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Abstract: Mitochondria are highly dynamic organelles, constantly undergoing shape changes, which
are controlled by mitochondrial movement, fusion, and fission. Mitochondria play a pivotal role in
various cellular processes under physiological and pathological conditions, including metabolism,
superoxide generation, calcium homeostasis, and apoptosis. Abnormal mitochondrial morphology
and mitochondrial protein expression are always closely related to the health status of cells. Anal-
ysis of mitochondrial morphology and mitochondrial protein expression in situ is widely used to
reflect the abnormality of cell function in the chemical fixed sample. Paraformaldehyde (PFA), the
most commonly used fixative in cellular immunostaining, still has disadvantages, including loss of
antigenicity and disruption of morphology during fixation. We tested the effect of ethanol (ETHO),
PFA, and glutaraldehyde (GA) fixation on cellular mitochondria. The results showed that 3% PFA
and 1.5% GA (PFA-GA) combination reserved mitochondrial morphology better than them alone
in situ in cells. Mitochondrial network and protein antigenicity were well maintained, indicated
by preserved MitoTracker and mitochondrial immunostaining after PFA-GA fixation. Our results
suggest that the PFA-GA combination is a valuable fixative for the study of mitochondria in situ.

Keywords: mitochondria; fixative; mitochondrial morphology; paraformaldehyde; glutaraldehyde

1. Introduction

Mitochondria are major highly dynamic organelles regulated by fission and fusion.
Mitochondrial size, shape, and location are variable in different cell types [1–4]. Mito-
chondria autonomously respond to energy demands and environmental changes in cells
by reshaping morphology [4–6]. The morphology of mitochondria is directly related to
the functions of cells and tissues [7–10]. In most cases, mitochondria in live cells can be
directly visualized by microscope technology [11,12]. However, in some cases, cell samples
cannot be imaged immediately after collection, thus they have to be frozen in a specific
state using chemical fixation [13,14]. Then, the preserved mitochondria can be visualized
by immunocytochemistry or confocal microscopy.

Fixation can inhibit cell autolysis, retain cell components, maintain cell morphology
and structural integrity, and make the microscopic appearance of cells more apparent [15].
The fixing method can be divided into two types: cross-linking and denaturation [16].
The cross-linking fixatives contain various aldehydes, such as paraformaldehyde (PFA)
and glutaraldehyde (GA). In tissues, PFA can quickly cross-link proteins over a short
range, while GA can slowly cross-link proteins over a long distance [17–20]. However,
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in cultured cells, the speed of GA fixation is much faster than PFA [21]. Denaturing
fixatives, also known as precipitating fixatives, are commonly used, such as ethanol and
methanol. Ethanol can reduce the solubility of proteins in cells, destroy the hydrophobic
interactions between proteins, and coagulate the proteins [22]. The disadvantages of
the different fixatives are also apparent. There exists severe cell shrinkage in ethanol
fixation. PFA, as the most commonly used fixative for immunostaining of cells, has
been associated with various problems, including loss of antigenicity and disruption of
morphology during fixation [23,24].

Recently, accumulating studies have been reported to explore more efficient fixation
methods in different cells or tissues [16,22,25,26]. However, previous research only focuses
on the effects of different fixation methods at a cellular level [27–29]. They ignored the
influences of fixation methods on the visualization of mitochondria. Therefore, more effort
is needed to study the methods of fixing mitochondria.

In this study, we investigated the effects of different fixatives, including ethanol
(ETHO), PFA, and GA, on mitochondria of mouse embryonic fibroblasts (MEFs). We moni-
tored the morphology and protein antigenicity of mitochondria before and after fixation.
Our results show that the combination of 3% PFA/1.5% GA (PFA-GA) could retain the
morphology and protein antigenicity of mitochondria in cells.

