the aztreonam-resistant strain. (A) Metabolic flux changes relative to

the reference condition S0 (D-3rsw, no aztreonam). (B) Venn diagram showing the overlap between reactions whose

flux levels significantly altered by aztreonam alone, mutations alone, and their combination. Among all 48 reactions

constitutively modulated by mutations (i.e., constitutive mutation effects), 30 are directly related to aztreonam

resistance (because aztreonam can induce their responses) and 18 are indirectly related. (C) Grouping of the 48

constitutively modulated reactions by pathways they belong to. (D) Expression of eda serves as a bottleneck to the flux

through the Entner-Doudoroff (ED) pathway (red arrows). The connected Embden-Meyerhof-Parnas (EMP) pathway

(green arrows) and pentose phosphate (PP) pathway (blue arrows), as well as the relative expression changes of the

major genes in the three pathways (heatmap) are also shown. Tpi: triose phosphate isomerase; fba: fructose-

1,6-biphosphate aldolase; fbp: fructose-1,6-biphosphatase; pgi: glucose-6-phosphaate isomerase; zwf: glucose-

6-phosphate dehydrogenase; pgl: 6-phosphogluconolactonase; edd: phosphogluconate dehydratase; eda: 2-dehydro-

3-deoxy-phosphogluconate aldolase; DHAP: dihydroxyacetone phosphate: FDP: D-fructose-1,6-biphosphate; F6P:

fructose-6-phosphate; G6P: glucose-6-phosphate; PGL: 6-phospho-D-glucono-1,5-lactone; 6PG: 6-phospho-D-

gluconate; KPDG: 2-dehydro-3-deoxy-6-phospho-D-gluconate; G3P: glyceraldehyde 3-phosphate; PYR: pyruvate.

https://doi.org/10.1371/journal.pcbi.1007562.g008
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sensitive strain between w/ and w/o aztreonam), as well as by their combination (flux changes

between the resistant strain with aztreonam and the sensitive strain without aztreonam). We

found 403 reactions affected by both factors (i.e., the combination effects), among which 335

can be perturbed by aztreonam as the sole factor, indicating again that aztreonam causes the

majority of flux changes when both factors are present.

The Venn diagram also reveals how the resistant strain rewired metabolic fluxes as second-

ary effects of the NalD mutation beyond its primary function that releases MexAB-OprM

efflux pump. There are 48 reactions in total (30 constitutive mutation effects, and 18 aztreo-

nam resistance effects) displaying significant flux changes between the resistant and sensitive

strain regardless of the presence and concentration of aztreonam (Fig 8B, S5 Data), which indi-

cates that those 48 reactions are not directly related to aztreonam triggered growth defects as

the rest reactions do. These constitutive metabolic adaptations include the secondary mutation

effects that may or may not be related to aztreonam resistance. 30 reactions that are also

affected by aztreonam in the sensitive strain likely provide the mechanisms that enable P. aeru-
ginosa to resist the action of aztreonam. They were all downregulations and found in amino

acids, lipid, carbohydrate metabolism as well as membrane transport system (Fig 8C). This

finding is consistent with a previous study showing that aztreonam perturbed the metabolite

levels in the same pathways as in another Gram-negative, nosocomial pathogen Acinetobacter
baumannii [34]. The major identified reactions involved in amino acid metabolism are related

to branched-chain (BCAA: leucine, isoleucine and valine) and aromatic amino acids (AAA:

phenylalanine, tyrosine). Additionally, 4 out of 6 transport reactions are associated with uptake

of valine and phenylalanine, further linking transport and utilization of BCAA and AAA to

aztreonam resistance.

