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Abstract: During early vertebrate embryogenesis, both hematopoietic and endothelial lineages
derive from a common progenitor known as the hemangioblast. Hemangioblasts derive from
mesodermal cells that migrate from the posterior primitive streak into the extraembryonic yolk sac.
In addition to primitive hematopoietic cells, recent evidence revealed that yolk sac hemangioblasts
also give rise to tissue-resident macrophages and to definitive hematopoietic stem/progenitor cells.
In our previous work, we used a novel hemangioblast-specific reporter to isolate the population
of chick yolk sac hemangioblasts and characterize its gene expression profile using microarrays.
Here we report the microarray profile analysis and the identification of upregulated genes not yet
described in hemangioblasts. These include the solute carrier transporters SLC15A1 and SCL32A1,
the cytoskeletal protein RhoGap6, the serine protease CTSG, the transmembrane receptor MRC1,
the transcription factors LHX8, CITED4 and PITX1, and the previously uncharacterized gene
DIA1R. Expression analysis by in situ hybridization showed that chick DIA1R is expressed not
only in yolk sac hemangioblasts but also in particular intraembryonic populations of hemogenic
endothelial cells, suggesting a potential role in the hemangioblast-derived hemogenic lineage.
Future research into the function of these newly identified genes may reveal novel important
regulators of hemangioblast development.

Keywords: chicken embryo; yolk sac; hemangioblast; microarray analysis; novel genes

1. Introduction

During vertebrate embryogenesis, there is a close developmental relationship between
hematopoiesis and vasculogenesis. In the early embryo, the first hematopoietic and endothelial
cells arise in the extraembryonic yolk sac blood islands from a common precursor known as the
hemangioblast [1,2]. Recent evidence suggests that hemangioblasts give rise to hematopoietic cells
through two types of intermediate progenitors, hemogenic angioblasts and hemogenic endothelial
cells [3,4]. In the yolk sac, a first wave of hematopoiesis arises from hemogenic angioblasts that
give rise to primitive hematopoietic cells, such as primitive erythrocytes, embryonic macrophages
and megakaryocytes [4–6]. Also in the yolk sac, a second wave of hematopoiesis originates from
hemogenic endothelial cells that give rise to definitive erythrocytes and to most myeloid lineages,
including tissue-resident macrophages and microglial cells that persist into adulthood [7,8]. Finally,
a third wave of hematopoiesis arises from intraembryonic hemogenic endothelial cells and produces
definitive hematopoietic stem/progenitor cells (HSPC) that will colonize the fetal hematopoietic
organs [9]. Cell-tracing studies have shown that these intraembryonic precursors also have an
extraembryonic origin, as they migrate from the yolk sac prior to the onset of circulation [10,11].
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Together, these evidences suggest that most (if not all) hematopoietic cells in the embryo derive from
yolk sac hemangioblasts.

The identification of novel hemangioblast markers and regulators has great clinical potential
in regenerative medicine, for it may contribute to the implementation of new hemangioblast-based
therapies for the treatment of various hematologic and vascular disorders. Although several factors
have been shown to play a role in hemangioblast formation, such as Lmo2 [12,13], Tal1/Scl [14],
Runx1 [15] and Sox7 [16], our knowledge on the molecular players involved in hemangioblast
specification and differentiation remains largely incomplete. We therefore sought to identify novel
potential hemangioblast regulators by analyzing the gene expression profile of yolk sac hemangioblasts
isolated from the early chick embryo, as previously attempted in other model systems [17,18]. In the
past, we identified and characterized a novel hemangioblast-specific enhancer (Hb) that is able to
specifically drive the expression of a reporter gene (enhanced green fluorescent protein, eGFP) in yolk
sac hemangioblasts of the chicken embryo [19,20]. This work introduced the Hb-eGFP reporter as a
powerful tool for labeling the hemangioblast population and studying the dynamics of blood island
morphogenesis in live imaging assays. Moreover, this reporter was used to describe the transcriptional
profile of the hemangioblast [19]. In this communication, we report the pathway and gene network
analysis of the hemangioblast transcriptome and the identification of novel genes expressed in yolk
sac hemangioblasts. In addition to genes known to have a role in other cell types and developmental
processes, we introduce a previously uncharacterized gene, DIA1R, and describe its expression pattern
in the chick embryo at different stages of development.

