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Abstract

The analysis of contingency tables is a powerful statistical tool used in experiments with cat-

egorical variables. This study improves parts of the theory underlying the use of contingency

tables. Specifically, the linkage disequilibrium parameter as a measure of two-way interac-

tions applied to three-way tables makes it possible to quantify Simpson’s paradox by a sim-

ple formula. With tests on three-way interactions, there is only one that determines whether

the partial interactions of all variables agree or whether there is at least one variable whose

partial interactions disagree. To date, there has been no test available that determines

whether the partial interactions of a certain variable agree or disagree, and the presented

work closes this gap. This work reveals the relation of the multiplicative and the additive

measure of a three-way interaction. Another contribution addresses the question of which

cells in a contingency table are fixed when the first- and second-order marginal totals are

given. The proposed procedure not only detects fixed zero counts but also fixed positive

counts. This impacts the determination of the degrees of freedom. Furthermore, limitations

of methods that simulate contingency tables with given pairwise associations are

addressed.

1 Introduction

Categorical variables are observed in many branches of science. Contingency table theory

serves to infer such data. A great spectrum of analytical methods was presented by Agresti [1].

In the present paper, some parts of the theory are improved and some methods are added.

In their historical overview, Fienberg and Rinaldo [2] recognized Bartlett’s [3] important

contribution to the theory of contingency tables. Simpson [4] clarified some remaining ques-

tions from Bartlett’s‘paper on the three-way interaction in a 2×2×2 table. In addition to theo-

retical results, Simpson gave an example in which the health benefits of a drug appeared

separately in both males and females. However, if the data were merged, no effect was seen.

Furthermore, Blyth [5] showed that the merged data might even indicate a strong negative

effect of the drug. This phenomenon was called “Simpson’s paradox”.

Several examples have been found in real life, demonstrating the principle’s great practical

relevance and the many different situations in which it may arise. Many studies have
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investigated how to circumvent this paradox, how best to deal with it, or how to interpret it

(e.g., [6–14]). However, no short and elucidating presentation has so far succeeded in showing

the relation of the paradox and the inner structure of the table.

Different measures are used for the association between two categorical variables, particu-

larly for a 2×2 table (odds ratio, Yule’s Q, Pearson’s φ and ρ). Quantitative genetics, for exam-

ple, uses the so-called linkage disequilibrium (LD). The application of LD to the two-way and

partial associations delivers a closed formula quantifying Simpson’s paradox. The formula is

derived in Section 2 and applied in Section 7.1, and it allows a clear, correct, and straightfor-

ward interpretation of a famous Berkeley data set.

In a strong sense, Bartlett [3] did not investigate a “three”-way interaction but a “third”-way

interaction for a 2×2×2 table. He considered the question of whether a third variable (sex) has

an effect on the association between the other two variables (success and treatment). He sug-

gested comparing the odds ratios of the partial 2×2 tables (one for males and one for females).

When they agree, the third variable has no effect.

Simpson [4] realized that Bartlett’s definition of no three- (or third-) way interaction

implies a symmetry property: when the third variable has no effect on the interaction between

variables one and two (agreeing odds ratios of both sub-tables), then automatically, the first

variable has no effect on the interaction between variables two and three, and the second vari-

able has no effect on the interaction between variables one and three. Therefore, Bartlett’s [3]

test on “no three-way interaction” is a global one, and the alternative hypothesis would be

“there is at least one variable with three-way interaction”. Although such a test is not senseless

at all, it is hard to believe that someone is interested in whether the interaction between treat-

ment and sex for the group of successful patients equals the interaction between treatment and

sex for the group of failed patients.

Therefore, a test for a single variable (“sex has no influence on the effect of a drug” versus

“the effect of the drug differs between males and females”) is still needed. It is clear that, for

such a test, the odds ratio is not a suitable measure. A measure of association is needed that

does not have the symmetry property. Simpson [4] mentioned that symmetry is lost for the

root mean square contingency parameter, what we now call the correlation coefficient. How-

ever, he did not investigate this measure. It appears that this important issue has not been

treated elsewhere so far, possibly because it does not fit the hierarchical log-linear model

approach. In Section 3, this gap in the theory is closed. The method is applied to the Berkeley

data in Section 7.2.

In quantitative genetics, the concept of LD has been generalized to three and four variables

as the so-called three- or four-locus LD [15–20]. The three-locus LD of Bennett [15] is an addi-

tive measure and related to the additive measure of Lancaster [21, 22]. It was shown [23, 24]

that this measure is not consistent with Bartlett’s criterion, which is actually the solution of a

cubic equation.

Bartlett’s criterion, although appearing intuitive, turned out to agree with the maximum-

likelihood equation of the log-linear model. Streitberg [25, 26] discussed the shortcomings of

the log-linear model, treated the tables as multinomial distributions, and argued for additive

measures. Obviously (and unfortunately), he was not aware of the investigations into tables

and entropy performed by Good [27].

Shannon’s [28] principle of entropy is a successful concept in physics, engineering, infor-

mation theory, and statistics. Khinchin [29] delivered mathematical foundations for this prin-

ciple. In particular, he investigated a measure H for the information content of an experiment

(with a finite size n of possible events) as a functional of the probability function. The higher

the value ofH, the lower the information content of the experiment. He made two assump-

tions: (i)H is largest when the events have unique probabilities 1/n and (ii) if an experiment
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consists of two experimental parts, A and B, then the information content of the whole experi-

ment,H(AB), should be the sum of the information content of the first partH(A) and the

information content of the second part, given the first part, denoted byH(B|A), i.e.,

HðA BÞ ¼ HðAÞ þ HðBjAÞ: ð1Þ

He showed that, under these reasonable assumptions, there is only one measure that is con-

tinuous: the entropy H ¼ � l
Pn
i¼1
pi ln pi, where λ is a positive constant and often set to one,

i.e.,

H ¼ �
Pn
i¼1
pi ln pi: ð2Þ

Good [27] treated contingency tables as multinomial distributions and determined the dis-

tribution with maximum entropy and given restraints, such as one- and two-way marginals. It

turned out that his solution for 2×2×2 tables agreed with Bartlett’s criterion.

There is another point speaking against Bennett’s linear measure. In genetic multi-locus

linkage analyses, Hill [23] showed that a table with an absence of three-way interactions may

have negative “probabilities”. That is, given a table with a three-way interaction, the corre-

sponding hypothetical table without a three-way interaction would not exist. Such a dilemma

cannot arise by applying the entropy principle because of its concavity.

It can be concluded that, for 2×2×2 tables, the multiplicative measure has a deeper impact

than the additive one. On the other hand, the additive measure is much more tractable. There-

fore, we ask which additive measure comes nearest (is most similar) to the multiplicative one.

Section 4 examines whether Bennett’s measure is the first-order Taylor expansion of Bartlett’s

measure.

A central theme in the progress of contingency table theory is the introduction and devel-

opment of the log-linear model. In their historical overview, Fienberg and Rinaldo [2] show

that a special point was the difficulty in handling zero counts. The nonexistence of the maxi-

mum-likelihood estimator (MLE) was indicated by the lack of convergence of the algorithms

used to compute the MLE. Later, Fienberg and Rinaldo [30, 31] generated a numerical proce-

dure specifically designed to check for the existence of the MLE. They based their approach on

investigations of extended exponential families and the geometrical properties of log-linear

models. Practically, the question about zero counts was whether the marginal totals enforce

the cells to have zero counts. In such cases, the cell is fixed and this therefore also influences

the degrees of freedom. So far, it has been overlooked that not only zero count cells but also

positive count cells might be fixed. Section 5 presents an elementary algorithm that detects all

fixed cells.

There are variables with categories that have an obvious order, and such variables are called

ordinally scaled. [32–35] documented the progress and problems with simulating ordinally

scaled variables with given pairwise Pearson’s correlation coefficients. The techniques are

modifications and adaptations of simulation techniques for multivariate normally distributed

variables with a given correlation matrix. However, there are no procedures available that

work for every admissible correlation matrix. Section 6 presents a simulation method that has

no such theoretical limitations.

[35] handled the same task but with demanded pairwise associations measured with Good-

man and Kruskal’s γ. [36] generated a program for Lee’s procedure. Although the authors did

not mention it, the method is not suitable for simulating all admissible scenarios. These short-

comings are overcome in Section 6.

In Section 7, a real data set reflecting Simpson’s paradox is analyzed with tools derived in

Sections 2 and 3.
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The paper concludes with a discussion of the issues. Special attention is given to the applica-

tion of the entropy principle.

2 The quantification of Simpson’s paradox

Let X and Y be two random categorical variables with IX and IY categories, respectively. In an

experiment, n objects are inspected to identify which categories of variables X and Y apply.

The counts ni,j, i = 1,2,� � �,IX, j = 1,2,� � �,IY, are written in a IX×IY contingency table. The proba-

bility that an object matches categories Xi and Yj is pi,j = P(X = Xi^Y = Yj), and its estimate is

ni,j/n. The association between categories Xi and Yj is defined by the linkage disequilibrium

(LD) measures:

DXi ;Yj≔pi;j � pi;�p�;j; i ¼ 1; 2; � � � ; IX; j ¼ 1; 2; � � � ; IY: ð3Þ

The point indicates summation over the assigned variable, e.g., pi;� ¼
PIY
j¼1
pi;j, delivering

marginal probabilities.