The other 18 reactions that are not affected by aztreonam in sensitive strain may suggest

mechanisms that do not contribute to the mechanism of resistance but compensate for its

associated fitness costs. They were all downregulated reactions as well, among which we found

two reactions (mediated by EDA and EDD) from the Entner-Doudoroff (ED) pathway (Fig

8D, red arrows) in carbohydrate metabolism. By examining the transcriptional level of

enzymes in the central carbon metabolism, we determined that it is eda, a gene encoding

KPDG (2-dehydro-3-deoxy-phosphogluconate) aldolase, but not any other enzyme-coding

genes, that acts as the bottleneck to the pathway flux in the resistance strain because its expres-

sion was constitutively downregulated by mutations regardless of aztreonam (Fig 8D).

Discussion

P. aeruginosa is a major pathogen with a large genome, and extensive genomic variation

among the strains in the same species. The high genomic diversity challenges our ability to pre-

dict clinically important phenotypes, particularly antibiotic resistance. Whole genome

sequencing of P. aeruginosa isolates from cystic fibrosis patients had already revealed adapta-

tions to the pressures experienced in the chronically-infected lung [6] and antibiotic therapy

[23] but the adaptations to the pressures experienced in acute infection remained less clear.

Acute infections may start when P. aeruginosa translocate from the environment, from

another patient or, as we have seen here, from asymptomatic colonization in the patient’s own

microbiome. Systems-level analyses can help us understand how these transitions shape P. aer-
uginosa physiology and impact its broad response to antibiotics. Here we used mathematical

models to assist in the interpretation of antibiotic resistance from sequenced genomes. Appli-

cation of these methods to predict antibiotic resistance in a clinical setting will likely require a

better understanding of genetic function and gene interaction networks beyond our present

knowledge. Evolution experiments conducted in the laboratory can help uncover some of
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these mechanisms, but such conditions are perhaps drastically different to those experienced

in human infection [35]. Here we show that specific clinical cases can help bridge the gap

between laboratory insights and clinical relevance.

We identified that recurrent mutation in NalD is associated with resistance to aztreonam

and to other antibiotics in patients acutely infected with P. aeruginosa. We dissected the case of

a multi-drug resistant strain that escaped from the patient’s gut microbiota into their blood-

stream, acquired the NalD mutation and ultimately killed the patient. The patient came to

Memorial Sloan Kettering (located in the USA) from another country, where use of antibiotics

without prescription is more common. Prior use of antibiotics likely explains the unusually

high antibiotic resistance of all isolates obtained from this patient (Fig 4B). The translocation of

the P. aeruginosa from an asymptomatic gut colonizer to the bloodstream agrees with previous

studies showing that disruption of the commensal gut microbiome with antibiotics increases

the chance of bloodstream infections by antibiotic resistant bacteria residing in the gut [36,37].

The molecular events we uncovered agree with the known mechanism where a NalD loss-

of-function mutation releases mexAB-oprM expression and confers resistance. The wild type

NalD responds to inducers such as novobiocin [28]. The strain D-3rsw, which carries the most

common (wild type) NalD sequence, did not increase mexAB-oprM expression in 2μg/mL of

aztreonam (Fig 6B), which suggests that NalD does not respond to aztreonam. It makes sense

in light of P. aeruginosa evolutionary history that the wild type NalD is unadapted to respond

to this antibiotic, which is a relatively recent synthetic drug [11–13] that was probably absent

in the evolutionary history of P. aeruginosa. Previous experiments had shown that loss of func-

tion in transcriptional regulators offers a quick way for bacteria to adapt to such new chal-

lenges [38]. Our data shows that the NalD point mutation can occur in a patient and cause a

rapid increase in drug resistance, even while a patient receives treatment.

The rapid adaptation of nosocomial pathogens often results from mutations in transcrip-

tional regulators [6,39–44]. This is perhaps expected: mutations in transcriptional regulators

provide the most dramatic and rapid means to change bacterial physiology [38]. Their rela-

tionship to antibiotic resistance may be less well understood [45], especially in acute infections

where disease progression and transmission can happen quickly, and the secondary effects of

mutations are often obscured by the primary effects and making them barely detectable. How-

ever, secondary effects can be critical: they can reduce the fitness cost of resistance mutations

and can even help provide collateral resistance to other antibiotics [29].