2. Materials and Methods
2.1. Cell Culture

Mouse embryo fibroblasts (MEFs) were cultured in Dulbecco’s Modified Eagle Medium
(DMEM, Gibco, Grand Island, NY, USA) supplemented with 10% fetal bovine serum,
1% penicillin/streptomycin, and 1% non-essential amino acids and were maintained at
37 ◦C and 5% CO2. All of the cells in this study were maintained between passages 3 and 5.

2.2. Chemical Fixation

After being washed with PBS, cells were stained with 200 nM MitoTracker Red
(ThermoFisher Scientific, Carlsbad, CA, USA) for 30 min at 37 ◦C for labeling mitochondria.
Washed twice with PBS and read the fluorescence intensity using a microplate reader. Then,
the different chemical fixatives (Table S1) were quickly added to each well. The change of
fluorescence intensity was continuously recorded at 1-minute intervals.

2.3. Confocal Imaging

Cell imaging used a Zeiss LSM 800 confocal microscope (Zeiss, Oberkochen, Germany)
equipped with a 60× 1.3 NA oil immersion objective and followed a procedure devel-
oped previously [30]. Approximately 1 × 105 cells were plated on a 25 mm diameter
coverslip in 6-well plates and cultured at 37 ◦C in a 5% CO2 incubator for 24 h. Cells
were stained with 200 nM MitoTracker Red or 100 nM tetramethylrhodamine ethyl ester
(TMRE) (ThermoFisher Scientific, Carlsbad, CA, USA) for 30 min at 37 ◦C for labeling mi-
tochondria. Then, cells were washed twice with KHB, and fixed with 4% formaldehyde,
95% ethanol, 2.5% glutaraldehyde, or the mixture of 3% formaldehyde and 2.5% glutaralde-
hyde for 10 min at room temperature, respectively. For membrane permeabilization, 0.1%
Triton X-100 (Sigma, St. Louis, MO, USA) was applied for 5 min following fixation. All
images were acquired at 543, or/and 488 nm laser excitation.

2.4. RNA Isolation

Approximately 5 × 105 MEFs were plated in 100 mm dishes and cultured at 37 ◦C in a
5% CO2 incubator for 24 h. The fixed cells were immediately washed in PBS with 1:1000
RNase Inhibitor (Invitrogen, Carlsbad, CA, USA). After collecting by cell scraper, cells were
pelleted by centrifugation at 5000× g for 5 min at 4 ◦C. The supernatant was discarded.
Total RNA was isolated from the pellet fixed by 4% formaldehyde, 2.5% glutaraldehyde,
and 3% formaldehyde/1.5% glutaraldehyde using the RecoverAll Total Nucleic Acid
Isolation kit (Invitrogen), starting at the protease digestion stage of the manufacturer-
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recommended protocol. Total RNA was isolated from the pellet fixed by 95% ethanol and
unfixed using the GeneJET RNA Purification Kit (ThermoFisher Scientific) following the
manufacturer’s protocol.

2.5. Quantitative RT-PCR

HiScript III RT SuperMix for qPCR (+gDNA wiper) (Vazyme, Nangjing, China) was
used to synthesize cDNA from 0.3 µg of total RNA.

RNA expression analysis was performed using SYBR Green PCR master mix (4309155,
Applied Biosystems, Foster City, CA, USA) with designed primers (Table S2).

2.6. Protein Isolation

Approximately 5 × 105 MEFs were plated in 100 mm dishes and cultured at 37 ◦C
in a 5% CO2 incubator for 24 h. MEFs fixed by 4% formaldehyde, 2.5% glutaraldehyde,
95% ethanol, and 3% formaldehyde/1.5% glutaraldehyde were washed with PBS. After
collecting by cell scraper, cells were pelleted by centrifugation at 5000× g for 5 min at
4 ◦C. The supernatant was discarded. Fixed and non-fixed cells were dissolved in lysis
buffer 300 mM Tris (Macklin, Shanghai, China) at pH 8, with 2% SDS (VETEC, St. Louis,
MO, USA) and a final concentration of 1% Protease Inhibitor (Millipore, Billerica, MA,
USA) with an electric homogenizer. The cell pellet fixed by 4% formaldehyde and 2.5%
glutaraldehyde were treated 30 min at 100 ◦C followed by 2 h at 60 ◦C. The cell pellet
fixed by 95% ethanol and unfixed were treated 30 min on ice. Moreover, all samples were
centrifuged at 4 ◦C for 20 min at 14,000 rpm, and supernatants were transferred to fresh
microcentrifuge tubes.