The LD DXi ;Yj is assigned to the pair (Xi, Yi) of categories. The relation of this pair to all

other pairs can be summarized by collapsing the IX×IY table into the 2×2 table
pi;j pi;�j
p�i ;j p�i;�j

" #

,

where the bar over an index means summation over all categories with exception of the cate-

gory defined by the index. The 2×2 table then takes the form

pi;j pi;�j
p�i;j p�i ;�j

" #

¼
pi;j pi;� � pi;j

p�;j � pi;j 1 � pi;� � p�;j þ pi;j

" #

: ð4Þ

It is easy to check that DXi ;Yj ¼ pi;j p�i;�j � pi;�j p�i ;j holds. Pearson’s correlation coefficient can

then be written as

rXi ;Yj ¼
DXi ;Yj

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pi;�ð1 � pi;�Þp�;jð1 � p�;jÞ

q ; ð5Þ

which coincides with Pearson’s φ.

With Z being a third categorical variable, the cell probabilities of the associated IX×IY×IZ
table are now pi,j,k = P(X = Xi^Y = Yj^Z = Zk), k = 1,2,� � �,IZ. Eq (3) then change to

DXi ;Yj ¼ pi;j;� � pi;�;�p�;j;�: ð6Þ

Using the definition of conditional probabilities, pi,j|k = pi,j,k/p•,•,k, the conditional analogue

to Eq (3) is

DXi ;YjjZk ¼ pi;jjk � pi;�jkp�;jjk ¼
pi;j;k
p�;�;k
�
pi;�;kp�;j;k
p2
�;�;k

¼

¼
pi;j;k
p�;�;k
�
ðDXi ;Zk þ pi;�;�p�;�;kÞðDYj;Zk þ p�;j;�p�;�;kÞ

p2
�;�;k

¼

¼
pi;j;k
p�;�;k
� pi;�;�p�;j;� �

DXi ;ZkDYj ;Zk
p2
�;�;k

�
p�;j;�DXi ;Zkþpi;�;�DYj ;Zk

p�;�;k

ð7Þ
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Because
PIZ
k¼1
DXi;Zk ¼

PIZ
k¼1
ðpi;�;k � pi;�;�p�;�;kÞ ¼ pi;�;� � pi;�;�p�;�;� ¼ 0 and, analogously,

PIZ
k¼1
DYj;Zk ¼ 0, the weighted sum �DXi ;Yj jZ is

�DXi ;Yj jZ ¼
PIZ
k¼1
p�;�;kDXi ;YjjZk ¼

¼
PIZ
k¼1
p�;�;k

pi;j;k
p�;�;k
� pi;�;�p�;j;� �

DXi;ZkDYj;Zk
p2
�;�;k

�
p�;j;�DXi ;Zk þ pi;�;�DYj;Zk

p�;�;k

 !

¼

¼
PIZ
k¼1
pi;j;k � p�;�;kpi;�;�p�;j;� �

DXi;ZkDYj;Zk
p�;�;k

�
p�;j;�DXi ;Zk þ pi;�;�DYj;Zk

1

 !

¼

¼ pi;j;� � pi;�;�p�;j;� � p�;j;�
PIZ
k¼1
DXi ;Zk � pi;�;�

PIZ
k¼1
DYj ;Zk �

PIZ
k¼1

DXi ;ZkDYj;Zk
p�;�;k

¼

¼ DXi ;Yj �
PIZ
k¼1

DXi ;ZkDYj;Zk
p�;�;k

:

The result is formulated as a theorem.

THEOREM: For an IX×IY×IZ table, the difference between the two- way LD and the weighted

sum of the partial LDs is

DXi;Yj � �DXi ;YjjZ ¼
PIZ
k¼1

DXi;ZkDYj;Zk
p�;�;k

; i 2 1; 2; � � � ; IXf g; j 2 1; 2; � � � ; IYf g: ð8Þ

For a 2×2×2 table, the difference becomes

DXi ;Yj � �DXi ;YjjZ ¼
DXi ;ZkDYj;Zk
p�;�;kð1 � p�;�;kÞ

; i; j; k 2 1; 2f g: ð9Þ

The simplification for the 2×2×2 table follows from inserting IZ = 2 into Eq (8) and regard-

ing the well- known formula DA;B¼ � DA;�B.

3 Testing the equality of partial interactions for one variable

The null hypothesis for Bartlett’s test concerning 2×2×2 tables is the agreement of all partial

interactions (measured as the odds ratio), while the alternative hypothesis is that at least one

pair of partial interactions is unequal. Here, the effect (if any) of the third variable on the inter-

action between the first and the second variables is inferred. Let the first variable be the out-

come of the experiment with categories “success” and “no success”, the second variable be the

applied treatment with categories “1” and “2” (one treatment could be a placebo), and the

third variable be the sex of the patient with categories “male” and “female”.

The null hypothesis is that both partial interactions of the third variable coincide. The hypo-

thetical table with agreeing partial interactions and the observed table have several parameters

in common: three two-way marginal totals, three one-way marginal totals, and the sample size
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(zero-way marginal total). The equational system for the probabilities is then

1

p1;�;�

p�;1�
p�;�;1
p1;1;�

p1;�;1

p�;1;1

2

6
6
6
6
6
6
6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
7
7
7
7
7
7
5

¼

1

p1

p2

p3

p1;2

p1;3

p2;3

2

6
6
6
6
6
6
6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
7
7
7
7
7
7
5

¼

1 1 1 1 1 1 1 1

1 1 1 1 0 0 0 0

1 1 0 0 1 1 0 0

1 0 1 0 1 0 1 0

1 1 0 0 0 0 0 0

1 0 1 0 0 0 0 0

1 0 0 0 1 0 0 0

2

6
6
6
6
6
6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
7
7
7
7
7
5

p1;1;1

p1;1;2

p1;2;1

p1;2;2

p2;1;1

p2;1;2

p2;2;1

p2;2;2

2

6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
5

; ð10Þ

where the second vector defines the abbreviations of the first one. Solving system (10) gives

pðp1;1;1Þ ¼

p1;1;1

p1;1;2

p1;2;1

p1;2;2

p2;1;1

p2;1;2

p2;2;1

p2;2;2

2

6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
5

¼

p1;1;1

� p1;1;1

� p1;1;1

p1;1;1

� p1;1;1

p1;1;1

p1;1;1

� p1;1;1

2

6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
5

þ

0

p1;2

p1;3

p1 � p1;2 � p1;3

p2;3

p2 � p1;2 � p2;3

p3 � p1;3 � p2;3

1 � p1 � p2 � p3 þ p1;2 þ p1;3 þ p2;3

2

6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
5

: ð11Þ

With eight cells and seven conditions, there is one free parameter, p1,1,1. The partial tables

for male and female patients are presented in Table 1.

There is certainly no effect due to sex if both sub-tables agree. Solving this system of linear

equations gives p1,2 = p1 p2, p1,3 = p1 p3 and p2,3 = p2 p3; i.e., all variables were pairwise

independent.

If the odds ratios of both sub-tables agree, this would apply also for the sub-tables of the

other variables, as acknowledged by Simpson [4]. Hence, it would not be a specific property of

sex.

Thinking about LD, which is a relative measure (since the maximum and minimum depend

on the one-way marginals), and the correlation coefficient, the better measure for associations

in agreement will be the correlation coefficient.

Table 1. Success × treatment sub-tables for the sexes with given one- and two-way marginals.

Treatment 1 Treatment 2

Male Success p1;1;1
p3

p1;3 � p1;1;1
p3

No Success p2;3 � p1;1;1
p3

p1;1;1 � p1;3 � p2;3þp3
p3

Female Success p1;2 � p1;1;1
1� p3

p1;1;1 � p1;2 � p1;3þp1
1� p3

No Success p1;1;1 � p1;2 � p2;3þp2
1� p3

1 �
p1;2þp1;3þp2;3 � p1 � p2 � p1;1;1

1� p3

https://doi.org/10.1371/journal.pone.0262502.t001
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Determination for both sub-tables gives

r11 ;21 j31
¼
p1;1;1p3 � p1;3p2;3

A
and ð12Þ

r11 ;21 j32
¼
ð1 � p3Þðp1;2 � p1;1;1Þ � ðp1 � p1;3Þðp2 � p2;3Þ

B
ð13Þ

with A ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffip1;�;1p�;1;1p�;2;1p2;�;1

p
and B ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffip1;�;2p�;1;2p�;2;2p2;�;2

p
.

Solving r11 ;21 j31
¼ r11 ;21j32

with respect to p1,1,1 finds

~p1;1;1 ¼
B p1;3p2;3 þ Afð1 � p3Þp1;2 � ðp1 � p1;3Þðp2 � p2;3Þg

B p3 þ Að1 � p3Þ
¼
B p1;�;1p�;1;1 þ Aðp�;�;2p1;1;� � p1;�;2p�;1;2Þ

B p�;�;1 þ A p�;�;2
: ð14Þ

Now we have the observed table and, via Eq (11), the table npð~p1;1;1Þ under the null hypoth-

esis (no sex effect). The χ2 test with one degree of freedom can be used for the decision

between the null and alternative hypothesis (sex has an effect). A measure for the third-way

interaction can be defined by setting D1;2;3 ¼ ~p1;1;1 � p1;1;1.