In this study, we investigated the secondary effects of the NalD mutation by integrating

metabolic modeling and transcriptomics data. Over the last decade, metabolic network analy-

sis that combines genome-scale metabolic models and omics data have been applied to study

antibiotic resistance in bacteria and to suggest therapeutic targets [46–50]. Although the

molecular (primary) function of the NalD mutation has been widely studied, our work adds to

our limited understanding of its secondary effects. Our method indicated 48 reactions that

may be constitutively downregulated in the aztreonam resistant strain. This is consistent with

a general notion that drug resistance is associated with reduced, rather than enhanced, cell

metabolism. We predicted that metabolic changes in the membrane transport and metabolism

of BCAA and AAA are directly connected to the development of aztreonam resistance. Previ-

ous studies have suggested that the carbon catabolite control system CbrAB/Crc regulates

BCAA uptake and utilization [51] as well as antibiotic resistance in P. aeruginosa [52–54].

Since channels that actively uptake amino acids can also transport antibiotics with sufficient

structural similarity (e.g., Escherichia coli glycine transport system can also uptake the antibi-

otic D-cycloserine [55]), aztreonam resistance can be possibly potentiated by decreasing drug

uptake through BCAA transporters via the CbrAB/Crc system, in addition to the efflux pro-

vided by the upregulated MexAB-OprM. Using a defined synthetic cystic fibrosis sputum
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medium, AAA were reported to induce biosynthesis of the Pseudomonas quinolone signal

(PQS) [56], a quorum-sensing signaling molecule that regulates up to 12% of the P. aeruginosa
genome [57]. A PQS mutant is more tolerant to ciprofloxacin than its wild-type [58], which

supports that downregulating the AAA pathway may protect P. aeruginosa from aztreonam by

reducing its PQS level.

We also predicted metabolic changes in ED pathway as a potential compensatory mecha-

nism that reduces costs associated with the NalD mutation. Normally, the ED pathway is alter-

native to glycolysis and catabolizes glucose to pyruvate. However, when growing on casamino

acids, P. aeruginosa must operate through gluconeogenesis to produce several essential metab-

olite precursors such as fructose-6-phosphate (FBP) and glucose-6-phosphate (G6P) for bio-

mass production. The gluconeogenic flux is funneled into the oxidative branch of the pentose

phosphate pathway and the ED pathway, forming a cyclic loop (known as the EDEMP cycle

[59] that starts and ends with pyruvate) (Fig 8D). The recycling of hexoses back to trioses

through the ED pathway can provide two potential compensatory mechanisms. First, it pro-

vides a reservoir flux and its downregulations can redirect the flux towards desired pathways.

For example, reduced flux through the ED pathway can compensate for decreased flux from

F6P to pentose phosphate pathway and biosynthesis of peptidoglycan, where the latter is the

direct target for aztreonam. However, this compensatory effect may be limited if the reservoir

flux is small. From another angle, a small ED pathway flux can rapidly become depleted in

adverse environmental conditions and thus possibly acts as a sensor to indicate the hardship of

the environment that P. aeruginosa faces. The functioning of the environment sensor will

require the cooperation from a flux-signaling metabolite, which translates the flux change to

change in metabolite level and stimulates specific pathways to combat the hardship [60]. The

potential distant regulatory role of ED pathway has been implicated in another human patho-

gen, Vibrio cholerae, where activation of the ED pathway leads to higher transcriptional levels

of the prime virulence genes [61].

Our computational investigation of P. aeruginosa metabolism generates new hypothesis for

future research but has noteworthy limitations. First, we used the metabolic model iJN1411

which was developed for P. putida, a species very close to P. aeruginosa. We chose this model

because of its outstanding quality: the model has 2826 reactions constructed from 409 citations

and 72% of the reactions are supported by at least one reference [26]. It is important to keep in

mind that the non-conserved pathways between those two species may lead to different meta-

bolic flux distribution. Nonetheless, we expect the effect of metabolism difference to be minor

because about 80% of the 1411 genes in model iJN1411 were covered by our transcriptomics.