2. Materials and Methods

2.1. Embryo Ex Ovo Electroporation

Fertilized chicken eggs were purchased from Quinta da Freiria (Bombarral, Portugal) and
incubated for the appropriate period at 37.5 ◦C in a humidified incubator. Embryos were staged
according to Hamburger and Hamilton (HH; [21]) and processed as previously described [19].
In brief, HH3 chicken embryos were injected with Hb-eGFP and pCAGGS-RFP reporter plasmids
and electroporated using 2-mm square electrodes (CY700-1Y electrode; Nepa Gene, Chiba, Japan)
and a square wave electroporator (ECM830; BTX, Holliston, MA, USA). Electroporated embryos
were grown until stages HH5-6 in New culture [22] and imaged using a Zeiss SteREO Lumar.V12
fluorescence stereomicroscope equipped with a Zeiss MRc.Rev3 camera and ZEN 2 Pro software
(Carl Zeiss, Oberkochen, Germany).

2.2. Immunohistochemistry

Hb-eGFP-electroporated embryos were fixed in 4% paraformaldehyde, cryoprotected in 15%
sucrose, embedded in 7.5% gelatine/15% sucrose and cryosectioned at 20 µm. Immunostaining was
performed with a primary antibody against the extracellular domain of avian VEGFR2 (gift from Anne
Eichmann) [23] and a secondary antibody labeled with Alexa Fluor 568 (A11004; Thermo Fisher
Scientific, Waltham, MA, USA). Images were acquired on a Leica DMRA2 upright microscope
(Leica Microsystems, Wetzlar, Germany) with a CoolSNAP HQ CCD camera (Photometrics, Tucson,
AZ, USA) and MetaMorph V7.5.1 software (Molecular Devices, Sunnyvale, CA, USA).

2.3. Microarray Data Analysis

Microarray expression profiling of the yolk-sac hemangioblast transcriptome is described in
detail in our previous work [19]. In brief, embryos were electroporated with the Hb-eGFP and
pCAGGS-RFP reporter constructs, harvested at stage HH5-6 and dissociated into a single cell
suspension. The eGFP+/RFP+ and eGFP-/RFP+ cell populations were sorted on a Mo-Flo high-speed
fluorescence-activated cell sorter (Beckman Coulter, Brea, CA, USA). Total RNA was isolated from
triplicates of each population and processed for RNA integrity evaluation, reverse transcription
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and amplification. cRNA samples were hybridized against six Affymetrix GeneChip Chicken
Genome arrays and scanned on an Affymetrix GeneChip scanner 3000 7G (Thermo Fisher Scientific).
The microarray dataset was deposited in NCBI’s Gene Expression Omnibus (GEO) under the accession
number GSE32494.

Differentially expressed genes with a fold change greater than 1.2 were analyzed using Ingenuity
Pathway Analysis (IPA) software (Ingenuity Systems, Redwood City, CA, USA; www.ingenuity.com).
The Functional Analysis was used to identify the biological processes and/or diseases, whereas the
Canonical Pathways Analysis was used to identify the signaling pathways that were most significant to
the dataset. The significance of the association between the dataset and the functional class or canonical
pathway was expressed as negative log p-value using Fisher’s exact test. The molecular relationships
between gene products were represented in a network generated from information contained in the
Ingenuity Pathways Knowledge Base. This analysis was restricted to four functional classes associated
with early embryonic development: Cellular Development, Cardiovascular System Development and
Function, Organismal Development, Organ Development and Cell Signaling.

2.4. In Situ Hybridization

The chick DIA1R riboprobe was generated from a fragment of the cDNA clone ChEST746d11
(nucleotides 1–585; GenBank accession number BX931741). For whole-mount in situ hybridization,
chicken embryos were collected at stages HH3 to HH18 and processed as previously described [24].
Selected embryos were dehydrated in 30% sucrose, embedded in gelatin, frozen and cryosectioned.
Embryos at embryonic day 10 (E10) were cryosectioned before being processed for in situ hybridization
on tissue sections, as described [25]. Whole-mount embryos were imaged on Zeiss SteREO Lumar.V12,
whereas tissue sections were imaged on a Leica DMLB2 upright microscope, equipped with a
Leica DFC250 color CCD camera (Leica Microsystems), using IrfanView software (Irfan Skiljan,
Wiener Neustadt, Austria; www.irfanview.com).