4 A linear expression for Bartlett’s measure for three-way

association

Bartlett’s measure D for a three-way association in a 2×2×2 table is determined by solving

ðp1;1;1 � DÞðp1;2;2 � DÞðp2;1;2 � DÞðp2;2;1 � DÞ ¼ ðp1;1;2 þ DÞðp1;2;1 þ DÞðp2;1;1 þ DÞðp2;2;2 þ DÞ ð15Þ

for D. Here, the probabilities pi,j,k are assigned to counts ni,j,k by pi,j,k = ni,j,k/n•,•,•. Vanishing D
indicates the absence of a three-way association.

Bennett [15] introduced an additive measure of the three-way association:

L1;2;3 ¼ p1;1;1 � ðp1 p2 p3 þ p1 D2;3 þ p2 D1;3 þ p3 D1;2Þ: ð16Þ

In the introduction, it was concluded that the multiplicative measure (15) has more impact

and the linear measure (16) could be an approximation. Therefore, it can be checked whether

the linear measure could be the first-order Taylor expansion of the nonlinear one.

Substituting the LD expressions pi,j = Di,j+pi pj for the two-way probabilities of Eq (11)

leads to

pðp1;1;1Þ ¼

p1;1;1

p1;1;2

p1;2;1

p1;2;2

p2;1;1

p2;1;2

p2;2;1

p2;2;2

2

6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
5

¼

p1;1;1

� p1;1;1

� p1;1;1

p1;1;1

� p1;1;1

p1;1;1

p1;1;1

� p1;1;1

2

6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
5

þ

0

D1;2 þ p1 p2

D1;3 þ p1 p3

p1ð1 � p2 � p3Þ � D1;2 � D1;3

D2;3 þ p2 p3

p2ð1 � p1 � p3Þ � D1;2 � D2;3

p3ð1 � p1 � p2Þ � D1;3 � D2;3

D1;2 þ D1;3 þ D2;3 þ ð1 � p1Þð1 � p2 � p3Þ þ p2 p3

2

6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
5

: ð17Þ

Inserting the cell probabilities into Eq (15) gives a cubic equation of argument p1,1,1. Using

Mathematica, the roots of (15) were determined and the first-order Taylor expansions at LDs
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of zero and one-way probabilities of one half were carried out. The real solution was

pðTaylorÞ1;1;1 ¼ 64ð1 � 2p1Þð1 � 2p2Þð1 � 2p3ÞD1;2D1;3D2;3 þ 4ð1 � 2p1ÞD1;2D1;3þ

þ 4ð1 � 2p2ÞD1;2D2;3 þ 4ð1 � 2p3ÞD1;3D2;3 þ p3D1;2 þ p2D1;3 þ p1D2;3 þ p1p2p3:
ð18Þ

The appropriate measure for the three-way interaction would beDðTaylorÞ ¼ p1;1;1 � p
ðTaylorÞ
1;1;1 .

It can be seen that Bennett’s measure differs from this but covers the four simplest terms.

Therefore, Bennett’s criterion can be interpreted as a simplified version of the first-order Tay-

lor expansion of Bartlett’s criterion. The second-order expansion was also available. The only

unexpected result was that one coefficient was not a power of 2: the largest term was

� 29� 212ð1 � 2p1Þð1 � 2p2Þð1 � 2p3ÞD2
1;2
D2

1;3
D2

2;3
. The other coefficients were the following

(excluding linear terms): 212 (three terms), 29 (three terms), 28 (three terms), and 25 (six

terms).

5 The determination of fixed cells

5.1 The application of linear programming

Assume an observed I1×I2×� � �×Ic contingency table n, i.e., there are c categorical variables,

with Ii categories per variable i, i2(1,2,� � �,c}. The contingency table n is characterized by the

counts ni1 ;i2 ;���;ic , with n ¼ n�;:::;� ¼
P
i1 ;i2 ;���;ic

ni1 ;i2 ;���;ic counts overall. The one-way marginal totals

niki ¼ n�;...;�;ki ;�;...;� can be written as

niki ¼
XI1

k1¼1

XI2

k2¼1

� � �
XIi� 1

ki� 1¼1

XIiþ1

kiþ1¼1

� � �
XIc

kc¼1

nk1 ;k2 ;...;ki� 1 ;ki;kiþ1 ;...;kc
; ð19Þ

where ki, 1�ki�Ii, is a category of variable i.
Analogously, the two-way marginal totals niki ;jkj ¼ n�;::;�;ki ;�;::;�;kj;�;::;� can be written as

niki ;jkj ¼
XI1

k1¼1

� � �
XIi� 1

ki� 1¼1

XIiþ1

kiþ1¼1

� � �
XIj� 1

kj� 1¼1

XIjþ1

kjþ1¼1

� � �
XIc

kc¼1

nk1 ;k2 ;���;ki� 1 ;ki ;kiþ1 ;���;kj� 1 ;kj;kjþ1 ;���;kc
; ð20Þ

where i and j define the involved variables and ki and kj define the appropriate categories.

The marginal totals with indices Ii, i2{1,2,� � �,c} can be determined by the others:

niIi ¼ n �
PIi � 1

ki¼1
niki ;

niIi ;jIj ¼ niIi �
PIj � 1

kj¼1niIi ;jkj ¼ 1 �
PIi � 1

ki¼1
niki �

PIj � 1

kj¼1ðnjkj �
PIi � 1

ki¼1
niki ;jkj Þ ¼

¼ 1 �
PIi � 1

ki¼1
niki �

PIj � 1

kj¼1njkj þ
PIi � 1

ki¼1

PIj � 1

kj¼1niki ;jkj :

ð21Þ

Let m be the vector of the considered marginal totals. Then, m can be written as

m ¼ ðn; n1;�;...;�; . . . ; nI1 � 1;�;...;�; n�;...;�;1; . . . ; n�;...;�;Ic � 1; n1;1;�;...;�; . . . ; n�;...;�;Ic� 1 � 1;Ic � 1Þ
0
: ð22Þ

We order the cells of n into a vector n!, with

n!¼ ð n!1; n
!

2; . . . ; n!dÞ
0
¼

¼ ðn1;1;...;1; . . . ; n1;...;1;Ic
; n1;...;1;2;1; . . . ; n1;...;1;2;Ic

; . . . ; n1;...;1;Ic� 1 ;Ic
; . . . ; nI1 ;I2 ;...;Ic� 1 ;Ic

Þ
0
;

ð23Þ

and thus establish a one-to-one relation between n!j and ni1 ;i2 ;...;ic� 1 ;ic
, with
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j ¼
Pc� 1

m¼1
fðim � 1Þ

Qc
k¼iþ1
Ikg þ ic. If j is given, the corresponding c-tuple i1, i2,. . .,ic−1, icmust

be evaluated sequentially. The length of n! is d ¼
Qc
k¼1
Ik.

Then, the restraints can be formulated as

m ¼ A n!; ð24Þ

where matrix A has entries zero or one and ensures the addition of the demanded components

of n!. For a 2×2×2 table, matrix A can be seen in Eq (10). In the first row of A, there are only

ones, ensuring the addition of all components of n!. In the second row, there is a one if the

corresponding component of n! has category one at the first variable, etc.

We now introduce a table ~n with the same dimensions as the observed table n. As with Eq

(23), the unknown cell counts ~ni1 ;i2 ;���;ic are ordered into a vector n , with

n ¼ ð n 1; n
 

2; . . . ; n dÞ
0
¼

¼ ð~n1;1;...;1; . . . ; ~n1;...;1;Ic
; ~n1;...;1;2;1; . . . ; ~n1;...;1;2;Ic

; . . . ; ~n1;...;1;Ic� 1 ;Ic
; . . . ; ~nI1 ;I2 ;...;Ic� 1 ;Ic

Þ
0
:

ð25Þ

Since we are looking for a table ~n that has the same zero-, one-, and two-way marginals as

the observed table n,

m ¼ An ð26Þ

must be valid, where matrix A is the same as before. Then, the set S with

S ¼ f~njm ¼ An ^ n � 0g; ð27Þ

where n � 0 is meant componentwise and ensures nonnegativity, contains all admissible

tables satisfying the constraints.

There is at least one element of S: the observed table n. Assuming that there are two ele-

ments in S, n1 and n2, then the linear combination λ n1+(1−λ) n2 with 0�λ�1 is also admissi-

ble. Hence, the set of admissible tables is convex and, furthermore, the theory of linear

optimization is applicable. In particular, there exist unique solutions (e.g., see [37]) for the lin-

ear optimization problems

Maximize n i under the conditions m ¼ A n and n � 0 ð28AÞ

and

Minimize n i under the conditions m ¼ A n and n � 0 ð28BÞ

with i2{1,2,� � �,d}. An upper bound bui can be obtained from Eq (28A) and a lower bound bli
from Eq (28B) for n 1 : bli � n

 
i � bui . This is of importance, since bli ¼ b

u
i means that n i is

fixed. The aim is to find such components. Sequential checking of bli ¼ b
u
i ; i ¼ 1; 2; � � � ; d,

leads to the set, sayO, of the components for which the equality is valid. Several numerical soft-

ware packages contain a linear programming or optimization procedure. As an example, the

4×4×4 data from Table 6 of Fienberg and Ricardo [2] was analyzed, with the results presented

in Table 2. There were 24 zero and 12 nonzero counts, which turned out to be fixed.