2.7. Western Blot

The protein concentration was measured using the BCA assay (ThermoFisher Scien-
tific, Carlsbad, CA, USA). 20 µg protein per sample was used for SDA-PAGE. The gels were
stained in Coomassie brilliant blue for 1 h and de-stained in a 50% ethanol, 40% ddH2O,
and 10% acetic acid mixture for 3–4 h. The stained gels were scanned and analyzed using
an automatic digital gel image analysis system (Tanon, Shanghai, China) following the
manufacturer’s guidelines.

To detect mitochondrial Mfn2, 20 µg protein per sample was used for SDA-PAGE.
Then, the separated proteins were electro-transferred onto Immobilon polyvinylidene
fluoride (PVDF) membranes (Millipore, Billerica, MA, USA). The membrane was blocked
at room temperature for 1 h with 5% milk powder in PBST (PBS, 0.05% Tween 20) and
incubated with primary antibodies specific to GAPDH (BBI, Shanghai, China, D110016) and
mfn2 (Abcam, Cambridge, UK, ab6789) overnight at 4 ◦C. Then, membranes were washed
3 times in PBST for 10 min each and incubated with goat anti-mouse (Abcam; ab56889) or
anti-rabbit secondary antibody (Pierce, Rockford, IL, USA) at room temperature for 1 h
on a shaker. Membranes were washed three times in PBST for 10 min each again. Protein
band intensities were developed using High-sig ECL Western Blotting Luminol/Enhancer
solution (Tanon, Shanghai, China) and measured using a chemiluminescence imaging
system (CLiNX, Shanghai, China) following the manufacturer’s guidelines.

2.8. Immunofluorescent Labeling

Approximately 1 × 105 MEFs were plated in chambers and cultured at 37 ◦C in a
5% CO2 incubator for 48 h. Then, cells were washed twice with PBS. Fixed cells with
4% formaldehyde, 95% ethanol, 2.5% glutaraldehyde, or the mixture of 3% formaldehyde
and 1.5% glutaraldehyde for 20 min at room temperature, respectively. The coverslips
were heated in antigen retrieval buffer (100 mM Tris, 5% (w/v) urea, pH 9.5) at 95 ◦C for
10 min. Following fixation, cells were washed 3 times in PBS and permeabilized with 0.1%
Triton X-100 in PBS for 10 min. Cells were washed twice for 5 min and blocked with 8%
goat serum in PBS for 1 h. Primary antibodies VADC1 (5 µg/mL) and COX IV (10 µg/mL)
(Abcam) were incubated overnight at 4 ◦C in 2% goat serum in PBS after washed once in
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PBS for 5 min. Then cells were washed in 1% goat serum, 0.1% Tween-20 in PBS 4 times
for 10 min. Second antibodies (2 µg/mL) (Invitrogen) were incubated overnight at 4 ◦C in
2% goat serum in PBS for 1 h after washed in 1% goat serum, 0.1% Tween-20 (Sigma) in
PBS 4 times for 10 min. Lastly, added a small amount of ProLong Gold antifade reagent
with DAPI (Invitrogen) over the area where each chamber used to be. Cell imaging used
a Zeiss LSM 800 confocal microscope (Zeiss, Oberkochen, Germany) equipped with a
60× 1.3 NA oil immersion objective.

2.9. Mitochondrial Image Analysis

Mitochondrial aspect ratio (long axis/short axis) was calculated using ImageJ soft-
ware [31]. Mitochondrial networks and branches were quantified by ImageJ software with
a MINA plugin [32]. MiNA enhances the image quality, providing more accurate results.
Choices for image pre-processing, including ‘unsharp mask’, CLAHE, and median filtering,
are presented to the user through the MiNA interface.