Second, no matter how many times we sample the metabolic space in the reference model, it is

always possible that the optimal solution of highest consistency with gene expression may not

be unique and alternative solutions that are equally optimal can exist. Third, all methods that

use transcriptomics for metabolic modeling have a major limitation: metabolic flux and tran-

scriptomics are only loosely correlated. Metabolic fluxes depend not only on the mRNA levels

of the enzyme that catalyzes each reaction, but also on many factors including post-transcrip-

tional modulations and allosteric regulations [62,63]. In the future, these limitations could be

overcomed by a high-quality P. aeruginosa-specific metabolic model, assisted by metabolic

flux data to constrain solution space.

Materials and methods

Ethics statement

According to the NIH guide for Human Subjects Research, this work is “exempt from the

human subject’s regulations, category 4 (Exemption 4)” because it involves “only the use of
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secondary analysis of biological material/tissue/specimens or data not collected specifically for

this study” and “the specimens or data previously collected are de-identified for the purpose of

this study by someone involved in the research study. For example, your collaborator will pro-

vide you with aliquots of specimen that are no longer linked to the subject identifiers or you

are extracting clinical data from medical records without retaining the subject name or medi-

cal record number.”

Microbiological methods

Bacterial culture, gene mutagenesis and genomic sequencing were performed as previously

described [14] and more details are given in S1 Text. Primers are listed in S3 and S4 Tables.

Other detailed experimental methods including antibiotic resistance assay, bioinformatics and

transcriptomic assay are included in SI as well.

Aztreonam susceptibility test

In clinical lab, phenotypic antimicrobial susceptibility testing (AST) was performed by broth

microdilution using the Gram-Negative MIC Panel type 43 on the MicroScan WalkAway sys-

tem (Beckman Coulter) following overnight incubation and photometric determination of

bacterial growth. AST results of aztreonam for P. aeruginosa were interpreted using the Clini-

cal and Laboratory Standards Institute (CLSI) M100-S24 standards (MIC ug/ml� 8 suscepti-

ble; 16 intermediate;� 32 resistant).

Association between NalD variation and aztreonam MIC

The ranksum statistic test measures if strains with high variable NalD protein sequence would

have higher MIC than the strains with NalD similar to consensus sequence. NalD protein

sequences from P. aeruginosa isolates are aligned and consensus sequence is obtained using

Matlab bioinformatics toolbox. Protein variation is calculated by comparing each NalD to the

consensus protein sequence built from the collection. A median value of the sequence varia-

tion was used as a cutoff to group the strains into high various and low various group. The

MIC values in each group were then compared using ranksum test. Overall there is no cutoff

drawn for the MIC value.

Structural analysis of NalD

The 3D structure was obtained from protein data bank (PDB) [64] with ID 5daj [28]. The

structure analysis was done in Pymol (The PyMOL Molecular Graphics System, Version 2.0

Schrödinger, LLC.) with educational-Use license.

Statistical analysis and machine learning

All analyses were carried out using Matlab™ with the Statistics and Machine Learning toolbox.

Aztreonam MIC and standard errors of different strains were estimated using function fitlm
as:

MIC � 1þ Varstrain

Wilcoxon rank sum test was performed using function ranksum. Antibiotic disk assay data

were clustered using seqlinkage function based on pairwise distance (pdist). Elastic net regular-

ization (in lasso function) was used to select for transcriptional regulators to predict antibiotic

resistance with cross validation (cvpartition) and later to calculate the coefficient of selected

transcriptional regulators using fitlm. For RNAseq analysis, we use the DESeq2 package to call
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the differentially expressed genes by p-value adjusted with multiple hypotheses (Benjamini-

Hochberg method). For analyzing antibiotic disk diffusion, the diameter (D) of cleared zone

caused by each antibiotic was measured using imageJ. The inhibition zone index (I) for each

antibiotic was calculated across the strains as:

I ¼
X � �X

S

where S is the standard deviation of the data, X is the square of measured diameter D to repre-

sent the inhibition area.