Table 2 provides more information (such as ~n1;4;2¼ 6 � ~n1;1;2Þ than can be obtained from

the described algorithm. We will come to that now.

5.2 The application of algebraic software

Applying algebraic software such as Mathematica [38] to problems (28A) and (28B) has an

advantage compared to pure numerical algorithms. The system of equations m ¼ An can be
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solved using the procedure “Solve”, thus decreasing the number of variables. For a 2×2×2

table, the solution of Eq (24) is

x ¼ xh þ xS ¼

~n1;1;1

� ~n1;1;1

� ~n1;1;1

~n1;1;1

� ~n1;1;1

~n1;1;1

~n1;1;1

� ~n1;1;1

2

6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
5

þ

0

n1;1;�

n1;�;1

n1;�;� � n1;1;� � n1;�;1

n�;1;1
n�;1;� � n1;1;� � n�;1;1
n�;�;1 � n1;�;1 � n�;1;1

n � n1;�;� � n�;1;� � n�;�;1 þ n1;1;� þ n1;�;1 þ n�;1;1

2

6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
5

: ð29Þ

Here, the representation x = xh+xs is used [37], where xh is the solution of the homogenous

system, i.e., 0 = A xh, and xs is a special solution, i.e., m = A xs. Eq (29) is just Eq (11) times n.

From the eight initial variables of the table, there is only one left: ~n1;1;1.

In the general case of an I1×I2×� � �×Ic table, there are d ¼
Qc
i¼1
Ii cells or initial variables. In

matrix A of Eq (24), there are
Pc
i¼1
ðIi � 1Þ linear independent rows for the one-way totals,

Pc� 1

i¼1

fðIi � 1Þ
Pc
j¼iþ1
ðIj � 1Þg linear independent rows for the two-way totals, and one row for

the overall total n. The number, r, of linear independent rows is therefore

r ¼ 1þ
Pc
i¼1
ðIi � 1Þ þ

Pc� 1

i¼1
fðIi � 1Þ

Pc
j¼iþ1
ðIj � 1Þg; or ð30Þ

Table 2. Cell counts for given zero-, one-, and two-way marginal totals for Table 6 of Fienberg and Rinaldo [2]. (The original table is obtained by inserting ~n1;1;2 ¼ 4

and ~n1;1;3 ¼ ~n2;3;1 ¼ ~n3;2;1 ¼ 1).

Cell counts ~ni;j;k

j = 1 j = 2 j = 3 j = 4

i = 1 k = 1 0 0 0 4

k = 2 ~n1;1;2 0 0 6 � ~n1;1;2

k = 3 ~n1;1;3
10 � ~n1;1;2 � ~n1;1;3 0 ~n1;1;2 � 2

k = 4 6 � ~n1;1;2 � ~n1;1;3
~n1;1;2 þ ~n1;1;3 3 2

i = 2 k = 1 0 0 ~n2;3;1
3 � ~n2;3;1

k = 2 9 � ~n1;1;2 0 6 � ~n2;3;1
~n1;1;2 þ ~n2;3;1 � 3

k = 3 1þ ~n1;1;2 3 4 6 � ~n1;1;2

k = 4 0 0 2 0

i = 3 k = 1 0 ~n3;2;1
4 � ~n2;3;1 � ~n3;2;1 2þ ~n2;3;1

k = 2 5 6 4þ ~n2;3;1
3 � ~n2;3;1

k = 3 0 2 0 0

k = 4 0 3 � ~n3;2;1
3þ ~n3;2;1 0

i = 4 k = 1 5 2 � ~n3;2;1
1þ ~n3;2;1 3

k = 2 1 0 0 0

k = 3 6 � ~n1;1;2 � ~n1;1;3
~n1;1;2 þ ~n1;1;3 � 3 0 0

k = 4 ~n1;1;2 þ ~n1;1;3 � 4 6 � ~n1;1;2 � ~n1;1;3 � ~n3;2;1 4 � ~n3;2;1 0

https://doi.org/10.1371/journal.pone.0262502.t002
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r ¼ c � 2ð Þ
c � 1

2
� I�

� �

þ I2
�
�
Pc
i¼1
fIi
Pi
j¼1
Ijg: ð31Þ

The system of linear equations m ¼ An can be solved for r components of n . There

remain f = d−r free variables, i.e.,

f ¼
Qc
i¼1
Ii � c � 2ð Þ

c � 1

2
� I�

� �

� I2
�
þ
Pc
i¼1
fIi
Pi
j¼1
Ijg: ð32Þ

For a three-way table, investigated by Roy and Kastenbaum [39], this number is the well-

known f = (I1−1)(I2−1)(I3−1). For c�3 and a unique number of categories I, f turns out to be

f ¼ Ic �
cðI � 1ÞfcðI � 1Þ � I þ 3g

2
� 1: ð33Þ

Let y be the vector of the f free variables. Then, the linear optimization problems have the

Mathematica forms

bui ¼ Maximize½f n i; n
 

1 � 0; n 2 � 0; . . . ; n d � 0g; fy1; y2; . . . ; yfg� ð34AÞ

and

bli ¼ Minimize½f n i; n
 

1 � 0; n 2 � 0; . . . ; n d � 0g; fy1; y2; . . . ; yfg� ð34BÞ

and must be calculated for i = 1,. . .,d. Let O be the set O ¼ fijbli ¼ b
u
i ^ i 2 f1; . . . ; dgg, i.e.,

the set of indices of fixed cells.

When O is not empty, the analysis can be refined. In Eq (26), the fixed counts substitute for

the variables of the fixed cells. This means that vector n in m ¼ An has to be renewed by set-

ting n i ¼ bli; i 2 O. Analogously, the list of variables is reduced by canceling the variables of

the fixed cells. The solution of the new system of equations then further reduces the number of

free variables. Applying this to Table 6 of Fienberg and Rinaldo [2] yielded Table 2 of this

study. Only four free variables are left over. In this way, a very compact expression for admissi-

ble tables was reached.

6 The simulation of ordinally scaled variables with predefined

associations

6.1 Association measured by Pearson’s ρ
The aim is to simulate an I1×I2×� � �×Ic contingency table of c numerical variables with given

one- way marginals and Pearson‘s correlation coefficients ρi,j, i,j2{1,2,� � �,c}. The categories of

the variables are characterized by numbers. These numbers, viðikiÞ, i2{1,2,� � �,c}, ki2{1,. . .,Ii},
may agree with the index of the category, i.e., vi(i1) = 1, vi(i2) = 2,. . ., viðiIiÞ ¼ Ii for variable i.

The contingency table is characterized by the probabilities pk1 ;k2 ;...;kc , where ki2{1,. . .,Ii}
defines the category of variable i. The probabilities are unknown at present. Now the equations

are collected to ensure the validity of the given conditions.

The one-way probabilities, piki , are assumed to be known. Here, i is the number of the vari-

able and ki is the category of that variable. As before, piki may be obtained from the c-way
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probabilities, pk1 ;k2 ;...;kc , by summing over all indices except index i, i.e.,

piki ¼ p�;...;�;iki ;�;...;�: ð35Þ

Hence, the expectations mi ¼
PIi
ki¼1
viðkiÞpiki and the variances s2

i ¼
PIi
ki¼1
viðkiÞ

2piki � m
2
i

of the variables i2{1,. . .,c} are also known.

The pairwise correlation coefficients, ρi,j, are defined by

ri;j ¼
covi;j
jsijjsjj

¼

PIi
ki¼1

PIj
kj¼1½viðkiÞ � mi�½vjðkjÞ � mj�piki ;jkj

jsijjsjj
¼

PIi
ki¼1

PIj
kj¼1 viðkiÞvjðkjÞpiki ;jkj � mimj

jsijjsjj
; ð36Þ

where piki ;jkj are the two-way probabilities of variables i and j, which can be determined via

piki ;jkj ¼ p�;...;�;iki ;�;...;�;jkj ;�;...;�. Hence,

ri;jjsijjsjj þ mimj ¼
PIi
ki¼1

PIj
kj¼1viðkiÞvjðkjÞp�;...;�;iki ;�;...;�;jkj ;�;...;� ð37Þ

must hold. The left-hand side of this equation only involves constants; i.e., the left-hand side is

a constant. The right-hand side of Eq (37) is a linear combination of the cell probabilities;

therefore, the theory of linear programming can be applied.

For convenience, Mathematica and the principles of Section 5.2 are used to proceed. First,

the systemW of the linear equations (1 ¼ p�;...;�;
Pc
i¼1
ðIi � 1Þ ¼ I� � c equations for the one-

way marginals and (c−1)c/2 equations for the two-way correlations) is solved.