2.10. Statistical Analysis

Data represent the mean ± s.e.m of experiments. Statistical comparisons used un-
paired Student’s t-test or one-way ANOVA followed by Bonferroni’s corrections, as appro-
priate. p < 0.05 was considered statistically significant.

3. Results
3.1. The Effect of Fixatives on Cells and Mitochondrial Indicators

The commonly used fixatives, including ETHO, PFA, and GA, were applied to cultured
MEFs fixation. We first detected the effect of fixative on cell morphology before and after
fixation. 95% ethanol (ETHO) caused cells shrinkage after 10 min fixation. Thus, we
measured the cell area and found that ETHO significantly decreased cell size (Figure S1).
PFA and GA could well maintain the morphology and area of fixed cells.

The mitochondria within live cells were generally visualized through the mitochon-
drial dyes that can accumulate into the mitochondrial matrix. Among them, the MitoTracker
Red probes contain a mildly thiol-reactive chloromethyl moiety, which can be retained in
mitochondria after fixation [33]. To investigate the effect of fixative on mitochondria, we
loaded MEFs with Mitotracker Red. Generally, 20–30 min was applied for ETHO, PFA, or
GA fixation [17,21], but we found that the fluorescence of MitoTracker had no apparent
difference at 20 min PFA fixation (Figure S2). Given the shorter fixation time of GA and
ETHO in cells, we presented 10 min fixation for all fixatives. ETHO led to the fluorescence
signal of mitochondria disappearing quickly (Figure 1A,B). PFA increased the fluorescence
signal of some mitochondria, and it also triggered MitoTracker Red releasing into cytosol
indicated by the fluorescence around the nuclear (Figure 1A,C). No apparent detectable
autofluorescence of cells at 543 nm excitation (Figure S3) under the same conditions and
at the same scale further confirmed that MitoTracker Red was released into the cytosol
(Figure S3B). Triton treatment further increased the fluorescence of mitochondria aggre-
gated around the nuclear (Figure 1A,C). GA led to the fluorescence signal of mitochondria
slightly decrease caused by MitoTracker releasing into the cytosol but better maintained the
mitochondrial morphology and network (Figure 1E–G). Triton treatment does not further
reduce mitochondrial fluorescence (Figure 1A,D). These results indicated that PFA could
maintain the signal of MitoTracker Red, and GA could reserve mitochondrial network.
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Figure 1. MitoTracker Red fluorescence assay on fixed and permeabilized cells. (A) Representative
images of the MitoTracker Red fluorescence after fixed by paraformaldehyde (PFA), glutaraldehyde
(GA), or ethanol (ETHO), and permeabilized by Triton. (B–D) Quantity result of MitoTraker Red
fluorescence before and after fixed by ETHO, PFA or GA, and permeabilization. (E–G) Quantitative
result of mitochondrial morphology and network. Fix, fixation; Fix-Tri, fixation followed with Triton.
Mean ± SEM, n = 9–12 cells. * p < 0.05, compared with Before; # p < 0.05, compared with 4% PFA Fix.
The data analyzed by one-way ANOVA.

TMRE (Tetramethylrhodamine ethyl ester perchlorate) as a detector of mitochon-
drial membrane potential is very sensitive to mitochondrial damage. Its’ fluorescence
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will rapidly disappear after mitochondrial depolarization. To investigate the effect of
fixative on mitochondrial damage (membrane potential loss), we loaded MEFs with a
mitochondrial membrane potential indicator TMRE. ETHO led to a quick disappearance of
fluorescence signals within the mitochondria (Figure S4A,B). PFA slightly decreased the
fluorescence signal of mitochondria by triggering TMRE releasing into the cytosol in 1 min
but collapsed the TMRE signal after 10 min (Figure S4A,C). GA significantly decreased
the fluorescence signal of mitochondria through releasing TMRE into cytosol and solution
quickly (Figure S4A,D). These results indicated that no fixative could maintain the signal
of mitochondrial membrane potential indicator.