3. Results and Discussion

During the study of chick Cerberus transcriptional regulation [26], we isolated a cis-regulatory
region that drives reporter gene expression specifically in yolk sac hemangioblasts [19]. The specificity
of this hemangioblast reporter (Hb-eGFP) is highlighted in Figure 1. In chick embryos co-electroporated
with Hb-eGFP and the ubiquitous reporter pCAGGS-RFP, eGFP fluorescence is restricted to a
population of cells in the posterior extraembryonic region (Figure 1A) and co-localizes with cVEGFR2
(Flk1), a marker of early hemangioblasts (Figure 1B; [23]).

In our previous work, we used the Hb-eGFP reporter to isolate the hemangioblast population
and characterize its gene expression profile by microarray analysis ([19]; GSE32494). At the time,
this analysis was used to confirm the specificity of the hemangioblast reporter. Here we have taken a
deeper look at our microarray data in order to uncover the pathways most active in the hemangioblast
and identify novel genes expressed in this cell population.

www.ingenuity.com
www.irfanview.com
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Figure 1. Expression of the yolk sac hemangioblast reporter in the early chick embryo (HH5).
(A) Chick embryo co-electroporated with the pCAGGS-RFP ubiquitous reporter (red) and the
Hb-eGFP hemangioblast reporter (green); (B) Transverse section of an Hb-eGFP-electroporated embryo
immunolabeled for cVEGFR2 (magenta). At this early stage, the Hb-eGFP reporter specifically labels
the yolk sac population of hemangioblasts, which can be identified by the expression of cVEGFR2
(B). This membrane receptor is detected at the surface of the eGFP-expressing cells. BF, bright field.
Scale bar: 100 µm.

3.1. Gene Expression Analysis of the Hemangioblast Transcriptome

For the microarray analysis of the yolk-sac hemangioblast, we electroporated chick embryos with
Hb-eGFP and pCAGGS-RFP reporter constructs, isolated the Hb-eGFP+/RFP+ and Hb-eGFP-/RFP+
cell populations and compared their gene expression profiles [19]. We analyzed the microarray dataset
using Ingenuity Pathway Analysis (IPA; Ingenuity Systems, http://www.ingenuity.com) in order to
identify the functional classes and signaling pathways that were most significantly represented in the
hemangioblast transcriptome (Figure 2).

The functional pathway analysis identified 65 classes of biological functions that are significantly
enriched in the dataset from hemangioblasts, eight of which are displayed in Figure 2A. As expected,
hemangioblast genes were assigned to functional classes related to embryonic development, such as
Tissue Development and Organ Morphology. In addition, the high representation of the classes
Cardiovascular System Development and Function, Hematological System Development and Function and
Immune and Lymphatic System Development and Function suggests that hemangioblasts express genes
associated with both vascular and hematopoietic lineages, as previously shown [27].

http://www.ingenuity.com
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class/canonical pathway. The threshold line (orange) corresponds to a p-value of 0.05. The yellow line 
in (B) represents the ratio between the number of genes from the dataset in a given pathway that meet 
the cutoff criteria and the total number of genes of that pathway; (C) Network diagram representing 
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Figure 2. Ingenuity pathway analysis of genes differentially expressed in yolk sac hemangioblasts.
(A) Top classes of biological functions and (B) canonical signaling pathways most significantly
represented in the Hb-eGFP+ microarray dataset (Ingenuity Pathways Analysis (IPA) library;
Ingenuity Systems, www.ingenuity.com). Genes that met the fold change cutoff of 1.2 were considered
for the analysis. Bars indicate the minus log of the p-value of each functional class/canonical pathway.
The threshold line (orange) corresponds to a p-value of 0.05. The yellow line in (B) represents the ratio
between the number of genes from the dataset in a given pathway that meet the cutoff criteria and the
total number of genes of that pathway; (C) Network diagram representing the molecular relationships
between genes differentially expressed in hemangioblasts. This graphical representation generated
by IPA includes gene products of four functional classes: Cellular Development, Cardiovascular
System Development and Function, Organismal Development, Organ Development and Cell Signaling.
Gene products are represented as nodes (shapes) and the biological relationship between two nodes
is represented as an edge (line). Orange lines represent interactions between gene products from
different canonical pathways. All edges are supported by at least one reference from the literature,
from a textbook, or from canonical information stored in the Ingenuity Pathways Knowledge Base.
The intensity of the node color indicates the degree of upregulation (red) or downregulation (green).
Nodes are displayed using various shapes that represent the functional class of the gene product,
while edges are displayed with various labels that describe the nature of the biological relationship
between the nodes (see legend in the figure).