Then, the lower and upper bounds for the first free variable are determined using the proce-

dures Minimize and Maximize of Mathematica. Three cases need to be considered. (1) The

procedure finds no solution, in which case there is no table satisfying the demanded correla-

tions (in the literature, there was no practical and sufficient criterion for the existence of a

table). (2) The lower bound and upper bound agree. Then, the first free variable is fixed. (3)

The lower and upper bound differ, so there are a variety of tables satisfying the demanded cor-

relations. Therefore, it must be decided whether an average table or an extreme one is pre-

ferred. We suggest simulating at least an average table and possibly afterward simulating

extreme tables. For the average table, we assign the mean of the bounds to the first free vari-

able. For extreme tables, either the lower or the upper bound can be assigned to the first free

variable.

In either case, the first free variable is now assigned to a constant value, and the system of

equationsW is updated by inserting that value for the variable. Then, the lower and upper

bounds for the new first free variable are determined. (The output “no solution” may no longer

appear.) This algorithm is repeated until there are no free variables left and all cell probabilities

are determined.

Now, we have all d ¼
Qc
k¼1
Ik cell probabilities. We interpret them to define a d– point dis-

tribution. Then, the inversion algorithm of Lee [35] can be used to simulate the table.

For the case with no solution for the restraints, admissible scenarios can be determined.

Instead of maximizing and minimizing the cell probabilities, we determine the bounds for the

correlation parameters. For example, let the one-way marginals of a 3×3×3 table be p1 = (0.1,

0.3, 0.6)0, p2 = (0.2, 0.4, 0.4)0, and p3 = (0.3, 0.3, 0.4)0. The appropriate expectations and vari-

ances are thereby defined. Then, the procedures Maximize and Minimize are used to calculate

the bounds for the correlation parameters. The obtained bounds are −0.797�ρ1,2�0.797,

−0.808�ρ1,3�0.808, and −0.837�ρ2,3�0.933. Maximizing ρ1,2+ρ1,3+ρ2,3 yields 2.537, with

ρ1,2 = 0.797, ρ1,3 = 0.808, and ρ2,3 = 0.933. Minimizing ρ1,2+ρ1,3+ρ2,3 yields −1.400, with
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ρ1,2 = −0.598, ρ1,3 = −0.449, and ρ2,3 = −0.354. For ρ = ρ1,2 = ρ1,3 = ρ2,3, we obtain the admissible

interval −0.598�ρ�0.797.

6.2 Association measured by Goodman and Kruskal’s γ
Lee [35] developed an algorithm for the simulation of a table with given one-way marginal

totals and given pairwise association measures in terms of Goodman and Kruskal’s γ. Ibrahim

and Suliadi [36] provided a macro program of this algorithm.

This section is organized as follows. First, the algorithm of Lee [35] is described, including

three improvements. Then, we use it in two examples showing scenarios of association parameters

where a table satisfying the demands does not exist and, even when such a table exists, it cannot be

determined with Lee’s [35] method. Later, hints are provided for how to handle these problems.

Consider two ordinally scaled categorical variables Y1 and Y2 with I1 and I2 categories,

respectively. Let the (unknown) joint probabilities be denoted by pi,j = P(Y1 = i^Y2 = j). Con-

sider two random objects with observations of both variables, O1 = (Y1, Y2) and O2 = (Y01, Y02).

The probability that the first object has categories i and j and the second object has categories i0

and j0 is then pi,j pi0,j0. In addition to being objects with observations, O1 and O2 are also two

points of the I1×I2 table, and they may be concordant (i<i0 and j<j0 or i>i0 and j>j0), discor-

dant (i<i0 and j>j0 or i>i0 and j<j0), or indifferent (at least one equality sign appears). Adding

the concordant and the discordant cases, the definition of γ becomes

S ¼
P
i<i0

P
j<j0pi;jpi0;j0 þ

P
i>i0

P
j>j0pi;jpi0;j0;

D ¼
P
i<i0

P
j>j0pi;jpi0;j0 þ

P
i>i0

P
j<j0pi;jpi0;j0;

g ¼
S � D
Sþ D

:

ð38Þ

Note that this definition deviates from that of Lee [35] ones. (This is the first improvement

by the author.) In the version from [35] or [40] the right-hand-side double sums do not

appear. In that case, however, we can obtain differing association values if we rename or inter-

change the variables. Since this is not judicious in the actual context, the symmetrical version

(38) is applied. However, this does not affect the ideas of Lee [35] in an essential way.

Following Lee [35], for given one-way marginals, i.e., for given p ¼ ðp1;�; p2;�; . . . ; pI1 ;�Þ0
and q ¼ ðp�;1; p�;2; . . . ; p�;I2Þ0, the maximum gamma is γ = 1. The probabilities pi,j carrying this

property can be determined by the following routine. With an outer loop i = 1,2,� � �,I1 and for

each i with an inner loop j = 1,2,� � �,I2 (or vice versa), set

pi;j ¼ minðpi; qjÞ and update pi ¼ pi � pi;j and qj ¼ qj � pi;j: ð39Þ

(This is the second improvement by the author. The author thought that Lee [35] meant the

same, but his version was hard to understand.)

For negative gammas, the method must be modified. [35] and [36] stated that a two-way

table with perfect negative association (i.e., γ = −1) can be obtained from the two- way table

with perfect positive association (i.e., γ = 1) by reversing the order of categories for one of the

variables. To see that this is not correct, consider a table with three variables where all associa-

tion parameters are γ = 1. Reversing the order of categories of the first variable changes two

associations to γ = −1. If one then reverses the order of categories of the second or third vari-

able, there remain two associations with γ = −1 and one with γ = 1. If we then reverse the order

of categories of the remaining variable that has not changed so far, we again have three associa-

tions of γ = 1. Therefore, a table with three variables, where all association parameters are γ =

−1, cannot be generated.
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However, the joint probabilities for γ = −1 can be determined by reversing the components

of the one-way marginal totals p, i.e., p ¼ ðpI1 ;�; pI1 � 1;�; . . . ; p1;�Þ0, applying routine (39), and

next reversing the rows of matrix fpi;jgI1�I2 , thus obtaining the table pmin with the originally

demanded one-way marginal totals. (This was the third improvement by the author.)

Denote the generated I1×I2 table with popt and the I1×I2 table for independent Y1 and Y2

with p0, i.e., p0
i;j ¼ pi;�p�;j. Then, the convex linear combination p(λ) = (1−λ)p0+λ popt, 0�λ�1,

defines a table p(λ) satisfying the one-way marginal totals. For λ = 0, p(0) = p0 holds and the

appropriate gamma is zero, i.e., γ[p(0)] = 0. Also, for λ = 1, p(1) = popt holds and the appropri-

ate gamma is one, i.e., γ[p(1)] = 1. Since γ[p(λ)] is a continuous function of λ, there must be a

λ� so that γ[p(λ�)] =Γ, 0�Γ�1, where Γ is the nominal amount of association. Therefore, Lee

[35] solves numerically the equation

g½pðlÞ� ¼ G ð40Þ

with respect to λ. With solution λ�, the table pΓ = λ� p0+(1−λ�) popt satisfies the nominal Γ.

The main aim is to generate an I1×I2×� � �×Ic table for c categorical variables with given one-

way marginal totals and nominal pairwise associations Γi,j, i,j2{1,2,� � �,c}, i<j. For each Γi,j,

routine (40) is applied, leading to c(c−1)/2 two-way marginal totals pGi;j . Each entry pGi;ji0;j0 , with

i02{1,2,� � �,Ii} and j02{1,2,� � �,Ij}, can be expressed as a sum of the c–way probabilities, thus

exhibiting linear equations. Lee [35] acknowledged that a solution of a system of linear equa-

tions with additional inequalities, pi�0, can be found by applying linear programming. Having

determined an admissible table, the simulation is carried out with the inversion algorithm.

The described method of determining an admissible table will be called the γ−method from

here on.

Neither Lee [35] nor Ibrahim and Suliadi [36] mentioned any problems finding a solution

and gave the impression that the procedure always finds one. An example is given to prove

that this is not always the case.

Consider a 2×2×2 table with given one-way marginal totals (0.2, 0.8)0, (0.4. 0.6)0, and (0.5,

0.5)0 for variables one, two, and three, respectively. It can be confirmed that a table exists that

satisfies the nominal pairwise association parameters 1 = Γ1,2 = Γ1,3 = Γ2,3. Now, the nominal

pairwise association parameters are set to Γ1,2 = −1, Γ1,3 =1, and Γ2,3 = 1. Routine (39) delivers

the probabilities for the three 2×2 sub-tables pG1;2 ; pG1;3 , and pG2;3 .

It is not necessary to solve (40), since a priori, λ = 1 holds.

Now, the zero-, one-, and two-way marginal totals are known, and the system of linear

equations can be established. There is one free parameter, and the three-way table satisfying

the restraints is presented in Table 3.

From p1,1,2 = −p1,1,1 and p1,1,1, p1,1,2�0, it follows that p1,1,1 = p1,1,2 = 0 must hold. Therefore,

p2,2,1 = −0.1 would follow; i.e., there is no table satisfying the restraints.