3.2. The Effect of Fixative on Cross-Linking Proteins

PFA and GA are cross-linking fixatives that contain a variety of aldehydes. Their high
protein cross-link activity results in a protein extraction that is very difficult after fixation.
To extract the total protein of fixed cells, we first decross-linked the fixed cells at 100 ◦C for
30 min, followed by 60 ◦C 2 h treatment. The still cross-linked proteins will not contribute
to the amount of signal in the measurement. ETHO and PFA treatment led to slight protein
loss without significant change.

GA showed the most robust cross-linking ability, which significantly blocked the
extraction of total proteins (Figure 2A). SDS-PAGE showed that the bands of total protein
of ETHO and PFA fixed cells are clearly accompanied by slight protein loss (Figure 2B).
Western blot could also detect the mitochondrial membrane protein Mfn2 (Figure 2D), but
the quantity data of band intensity showed that ETHO, PFA, and GA decreased protein
level (Figure 2C). There was no obvious protein band from GA-treated cells (Figure 2B,C).
These results indicated that GA had the best fixation ability (protein cross-link activity)
for fast freezing protein in situ. It might be a valuable fixative to fix mitochondria for
immunostaining assay.

3.3. The Screening of More Suitable Fixative for Mitochondria

From the above results, PFA and GA showed their different merits on mitochondrial
fixation. The combination use of PFA and GA is a potential method for better mitochon-
drial fixation. To obtain a more suitable fixative for mitochondria, we screened tens of
PFA and GA combinations by monitoring the change of MitoTracker Red fluorescence
during fixation. Here, we showed typical combinations (Figure 3A). The combinations
of 3% PFA/1.5% GA showed better fluorescence maintenance than other combinations
(Figure 3A). We chose 3% PFA/1.5% GA for further investigation. 3% PFA/1.5% GA main-
tained most of MitoTracker signal in mitochondria (Figure 3B,C) beside the redistribution
of MitoTracker (The perinuclear mitochondria with higher MitoTracker) and mitochondrial
morphology and network after fixation (Figure 3D–F). MitoTracker aggregates triggered
by triton remarkedly decreased compared with 4% PFA fixation (Figures 1A and 3B). Most
of TMRE was kept in the mitochondria, but released TMRE increased the cytosolic back-
ground. The result did not indicate that mitochondria were polarized and TMRE was
active because further FCCP + Antimycin A treatment did not trigger massive loss of
TMRE (Figure S6). Triton treatment further induced the release of TMRE (Figure 3B,C).
These results suggested that 3% PFA/1.5% GA was a potential combined fixative for
mitochondrial fixation.
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Figure 2. Protein extraction and analysis after fixation. (A) The total proteins extracted from fixed
cells by ETHO, PFA, or GA. Mean ± SEM, n = 3. * p < 0.05. (B) Representative images of the
SDA-PAGE gel. (C) Quantity data of the bands of total protein in PAGE gel. Mean ± SEM, n = 3.
* p < 0.05. The data analyzed by one-way ANOVA. (D) Western blot of Mfn2 and GAPDH after fixed
by ETHO and PFA.
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Figure 3. Screening the ratio of PFA and GA. (A) Representative traces of the MitoTracker Red fluo-
rescence during fixation. (B) Representative images of the MitoTracker Red and TMRE fluorescence
after fixed by PFA-GA, and permeabilized by Triton. (C) Quantitive data of MitoTracker Red and
TMRE fluorescence. (D–F) Quantitative result of mitochondrial morphology and network using
MitoTracker images. Fix, fixation; Fix-Tri, fixation followed with Triton. Mean ± SEM, n = 9–12 cells.
* p < 0.05. The data analyzed by one-way ANOVA.