www.ingenuity.com
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The canonical pathway analysis identified 78 pathways that are significantly enriched in the
dataset from hemangioblasts, nine of which are displayed in Figure 2B. Two of these pathways are the
VEGF signaling pathway, which play a well-established role in vasculogenesis [28], and the CXCR4
signaling pathway, which regulates HSPC homing and engraftment in the bone marrow [29] and
may be involved in the migration of yolk sac hemangioblast-derived angioblasts into intraembryonic
regions [7,11]. Alternatively, CXCR4 signaling may modulate the hemogenic potential of the yolk
sac hemangioblast, as recently shown in embryonic stem cell cultures [30]. We also identified several
hemangioblast genes that are involved in axon guidance. Indeed, the vascular and neural networks
are known to have several common morphogenetic signals [31]. Interestingly, another pathway
over-represented in hemangioblasts is the leukocyte extravasation signaling pathway, which includes
molecules responsible for the interactions between blood and endothelial cells [32]. These molecules
are likely to play a similar role in the blood-endothelial interactions that take place during the
differentiation of hemangioblasts in the blood islands.

We then designed and analyzed the network of molecular interactions of the major signaling
pathways differentially expressed in hemangioblasts (Figure 2C). As expected, many upregulated
genes belong to the VEGF signaling pathway, such as FLT1 (VEGFR1) and FLT4 (VEGFR3), or interact
with it, such as CDH5 (VE-cadherin), an endothelium adhesion molecule that is expressed in hemogenic
endothelial cells prior to their differentiation [33], and LMO2, a transcription factor essential for
hemangioblast development and hematopoiesis [12,13,34]. On the other hand, several downregulated
genes belong to or interact with the BMP, FGF and WNT signaling pathways. These three pathways
include genes that are highly expressed in cell types other than the hemangioblast, such as the paraxial
mesoderm (e.g., FST—BMP signaling pathway; [35]), primitive streak (e.g., FGF19—FGF signaling
pathway; [36]) and axial mesendoderm (e.g., DKK1—NT signaling pathway; [37]).

3.2. Identification of Novel Hemangioblast Genes

In addition to genes that are known to play a role in hemangioblast development, such as
LMO2 [12,13] and TAL1/SCL [14], our differential screening of hemangioblast transcripts led to the
identification of several genes unknown to have a function in hematopoiesis or vasculogenesis, as well
as some previously uncharacterized genes (Table 1). These include SLC15A1 (+5.1) and SCL32A1
(+4.19), RhoGap6 (+3.07), CTSG (+3.7), MRC1 (+3.2), LHX8 (+2.77), CITED4 (+2.23), PITX1 (+2.2),
and the novel gene DIA1R (+4.2).

SLC15A1 and SLC32A1 are members of the solute carrier family. The transmembrane transporter
SLC15A1 is involved in amino acid uptake in the intestinal epithelium [38], whereas the vesicular
transporter SLC32A1 acts as a carrier of inhibitory amino acid neurotransmitters in the central
nervous system [39]. Their expression in hemangioblasts may indicate that these cells have a particular
amino acid requirement. The cytoskeletal protein RhoGap6 was shown to promote the formation
of filopodia-like processes in mammalian cell cultures [40], and it may have a similar role in
hemangioblasts as they actively migrate in the extraembryonic region [19].

The serine protease CTSG (Cathepsin G) is expressed at the promyelocytic stage of myeloid
development [41]. In addition, CTSG participates in tissue remodeling at sites of inflammation [42]
and in the degradation of endothelial VE-cadherin during neutrophils transmigration [43].
In hemangioblasts, CTSG may play an active role in extracellular matrix remodeling during
blood island formation and endothelial-to-hematopoietic transition. MRC1 is a transmembrane
mannose receptor that mediates the phagocytosis of microorganisms by antigen-presenting cells [44].
During development, MRC1 transcripts are found in the zebrafish caudal hematopoietic tissue
and endothelial cell precursors [45] and in the mouse yolk sac blood islands [46]. Taken together,
the presence of both CTSG and MRC1 in yolk sac hemangioblasts indicates that myeloid lineage genes
are already expressed in these progenitors.



Cells 2018, 7, 9 7 of 12

Table 1. List of selected genes upregulated in yolk sac hemangioblasts. Genes without a known function in hematopoiesis or vasculogenesis are highlighted in gray a.