Antibiotic resistance index (R) for strain j was calculated as: Rj = −SIi where i refers to anti-

biotics used in disk diffusion assay.

Integrative metabolic flux analysis

The boundary fluxes of the iJN1411 model were set to mimic environmental conditions in the

experiment: the uptake fluxes of all 20 amino acids except tryptophan were set to 1 (in any

unit) so all intracellular reactions have normalized fluxes relative to nutrient uptake.

To find the flux solution that has the highest consistency with gene expression data, we

implemented the iMAT algorithm [65], which formulated a mixed integer linear program-

ming (MILP) problem to maximize the total number of active reactions associated with highly

expressed genes (denoted by RH) and inactive reactions associated with lowly expressed genes

(denoted by RL) under a biomass constraint

maxv;yþ;y�
X

i2RH

ðyþi þ y�i Þ þ
X

i2RL

yþi ð1Þ

s.t.

S � v ¼ 0 ð2Þ

vmin � v � vmax ð3Þ

vi þ yþi ðvmin;i � �Þ � vmin;i for i 2 RH ð4Þ

vi þ y�i ðvmax;i þ �Þ � vmax;i for i 2 RH ð5Þ

vmin;ið1 � yþi Þ � vi � vmax;ið1 � yþi Þ for i 2 RL ð6Þ

yþi ; y
�

i 2 ½0; 1�

vbio � f � vmax;bio ð7Þ

S is the stoichiometric coefficient matrix of the iJN1411 model. v is a vector of metabolic flux,

and vmin and vmax are their lower and upper bounds obtained by flux variability analysis. As

suggested by [66], we used the top 25% and 75% gene expression thresholds to determine the

set of lowly (<25% quantile) and highly (>75% quantile) expressed reactions. For reactions

associated with multiple isozymes or one enzyme with multiple subunits, we determined their

corresponding transcription levels by replacing “and” and “or” operators with “min” and

“max” respectively in their gene-protein-reaction (GPR) rules. yþi and y�i are Boolean variables

to indicate the flux activity of the reaction i in its forward and reverse direction respectively:
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highly expressed reactions are active if yþi ¼ 1 or y�i ¼ 1 and lowly expressed reactions are

inactive if yþi ¼ 1. We chose � = 0.1, which is a positive threshold for flux activity of highly

expressed reactions: active reactions carry fluxes with absolute values equal or above �. vbio and

vmax,bio are the biomass flux and its maximum possible value respectively, and f is a parameter

that tunes the rigidity of the biomass constraint. We determined f = 0.95 from a trade-off anal-

ysis (S5 Fig), which chose a large value of f where the objective function remains near-optimal

but starts to have diminishing returns by increasing f further.

The reference model for D-3rsw in the absence of aztreonam was constructed by constrain-

ing the reaction in the iJN1411 model using the iMAT solution (viMAT). For any reaction i, we

imposed the following constraints on its flux bounds: 0� vi� viMAT,i for viMAT,i> 0, −viMAT,i

� vi� 0 for viMAT,i< 0, and vi = 0 for viMAT,i = 0. Metabolic models in other conditions were

constructed by modifying the flux bounds of reactions in the reference model based on gene

expression changes between these conditions and the reference condition, i.e., vmin,i! vmin,i �

ci, vmax,i! vmax,i � ci, where ci is the fold change in mRNA levels of genes associated with reac-

tion i.
Custom Python codes were developed with the COBRApy package [67] to carry out all met-

abolic flux modeling and simulations in the paper. Flux variability analysis and flux sampling

were performed using the built-in COBRApy function flux_variability_analysis and sample
respectively.