The level of extracted total protein was only one-eighth of control after 3% PFA/1.5% GA
fixation due to the robust cross-linking ability of GA (Figure S5A). There was no apparent
protein band from 3% PFA/1.5% GA treated cells (Figure S5B,C).
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3.4. mRNA Level After Fixation

To confirm the effect of 3% PFA/1.5% GA, we next compared the effect of fixatives
on mRNA level. We isolated the total RNA of fixed cells and quantified the RNA. ETHO
increased mRNA expression. PFA or GA alone decreased the mRNA level. However,
3% PFA/1.5% GA treatment showed better RNA level reservation, and it even decreased
RNA levels (Figure 4). It has been reported that ETHO could up-regulate mitochondrial
biogenesis in hepatocytes [34]. Interestingly, ETHO decreased mitochondrial Tfam level
but increased Mfn2 level (Figure 4C–E). These results indicated that fixation would affect
RNA extraction and measurement.

Figure 4. mRNA assay after fixation. (A) Hotmap of RNA level after fixed by PFA, GA, ETHO,
or PFA-GA. (B–E) The relative RNA level of Miro1, Tfam, Mfn1, and Mfn2 after fixed by ETHO, PFA,
GA, or PFA-GA. Mean ± SEM, n = 3. * p < 0.05. The data analyzed by one-way ANOVA.

3.5. Immunostaining After Fixation

Next, we further investigated the effect of fixative on mitochondrial morphology and
protein antigenicity. Cells were immunostained with VDAC1 and COX IV. The results
showed that ETHO damaged the mitochondrial network. 4% PFA maintained most of the
mitochondrial network but led to some mitochondrial aggregated around the nuclear, simi-
lar to MitoTracker Red staining (Figure 5). 2.5% GA showed a higher background of COX
IV and VDAC1. 3% PFA/1.5% GA fixation not only maintained the mitochondrial mor-
phology and network (Figure 5B–D) but also decreased the background of immunostaining
(Figure 5A). It is well known that the basis of immunofluorescence is that antibodies specifi-
cally recognize antigens. These results indicated that the combination of 3% PFA/1.5% GA
(PFA-GA) could retain the morphology and protein antigenicity of mitochondria in cells.
Thus, 3% PFA/1.5% GA was the potential fixative for mitochondrial fixation.
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Figure 5. Immunostaining assay after fixation. (A) Representative images of the COX IV and
VDAC1 immunostaining after fixed by PFA, GA, ETHO, or PFA-GA. (B–D) Quantitative result of
mitochondrial morphology and network. Mean ± SEM, n = 9–12 cells. * p < 0.05. The data analyzed
by one-way ANOVA.

4. Discussion

Cell fixation is a powerful technique to study the structure and proteins in situ.
Mitochondria are constantly undergoing continuous movement in live cells. The study of
mitochondrial in situ in the fixed state needs well-maintained mitochondrial morphology
and protein antigenicity. The purpose of our study is to compare the effects of various
fixations on mitochondria fixation and further find a new method of mitochondrial fixation.
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Fixation can inhibit cell autolysis, retain cell components, maintain cell morphology
and structural integrity [15]. Generally, the fixing methods can be divided into two typical
types: cross-linking and denaturation [16]. The cross-linking fixatives contain a variety of
aldehydes, such as formaldehyde, PFA and GA. Different fixatives have their own unique
advantages and disadvantages on fixation. PFA cross-links with nearby proteins through
its aldehyde groups to form methylene bridge adducts, which can retain the natural distri-
bution of proteins in the cells. However, PFA as a commonly used fixative still has some
problems such as the inability to completely fix the proteins during the fixation process,
and the induction of the redistribution of the proteins [35], the dissolution of lipid in the cell
membranes, the slight damage of the cell membrane’s integrity [19,36,37] and the shield
of protein epitopes. While GA, as a linear 5-carbon dialdehyde, can quickly react with
the amine group of the protein at around neutral pH [38], it cross-links the protein and
maintains a stable structure within a variable distance [18,19,39,40]. In tissues, PFA can
quickly cross-link proteins in a short distance, while GA can slowly cross-link proteins over
a long distance [17–19]. However, in cultured cells, GA fixation is much faster than PFA.
4 min is enough for GA to immobilize the cytoplasmic proteins completely [21,41]. The
inadequate fixation will lead to residual mobility, which induced the artificial clustering
of receptors [41]. Mitochondria are high dynamic organelle [4,11]. Thus, the quick and
robust cross-link ability of GA is beneficial to preserving their antigenicity and morphol-
ogy. Our data showed that PFA could maintain fluorescence of MitoTracker Red in fixed
mitochondria but damage mitochondrial morphology and network; GA could maintain
mitochondrial morphology and network but decrease fluorescence of MitoTracker Red.
Combining PFA and GA with an appropriate ratio can take advantage of their merits on
fixation. It has been found optimal to fix cytoplasmic proteins with at least 1% GA in com-
bination with formaldehyde [21]. Our results also suggested that 1.5% GA in combination
with PFA is better for mitochondrial fixation.