FC b Gene Symbol Gene Name Gene ID Molecular Function Biological Function Expression in Early Embryos

+5.1 SLC15A1 Solute carrier family 15, member 1 378789 Membrane transporter Oligopeptide transport -

+4.2 C1HXorf36
(DIA1R)

Chromosome 1 open reading frame, human
CXorf36 (Deleted in Autism 1 Related) 418555 - - (this study)

+4.19 SLC32A1 Solute carrier family 32, member 1 419167 Vesicular transporter GABA vesicular transporter -

+4.15 SOX7 SRY (sex determining region Y)-box 7 771337 Transcription factor Vasculogenesis and
hematopoiesis Angioblasts

+3.73 LMO2 LIM domain only 2 374129 Transcription factor Hematopoiesis Hematopoietic progenitors

+3.7 CTSG Cathepsin G 426049 Serine protease Tissue remodeling Myeloid progenitors

+3.62 TAL1 (SCL) T-cell acute lymphocytic leukemia 1 (stem
cell leukemia) 396298 Transcription factor Hematopoiesis Hematopoietic progenitors

+3.51 RUNX1 Runt-related transcription factor 1 396152 Transcription factor Hematopoiesis Blood islands

+3.44 EGR1 Early growth response 1 373931 Transcription factor HSPC proliferation Vasculogenic mesoderm

+3.2 MRC1 Mannose receptor C-type 1 420516 Membrane receptor Endocytosis Blood islands

+3.17 KLHL6 Kelch-like 6 424762 Transcription factor Lymphocyte differentiation -

+3.3 SPI1 (PU.1) Spleen focus forming virus (SFFV) proviral
integration oncogene spi1 395879 Transcription factor Hematopoiesis Hematopoietic progenitors

+3.07 RhoGap6 Similar to Rho-GTPase-activating protein 6
(LOC422284 locus) 422284 Cytoskeleton regulator Actin remodeling -

+2.77 LHX8 LIM homeobox 8 424721 Transcription factor Neurogenesis Blood islands

+2.71 FLT1 (VEGFR1) Fms-related tyrosine kinase 1 (vascular
endothelial growth factor receptor 1) 374100 Receptor tyrosine kinase Vasculogenesis/Angiogenesis Hemangioblasts and endothelial

cells

+2.63 SOX18 SRY (sex determining region Y)-box 18 374200 Transcription factor Vasculogenesis Blood islands

+2.49 CDH5 Cadherin 5, type 2, VE-cadherin (vascular
epithelium) 374068 Cell adhesion molecule Vasculogenesis/Angiogenesis Endothelial cells

+2.39 CD34 Hematopoietic progenitor cell antigen CD34 419856 Cell surface antigen - Hematopoietic progenitors

+2.29 FLT4 (VEGFR3) Fms-related tyrosine kinase 4 (vascular
endothelial growth factor receptor 3) 395742 Receptor tyrosine kinase Angiogenesis Blood islands and endothelial cells

+2.23 CITED4 Cbp/p300-interacting transactivator, with
Glu/Asp-rich carboxy-terminal domain, 4 395465 Transcription regulator in vitro cardiogenesis Blood islands

+2.2 PITX1 Paired-like homeodomain 1 374201 Transcription factor Pituitary and hindlimb
development Posterior extraembryonic mesoderm

+2.09 Fli1 Friend leukemia virus integration 1 gene 419723 Transcription factor Vasculogenesis and
hematopoiesis

Endothelial and erythroid
progenitors

+1.96 HHEX Hematopoietically expressed homeobox 396182 Transcription factor Vasculogenesis and
hematopoiesis Blood islands

a Gene function and expression patterns were obtained from the literature and from ZFIN (http://zfin.org), GEISHA (http://geisha.arizona.edu/geisha) and EMAGE
(http://www.emouseatlas.org). b FC: fold-change (lower bound).

http://zfin.org
http://geisha.arizona.edu/geisha
http://www.emouseatlas.org


Cells 2018, 7, 9 8 of 12

LHX8 is involved in the differentiation of cholinergic neurons in the mouse telencephalon [47],
CITED4 regulates the proliferation of embryonic stem cell-derived cardiac progenitor cells [48],
and PITX1 plays a role in pituitary and hindlimb development [49]. These transcription factors
may also regulate the differentiation of HSPCs, as do their respective family members LHX2 [50],
CITED2 [51] and PITX2 [52]. In the future, the expression of these newly identified genes in yolk sac
hemangioblasts should be validated in the early embryo. In addition, further investigation will be
required to resolve their potential roles in the hemangioblast.