One could think that, if an admissible table exists, it can be determined by the γ-method.

We now show that this is not correct. As an example, our task is to generate a 3×3×3 table with

one-way marginal totals p1 = (0.1, 0.3, 0.6)0, p2 = (0.2, 0.4, 0.4)0, and p3 = (0.3, 0.3, 0.4)0 and

Γ1,2 = −1 Γ1,3 = 1 Γ2,3 = 1

0 0.2 0.2 0 0.4 0 (41)

0.4 0.4 0.3 0.5 0.1 0.5

https://doi.org/10.1371/journal.pone.0262502.t003
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pairwise Goodman and Kruskal’s association parameters −Γ1,2 = Γ1,3 = Γ2,3 = 0.6023. The sub-

tables with maximum associations are determined via (39) and presented in Table 4.

The 3×3 sub-tables for independent variables were determined and are presented in

Table 5.

Now, the 3×3 sub-tables for association parameters −Γ1,2 = Γ1,3 = Γ2,3 = 0.6023 are gener-

ated by determining the coefficient λ due to Eq (40). The results are given in Table 6.

These two-way marginal totals are written as a linear system. Together with the inequalities

pi,j,k�0, they should be solved by linear programming. As it turns out in this case, there is no

solution. To see why, the linear system is solved to reduce the number of variables. From

3×3×3 variables pi,j,k, there are eight free variables. It is not necessary to present the complete

table. Five cell probabilities are the following:

p1;1;3 ¼ 0:0107 � p1;1;1 � p1;1;2

p1;2;3 ¼ 0:0213 � p1;2;1 � p1;2;2

p2;1;3 ¼ 0:0320 � p2;1;1 � p2;1;2

p2;2;3 ¼ 0:0640 � p2;2;1 � p2;2;2

p3;3;1 ¼ p1;1;1 þ p1;2;1 þ p2;1;1 þ p2;2;1 � 0:1502:

From the first four equations, it follows that p1,1,1�0.0107, p1,2,1�0.0213, p2,1,1�0.032, and

p2,2,1�0.064. Hence, the sum p1,1,1+ p1,2,1+ p2,1,1+ p2,2,1 is less than or equal to 0.128. Then,

p3,3,1, given by the last equation, is smaller than zero. Therefore, the γ-method is not able to

find a solution for the formulated task.

However, there is a table satisfying the conditions that was found with the procedure

NMaximize from Mathematica. The variable Γ was maximized under the restraints of the

zero- and one-way marginal totals Γ = −Γ1,2 = Γ1,3 = Γ2,3 and nonnegative variables. The maxi-

mum was Γ = 0.6023, and the obtained table is given in Table 7.

To simplify the check of the side conditions, the sub-tables are given in Table 8. Although

there are similarities to the two-way sub-tables in Table 4, there is one specific difference: zeros

do appear, supporting an extreme table.

Table 3. A: Cell probabilities for given one- and two-way marginal totals. B: Table for association parameters Γ1,2 = −1, Γ1,3 = 1, and Γ2,3 = 0.714.

A) Bona fide table satisfying the restraints B) Table for extreme associations

j = 1 j = 2 j = 1 j = 2

i = 1 k = 1 p1,1,1 0.2−p1,1,1 i = 1 k = 1 0 0.2

k = 2 −p1,1,1 p1,1,1 k = 2 0 0

i = 2 k = 1 0.4−p1,1,1 p1,1,1−0.1 i = 2 k = 1 0.3 0

k = 2 p1,1,1 0.5−p1,1,1 k = 2 0.1 0.4

https://doi.org/10.1371/journal.pone.0262502.t004

Table 4. 3×3 sub-tables for association parameters Γ1,2 = −1, Γ1,3 = 1, and Γ2,3 = 1.

Γ1,2 = −1 Γ1,3 = 1 Γ2,3 = 1

0 0 0.1 0.1 0 0 0.2 0 0

0 0 0.3 0.2 0.1 0 0.1 0.3 0

0.2 0.4 0 0 0.2 0.4 0 0 0.4

https://doi.org/10.1371/journal.pone.0262502.t005
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The tool to determine an admissible association parameter scenario is still applied to the

2×2×2 table from above. Since there was no solution for −Γ1,2 = Γ1,3 = Γ2,3 = 1, it would be

interesting to find an extreme constellation for which a solution would exist. The term

−Γ1,2+Γ1,3+Γ2,3 was maximized under the restraints of the one-way marginal totals and non-

negative variables using the procedure NMaximize from Mathematica. The maximum was

−Γ1,2+Γ1,3+Γ2,3 = 2.714 and the obtained table is given in Table 3B. The determination of the

sub-tables and the comparison with the sub-tables of Table 2 shows that the first two sub-tables

agree, but the third differs.

The association parameter turned out to be 0.714. Therefore, it is possible to simulate a

table for −Γ1,2 = Γ1,3 =1 and Γ2,3 = 0.714. To simulate a table with agreeing association parame-

ters (absolute values), we can determine an admissible table by applying NMaximize with the

restraints Γ = −Γ1,2 = Γ1,3 = Γ2,3 and maximize Γ. In this case, we obtain Γ = 0.859. If we infer

the restraints Γ = −Γ1,2 = Γ1,3 = Γ2,3, we obtain the admissible interval −0.859�Γ�1.

6.3 Association measured by Somers’ d
There is one similarity between Pearson’s ρ and Goodman and Kruskal’s γ: both take values

between −1 and 1. A difference is that ρ = 1 means determinism, i.e., the observation of the cat-

egory of one variable of an object is sufficient to know the category of the second variable.

This is not generally true for γ = ±1, since such an event only indicates that the table with

maximum or minimum association is present. In fact, Lee [35] called it misleading perfect

(negative) association. The three 2×2 tables shown here for γ = 1, 0, -1 have the same one-way

marginals, p1 = (0.8, 0.2)0 and p2 = (0.1, 0.9)0.

Table 5. 3×3 sub-tables for independent variables.

Γ1,2 = 0 Γ1,3 = 0 Γ2,3 = 0

0.02 0.04 0.04 0.03 0.03 0.04 0.06 0.06 0.08

0.06 0.12 0.12 0.09 0.09 0.12 0.12 0.12 0.16

0.12 0.24 0.24 0.18 0.18 0.24 0.12 0.12 0.16

https://doi.org/10.1371/journal.pone.0262502.t006

Table 6. 3×3 sub-tables for association parameters −Γ1,2 = Γ1,3 = Γ2,3 = 0.6023.

Γ1,2 = −0.6023 Γ1,3 = 0.6023 Γ2,3 = 0.6023

λ = 0.4670 λ = 0.5100 λ = 0.4872

0.0107 0.0213 0.0680 0.0657 0.0147 0.0196 0.1282 0.0308 0.0410

0.0320 0.0640 0.2041 0.1461 0.0951 0.0588 0.1103 0.2077 0.0821

0.1574 0.3147 0.1279 0.0882 0.1902 0.3216 0.0615 0.0616 0.2769

https://doi.org/10.1371/journal.pone.0262502.t007

Γ2,3 = 0.714

0.3 0.1

0.2 0.4

https://doi.org/10.1371/journal.pone.0262502.t010

γ = 1 γ = 0 γ = −1

0.1 0.7 0.08 0.72 0 0.8

0 0.2 0.02 0.18 0.1 0.1

https://doi.org/10.1371/journal.pone.0262502.t011
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The respective Pearson’s correlation coefficients are ρ = 0.1667, ρ = 0, and ρ = −0.6667.

That means, for the given one-way marginals, that γ = 1 stands for low (positive) association,

while γ = −1 stands for large (negative) association. Hence, the γ-scale is a relative one and

worthless without additional information. Following [40], Somers’ d is a better measure of

association (dependence) between ordinal variables. It is a modification of Goodman and

Kruskal’s γ. Since a symmetrical version is needed here, the definition of T becomes

T ¼
X

i<i0

X

j¼j0
pi;jpi0 ;j0 þ

X

i¼i0

X

j<j0
pi;jpi0 ;j0 þ

X

i¼i0

X

j>j0
pi;jpi0;j0 þ

X

i>i0

X

j¼j0
pi;jpi0 ;j0 ð42Þ

and the definition of d is

d ¼
S � D
Sþ Dþ T

¼
S � D

1 �
P
i

P
jp2
i;j

: ð43Þ

The right-hand-side version results from 1 ¼
P
i

P
j

P
i0
P
j0pi;jpi0;j0 and

Sþ Dþ T ¼ 1 �
P
i¼i0
P
j¼j0pi;jpi0 ;j0 ¼ 1 �

P
i

P
jp

2
i;j.

It is easy to see that d = 0 holds if the variables are independent, and d = ±1 holds if the cate-

gory of one variable can be deduced from knowing the category of the other variable, i.e.,

when the table has a (anti-) diagonal structure. For the 2×2 tables from above, d = 0.087, d = 0,

and d = −0.471 hold, respectively.