Denaturing fixatives, also known as precipitating fixatives, such as methanol, ETHO,
and acetone. ETHO can reduce the solubility of proteins in cells, destroy the hydrophobic
interactions between proteins and coagulate the proteins. Thence ETHO can modify
the tertiary structure of proteins and inactivate enzymes in cells [16]. However, fixation
with ETHO can cause severe cell shrinkage due to dehydration, resulting in distortion of
the nucleus and cytoplasm details [42,43]. Our data further proved that ETHO fixation
damaged mitochondria, including morphology and network. Thus ETHO could not be
applied to mitochondrial fixation.

The fixed mitochondria can be used for visualization by immunocytochemistry and
confocal microscopy. In over to visualize mitochondrial morphology, mitochondrial dyes
can be applied. The MitoTracker Red probes contain a mildly thiol-reactive chloromethyl
moiety. The chloromethyl group may retain the dye localization in the mitochondria after
fixation [44]. While TMRE is rapidly absorbed by mitochondria and released by fixation,
it is mainly used to label living cells. It has been reported that FA-GA fixations are more
capable of preserving the overall cellular structures than ETHO and PFA [21,41,43]. Our
results also confirmed that MitoTracker Red could be retained into mitochondria after PFA
or GA fixation. TMRE was rapidly released from mitochondria after fixation. We found that
PFA-GA fixation could retrieve some TMRE signal, such as PFA alone. Further investiga-
tion showed FCCP/Antimycin A fail to collapse the TMTE signal, which indicates PFA-GA
fixation might not maintain mitochondrial polarization. Immunofluorescence is a technique
to detect the distribution of specific proteins in cells and tissues [44]. The fundamental of
immunofluorescence is that antibodies specifically recognize antigens. In addition, the cell
membrane permeability is also essential for the specific proteins expressed in the cells. Tri-
ton X-100, as one of the most commonly used non-ionic detergents, can effectively dissolve
cell membranes [45], destroy lipids in membrane proteins, and enhance the penetration
of antibodies [46,47]. However, permeabilization with Triton X-100 after formaldehyde
treatment induces a decreased cytoplasmic density and apparent loss of organelles because
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inadequate fixation could not limit the mobilization of cytoplasmic proteins [48]. Thus,
employ a rapid, robust fixative, GA, is essential for mitochondrial fixation.

5. Conclusions

In summary, our results showed that ETHO could not maintain the mitochondrial
network. Thus it is not suitable for mitochondrial fixation. The cross-linking fixative PFA
and GA showed different merits when individuals were applied. PFA can maintain the
MitoTracker Red signal, GA can better reserve mitochondrial morphology. We found that
the appropriate combination of PFA and GA can maintain the MitoTracker Red signal
and mitochondrial network. At the same time, the application of GA also avoids the loss
of antigenicity caused by PFA. Our study reveals that 3% PFA/1.5% GA is a potential
combined fixative for mitochondrial investigation in situ after fixation.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/biom11050711/s1, Figure S1: Cell morphology after fixation, Figure S2: Alternation of
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