Supporting information

S1 Fig. Aztreonam resistance is associated with NalD mutation. (A) NalD protein align-

ments ordered by the value of minimum inhibitory concentration (MIC) of aztreonam

obtained for the corresponding isolate. None of the previously collected clinical isolates has

the same mutation as in D+7bld NalD (F198L). (B) The protein sequence of NalD is highly

conserved. The strains resistant to aztreonam tend to have mutations in NalD compared to the

strains susceptible to aztreonam. The one that is most resistant to aztreonam, X9820 has a dele-

tion of 134 amino acid residues at the beginning of NalD.

(TIF)

S2 Fig. Growth curve synchronization method for precise measurement of growth rate of

sepsis isolates D+5bld and D+7bld. The first column shows high-resolution growth curve of

serially diluted cell inoculum. The middle column shows aligned curves on the left side. The

last column on the right shows the determination of growth rate by linear fitting of time shift

against dilution. There is no measurable cost to fitness in vitro for the strain carrying the

aztreonam resistance mutation.

(TIF)

S3 Fig. D+7bld shows no fitness cost measured in direct competition with D+5bld in vitro
in the absence of aztreonam. Overnight competition between D+7bld and D+5bld cells in a

1:1000 initial rate is highly impacted by aztreonam concentration. When aztreonam is absent,

D+7bld frequency remains unchanged after competition with D+5bld cells. At the sublethal

aztreonam concentration of 2μg/mL D+7bld frequency increases, as expected, by ~10 fold. At

aztreonam concentration of 4μg/mL, which is above the MIC of D+5bld but not D+7bld, D

+7bld frequency increases more than 300 fold. (�� p<0.01).

(TIF)

S4 Fig. Variation in NalD and other transcriptional regulators could explain multiple drug

resistance excluding aztreonam. The 13 transcriptional regulators overall explains >90% of
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the variation in the multi-drug resistance index calculated from 7 antibiotics (excluding

aztreonam from Fig 4B). The coefficients have units of summarized fold-change across all the

7 antibiotics.

(TIF)

S5 Fig. Trade-off between maximizing consistency between metabolic flux and gene expres-

sion and maximizing biomass production in the iMAT algorithm. The consistency score in

the y axis is equal to the value of the objective function, which is given by Eq (1) in the main

text. The parameter f in the x axis imposes a biomass constraint that requires the ratio of bio-

mass flux to its maximum possible value is at least f. f = 0.95 is a point of diminishing return that

increasing the minimum biomass flux return will lead to dramatic drop in the consistency score.

(TIF)

S1 Table. Association between aztreonam resistance and protein sequence variation of the

19 proteins that have recurrent mutations during experimental evolution [13] (Ranksum

test, total strain# = 31).

(DOCX)

S2 Table. Transcriptional regulators associated with aztreonam MIC.

(DOCX)

S3 Table. Mutations in the eight sepsis isolates are confirmed with Sanger sequencing.

(DOCX)

S4 Table. Primers used to generate mutations in PA14.
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S5 Table. Summary of small indels and SNPs comparing to PAO1.

(DOCX)

S6 Table. Blast result of the three big insertions.
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S7 Table. Transcriptional regulators associated with overall antibiotic resistance.

(DOCX)

S1 Data. Minimum inhibitory concentration of aztreonam for all clinical isolates.

(XLSX)

S2 Data. Experimental validation that NalDF198L is associated with increase of aztreonam

minimum inhibitory concentration.

(XLSX)

S3 Data. Inhibition zone measurement using antibiotic disk diffusion assay for clinical iso-

lates.

(XLSX)

S4 Data. Genes change expression in the presence of aztreonam.

(XLSX)

S5 Data. Constitutive mutation effects. Forty-eight reactions constitutively affected by muta-

tions in D+7bld regardless of the presence and concentration of aztreonam.

(XLSX)

S1 Text. Supplementary materials and methods.

(DOCX)
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