To give an impression of the relation of Somers’ d and Pearson’s ρ, the parameters were cal-

culated for the sub-tables of Table 8. Somers’ values were d1,2 = −0.686, d1,3 = 0.622, and d2,3 =

0.857, and Pearson’s values were ρ1,2 = −0.797, ρ1,3 = −0.808, and ρ2,3 = 0.933.

To find an admissible table satisfying the one-way marginals and the nominal pairwise asso-

ciation parameters Δi,j, it is possible to apply a slightly modified version of the γ−method. For a

certain pair i,j of variables, p0 and popt (which are pmax for Δ>0 and pmin for Δ<0) are deter-

mined as before. It is useful to calculate d for the table popt. The nominal Δ should reflect less

Table 7. 3×3×3 table satisfying 0.6023 = −Γ1,2 = Γ1,3 = Γ2,3 and one-way marginal totals p1 = (0.1, 0.3, 0.6)0, p2 =

(0.2, 0.4, 0.4)0, and p3 = (0.3, 0.3, 0.4)0.

j = 1 j = 2 j = 3

i = 1 k = 1 0 0.0262 0.0417

k = 2 0 0 0.0321

k = 3 0 0 0

i = 2 k = 1 0.0072 0.1193 0

k = 2 0 0.0181 0.0820

k = 3 0 0 0.0738

i = 3 k = 1 0.1056 0 0

k = 2 0.0872 0.0806 0

k = 3 0 0.1558 0.1708

https://doi.org/10.1371/journal.pone.0262502.t008

Table 8. Two-way sub-tables from Table 7.

Γ1,2 = −0.6023 Γ1,3 = 0.6023 Γ2,3 = 0.6023

0 0.0262 0.0738 0.0679 0.0321 0 0.1128 0.0872 0

0.0072 0.1374 0.1554 0.1265 0.1001 0.0734 0.1454 0.0987 0.1558

0.1928 0.2364 0.1708 0.1056 0.1678 0.3266 0.0417 0.1141 0.2442

https://doi.org/10.1371/journal.pone.0262502.t009
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association than d. Then, similar to the γ-method, for each pair of variables,

pðlÞ ¼ ð1 � lÞp0 þ lpopt

d½pðlÞ� ¼ D
ð44Þ

must be solved numerically. As with the γ–method, the obtained two-way marginals p(λ�) are

written as a system of linear equations. These are solved by linear programming software. If no

solution is obtained, the nominal association parameters need to be weakened.

This was the analog to the γ-method. The additional tools presented in Sections 6.1 and 6.2

can be adapted.

Consider again the example of the 3×3×3 table with one-way marginals p1 = (0.1, 0.3, 0.6)0,

p2 = (0.2, 0.4, 0.4)0, and p3 = (0.3, 0.3, 0.4)0. Then, the bounds −0.686�d1,2�0.595,

−0.667�d1,3�0.622, and −0.667�d2,3�0.857 are obtained. Maximizing d1,2+d1,3+d2,3 yields

2.074, with d1,2 = 0.594, d1,3 = 0.622, and d2,3 = 0.857. Minimizing d1,2+d1,3+d2,3 yields −0.984,

with d1,2 = −0.244, d1,3 = −0.073, and d2,3 = −0.667. For d = d1,2 = d1,3 = d2,3, the admissible

interval is −0.308�d�0.594.

For the example of Table 3B, d1,2 = −0.250, d1,3 = 0.323, and d2,3 = 0.286 are calculated. (For

comparison, Pearson’s correlation coefficients were ρ1,2 = −0.408, ρ1,3 = 0.500, and ρ2,3 = 0.408.)

For the sub-tables of Table 8, d1,2 = −0.255, d1,3 = 0.282, and d2,3 = 0.318 are calculated. (For

comparison, Pearson’s correlation coefficients were ρ1,2 = −0.390, ρ1,3 = 0.429, and ρ2,3 = 0.475.)

6.4 How to obtain tables for all admissible associations measured by

Somers’ d

As was worked out in the last section, the adapted γ–method does not always allow the deter-

mination of a table satisfying nominal associations measured by Somers’ d, although one

exists. It was also reported that a numerical maximization was able to find the solution. How-

ever, a large number of iterations were necessary, and the method may fail if the number of

variables increases.

Assume that a table p� exists that satisfies the nominal two-way associations measured by

Somers’ d. Let the expression d� = d(p�) define this property, where d� is the vector of the

nominal two-way associations and d(p) indicates the vector of the actual two-way associations

from table p.

From Section 6.1, it is known how to determine a table with given Pearson’s correlation

coefficients ρ, where ρ is the vector of the two-way correlation coefficients. Denote the gener-

ated table with p(ρ). We are looking now for ρ, so that p(ρ) has the desired property with

respect to d�, i.e., d� = d[p(ρ)]. This is realized by a minimization procedure:

min
ρ
kd� � d½pðρÞ�k: ð45Þ

We used the function FindMinimum of Mathematica with starting points ρ = d� and the

Euclidean norm. The function p(ρ) had to be specified in two ways, and subsequently, the

minima and maxima of the free variables were evaluated. The cell of the actual variable was set

to the mean of the minimum and maximum. We denote the specification with p(ρ, mean).

When ρ left the admissible region, i.e., when there was no solution for the restraints, the pen-

alty term kd�−d[p(ρ, mean)]k was set to a large value. The argument for which the norm is

minimum is named ρ�.
The procedure was applied to the repeatedly used one-way marginals of a 3×3×3 table. In

Section 6.3, the admissible range −0.308�d�0.594 was determined for d = d1,2 = d1,3 = d2,3.

Nearly extreme scenarios have been chosen. For d� ¼ ðd�
1;2
; d�

1;3
; d�

2;3
Þ
0
¼ ð� 0:3; � 0:3; � 0:3Þ0,
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the appropriate ρ� vector became (−0.437, −0.447, −0.456)0. The obtained table is not presented

here but can be determined via p(ρ�, mean) and the technique from Section 6.1. For d� =

(0.59, 0.59, 0.59)0, the appropriate ρ� vector became (0.791, 0.764, 0.750)0. It was confirmed

with other examples that the Pearson’s coefficients were often (absolutely) larger the Somers’.

But this is not a general rule, as proven with d� = (0, 0, 0)0. Then, the appropriate ρ� vector

became (0.182, 0.057, 0.013)0 and deviated considerably from the expected ρ��(0, 0, 0)0.

Recall that a solution need not be unique. Assuming independence between all pairs of vari-

ables, the related table is determined by multiplying the one-way marginals involved in the

specified cells. For this independence table, d = (0, 0, 0)0 and ρ = (0, 0, 0)0 hold. If we wish to

generate the independence table, given the demand d� = (0, 0, 0)0, we must give up the choice

of the mean value of the admissible intervals (bl, bu) of the free variables. Instead, we take that

value of the interval that is nearest to the value pind of the independence table. If bl�pind�bu

holds, p = pind is taken, and if pind<bl holds, p = bl is taken. For bu<pind, the choice is p = bu.
We denote this specification with p(ρ, ind). The application of this principle led indeed to ρ� =

(0, 0, 0)0. Applied to d� = (−0.3, −0.3, −0.3)0, the appropriate ρ� vector became (−0.442, −0.440,

−0.454)0. For d� = (0.59, 0.59, 0.59)0, the appropriate ρ� vector became (0.790, 0.750, 0.735)0.

Obviously, for high associations, the difference between p(ρ, ind) and p(ρ, mean) was not

great. For the most extreme associations, −0.308 and 0.594, p(ρ, ind) and p(ρ, mean) result in

the same table.

For d� = (0, 0, 0)0, p(ρ, max) was still evaluated, i.e., the maximum was always chosen from

the admissible intervals for the free variables. Then, the appropriate ρ� vector became (0.193,

0.130, 0.026)0. Analogously, with p(ρ, min), the appropriate ρ� vector became (−0.100, −0.090,

−0.086)0. This might suffice to illustrate the admissible range of tables satisfying nominal

associations.

When the minimum of (45) was not zero for a nominal d�, no table for the demands was

found. Then, the nearest admissible table due to the used norm was obtained.

7 Application to the Berkeley data

7.1 Why the two-way LD differs from the partial LDs and their mean

One real-life example for Simpson’s paradox is particularly impressive. The University of Cali-

fornia, Berkeley, was sued for bias against women who had applied for admission. The reduced

data version found at https://en.wikipedia.org/wiki/Simpson%27s_paradox is presented in col-

umns 1–5 of Table 9.

Table 9. Numbers of denied and admitted applications at six departments as part of the study [41]. Variable 1 is sex (men—women), variable 2 is admittance

(denied–admitted), and variable 3 is the department (1 to 6). D1;3i
is the LD between variable 1 and variable 3 (which is now dichotomous: Department i versus the rest).

D2;3i
is the LD between variable 2 and variable 3 (which is again dichotomous: Department i versus the rest). Parameter p3i

stands for the frequency of applications to

department i.D1;2j3i
is the LD between the first category of variable 1 and the first category of variable 2 within Department i, and r1;2j3i

is the corresponding correlation

coefficient.