3.3. Expression Pattern of DIA1R in the Chick Embryo

The second most highly expressed gene in the hemangioblast transcriptome was the chick ortholog
of human cXorf36 or DIA1R (deleted in autism 1 related; +4.2 fold change; Table 1), a gene implicated
in autism spectrum disorders and X-linked mental retardation [53,54]. The chick DIA1R gene (cDIA1R
or C1HXorf36) encodes a protein of 430 amino acids that is 65% identical and 87% similar to the
human protein [54]. DIA1R genes are found exclusively in vertebrates and their function is largely
unknown. Based on sequence analysis, DIA1R proteins were predicted to contain a signal peptide and
a highly conserved PIP49_C protein-kinase domain, characteristic of the FAM69 family of kinase-like
proteins [53,55]. These features suggest that DIA1R proteins may regulate molecular traffic or interfere
with the function of secreted factors [53].

The analysis of cDIA1R expression during chick development revealed that this gene is expressed
in yolk sac hemangioblasts, blood islands and endothelial cells of the dorsal aorta, endocardium and
head vasculature (Figure 3), which are regions known to have hemogenic capability [56]. In particular,
cDIA1R expression appears to be higher in cells that are morphologically similar to hemogenic
endothelial cells (Figure 3D’,E’,F”). In the brain neuroepithelium, cDIA1R is expressed in the vascular
endothelium and in isolated cells that resemble microglial cells (Figure 3H; [57]). Consistently with
our observations, transcripts of DIA1R orthologs have been detected in hematopoietic progenitors
and endothelial cells in zebrafish embryos ([17]; cc058 gene), in endothelial and microglial cells from
embryonic and adult mouse brains ([58]; 4930578C19Rik gene) and in human endothelial cells [59].
Taken together, these findings suggest that DIA1R may be a good marker and potential regulator of
the intraembryonic hemogenic lineages that derive from yolk sac hemangioblasts.
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cDIA1R is detected both in the neurovasculature (arrows) and in isolated cells that may be microglial 
cells (arrowheads). Scale bars: 50 μm in B’,E’,F”; 100 μm in D’,F’. 

Over the past decade, increasing evidence supports a key role for microglia in the pathogenesis 
of neurodevelopmental disorders such as autism [60–62]. In addition, reduced rates of angiogenesis 

Figure 3. cDIA1R expression in the chick embryo. cDIA1R in situ hybridization was performed on
whole-mount embryos at HH5 (A), 8 (B), 11 (C), 13 (D), 17 (E), 18 (F,G) and on a E10 brain cryosection
(H). (B’,D’,E’,F’,F”) Sections of correspondent whole-mount embryos. (C1–C4) Regions of embryo in
(C) at high magnification. cDIA1R expression starts to be detected at HH5 (A) in the extraembryonic
mesoderm that will form the yolk sac blood islands at later stages (B,B’,C4). In HH11 embryos (C),
cDIA1R is also expressed in the endocardium (arrow in C1), in the developing head vasculature
(arrowheads in C1 and C2), in cells associated with the dorsal mid- and hindbrain (asterisks in C2)
and in the dorsal aorta region (DA; C3). At later stages (D–H), cDIA1R expression is detected in
most blood vessels of the embryo, such as the dorsal aorta (DA in D,D’), intersomitic vessels (E),
head vasculature (E’,F,F’,F”) and allantois (G). Higher intensity is found in particular blood vessel cells
that resemble hemogenic endothelial cells (D’,E’,F”; arrowheads). In the brain neuroepithelium (H),
cDIA1R is detected both in the neurovasculature (arrows) and in isolated cells that may be microglial
cells (arrowheads). Scale bars: 50 µm in B’,E’,F”; 100 µm in D’,F’.

Over the past decade, increasing evidence supports a key role for microglia in the pathogenesis
of neurodevelopmental disorders such as autism [60–62]. In addition, reduced rates of angiogenesis
and perfusion abnormalities have been found in autistic brains [63]. Therefore, DIA1R may play a
role in microglia and/or in neurovascular development, which can underlie its implication in autism
and mental retardation disorders. We are currently investigating DIA1R potential function using
overexpression and loss-of-function approaches in different vertebrate models.
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