Dept. Men Women D1;3i
D2;3i

p3i D1;2j3i
ρ1;2j3i

i Denied Admitted (%) Denied Admitted (%)

1 313 512 (62) 19 89 (82) 0.060 −0.053 0.206 0.021 0.14

2 207 353 (63) 8 17 (68) 0.047 −0.032 0.129 0.002 0.02

3 205 120 (37) 391 202 (34) −0.049 0.008 0.203 −0.007 −0.03

4 279 138 (33) 244 131 (35) −0.012 0.008 0.175 0.005 0.02

5 138 53 (28) 299 94 (24) −0.035 0.018 0.129 −0.008 −0.04

6 351 (22 (6) 317 24 (7) −0.011 0.051 0.158 0.003 0.02

Total 1493 1198 (44.5) 1278 557 (30.4) 0 0 1 0.0034 0.03

https://doi.org/10.1371/journal.pone.0262502.t012
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Dividing the number of admitted men by the number of applying men shows a rate of

1198/2691 = 44.5%, while dividing the number of admitted women by the number of applying

women shows a rate of 557/1835 = 30.4%. The large difference between 44.5% and 30.4%

resulted in a perception of discrimination against women. Therefore, the question was whether

women were really handicapped or if there were other reasons that led to the differing rates.

Bickel and collegues [41] examined the department-level data and did not find clear evi-

dence of discrimination against women. Averaged over the departments, they found a moder-

ate preference for women. In principle and qualitatively, this corresponds to the inspection of

the last two columns of Table 9. Note that positive values mean that more men than women

relative to their frequencies were denied; i.e., more women were admitted. The authors of [41]

also worked out the reason for the great discrepancy between the apparent overall handicap

for women and the almost absent handicaps within the departments. The reason was the pre-

ferred applications of women to departments with low admission rates. However, this reason

was not found by straightforward theory but by good detective work.

With the LD approach of Section 2, the parameter for the overall association between sex

and admission is D1,2. The overall LD is D1,2 = (1493×557−1198×1278)/45262 = −0.0341,

showing the handicap for women. (Significance tests should and can be applied, but they are

not the focus here.) This approach does not account for the influence of the departments.

Therefore, the averaged LDs of the departments D1;2j3i
is a more reliable parameter. Direct

evaluation of �D1;2j3 via the eighth column of Table 9 gives �D1;2j3 ¼ 0:0034, reflecting a small

preference for women. The difference between both parameters is D1;2 �
�D1;2j3 ¼ � 0:0375.

Now, the result (8) of Section 2 is applied. With it, the difference can be determined in a

completely different manner. The difference between D1,2 and �D1;2j3 is
P6

i¼1
D1;3i
D2;3i

=p3i
. The

first summand, D1;31
D2;31

=p31
, is determined as follows. D1;31

belongs to the 2×2 table for

Department 1, where the first column is assigned to “men” and the second column to

“women”. The first row is assigned to “Department i”. The second row is assigned to the com-

plement, i.e., to the rest of departments. In Department 1, 825 men and 108 woman applied.

Overall, 2691 men and 1835 women applied; i.e., 2691−825 men and 1835−108 women applied

to the other departments. The numbers are presented in Table 10 together with those for

denied and admitted applicants at department 1.

We obtain D1;31
¼ ð825� 1727 � 108� 1866Þ=45262 ¼ 0:056. The positive sign says that

the applications of men appeared more often than the average. Analogously, D2;31
¼

ð332� 1154 � 601� 2439Þ=45262 ¼ � 0:053 is calculated. The negative sign indicates

that admittance was more often than the average. We need still p31
, the probability of

application to Department 1, which is p31
¼ ð825þ 108Þ=4526 ¼ 0:206. Hence,

D1;31
D2;31

=p31
¼ � 0:056� 0:053=0:206 ¼ � 0:014. When columns 6, 7, and 8 are completed,

the difference between D1,2 and �D1;2j3 can be calculated:

D1;2 �
�D1;2j3 ¼

P6

k¼1

D1;3i
D2;3i

p3i

¼ � 0:0375: ð46Þ

Table 10. Numbers of men and women with application to department 1 and numbers of denied and admitted applicants at department 1. “Rest” means depart-

ments two to six.

Men Women Denied Admitted

Department 1 825 108 332 601

Rest 1866 1727 2439 1154

Total 2691 1835 2771 1755

https://doi.org/10.1371/journal.pone.0262502.t013
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It is easy to see that the difference becomes particularly large (positive) when D1;3i
and D2;3i

have the same sign within the departments, because then all summands are positive. Also, the

difference becomes particularly small (negative) when D1;3i
and D2;3i

have different signs

within the departments, because then all summands are negative. Inspection of columns 6 and

7 of Table 9 proves the negative correlation of D1;3i
and D2;3i

within the Berkeley data.

The interpretation is that the apparent discrimination against women was caused by a prop-

erty of the departments. Those with high admittance rates had more male applicants and those

with low admittance rates had more female applicants. While Bickel and colleagues [41] had to

be good detectives to discover this trend, the new approach makes it obvious immediately. The

remark in [41] concerning the role of the size of the departments has to be verified, since p3i

appears in the denominator in (46). See also Eq (49B).

7.2 The determination of parsimonious models fitting the data

The aim is to infer whether a proven three-way interaction is caused by all three-way interac-

tion parameters or only by a subset of them. With the Berkeley data, it is shown that the search

for a parsimonious model fitting the data can be successful.

The multinomial distribution of Table 9 has 2×2×6 = 24 parameters. Eliminating zero-,

one-, and two-way marginals results in five free variables. To determine the distribution with-

out a three-way interaction, the entropy was maximized for these variables. The maximum

2.888 was reached for ~p1;1;1 ¼ 0:0653; ~p1;1;2 ¼ 0:0456; ~p1;1;3 ¼ 0:0477; ~p1;1;4 ¼ 0:0618, and

~p1;1;5 ¼ 0:0321. Comparison with the observed table yields a χ2 value of 18.8, speaking to non-

agreement (p = 0.002) and the existence of a three-way interaction.

The three-way interaction is quantified by the three-way interaction parameters

D1;1;i ¼ n1;1;i=4526 � ~p1;1;i. The counts for the variables were n1,1,1 = 313, n1,1,2 = 207, n1,1,3 =

205, n1,1,4 = 279, and n1,1,5 = 138. The corresponding three-way interaction parameters are

therefore D1,1,1 = 0.0038, D1,1,2 = 0.00014, D1,1,3 = −0.0024, D1,1,4 = −0.00018, and D1,1,5 =

−0.0016. The sixth three-way disequilibrium parameter, D1,1,6, linearly depends on the others.

Actually, the sum
P6

i¼1
D1;1;i is zero, i.e., D1,1,6 = 0.00021. The largest absolute value appeared

for the first department.

All three-way interaction parameters differing from zero reflect a contribution to three-way

interaction. To quantify these contributions, the partial 2×2 tables under the hypothesis of an

absence of three-way interactions were compared with the observed ones. The χ2 values for

the six categories were 20.6, 0.1, 2.4, 0.01, 2.1, and 0.1, respectively. Obviously, the first depart-

ment indeed plays a dominant role.

A table {pi,j,k} fitting the observed table must therefore trim D1,1,1 to zero. This can be

guaranteed by setting the free parameter p1,1,1 to n1,1,1/4526. Then, there remain four free

parameters. Theoretically, one could now derive maximum-likelihood estimates to fit them,

but the use of the maximum entropy principle under restraints is easier. The restraints are the

zero-, one-, and two-way marginals and p1,1,1 = 0.0692. Then, the four remaining free parame-

ters are determined by numerically maximizing the entropy. The maximum H = 2.886 was

reached for p1,1,2 = 0.0454, p1,1,3 = 0.0463, p1,1,4 = 0.0605, and p1,1,5 = 0.0314. A comparison of

the corresponding table with the observed one yielded a χ2 value of 2.56; i.e., the data were

met. For the hypothetical table, the partial correlations r1;2j3i
for Departments 1 to 6 were

0.136, −0.003, −0.007, −0.007, −0.006, and −0.004, respectively; i.e., with the exception of

r1;2j31
, they were absolutely small. The complete table, multiplied by n, is presented in Table 11

under Method A.

PLOS ONE The quantification of Simpson’s paradox and other contributions to contingency table theory

PLOS ONE | https://doi.org/10.1371/journal.pone.0262502 February 24, 2022 21 / 32

https://doi.org/10.1371/journal.pone.0262502


Now an alternative method is investigated. In Section 3, we worked out for 2×2×2 tables

how to infer the agreement of partial correlations. This approach is straightforward to general-

ize to 2×2×I3 tables with I3>2. (For that, the right-hand-side expression of Eq (14) is useful.

There, i substitutes for index “1” and I3 substitutes for index “2”. The same substitutions are

necessary for the third indices of A and B.) Then, the global hypothesis for the Berkeley data

would be that all partial correlations with respect to the third variable agree. It can be formu-

lized by demanding r1;2j31
¼ r1;2j32

¼ � � � ¼ r1;2j36
; i.e., there are actually five equations. Since

there are also five degrees of freedom, the hypothetical table may be calculated explicitly. The

hypothetical agreeing partial correlation coefficients became 0.019. A comparison of the hypo-

thetical 2×2×6 table with the observed data gave a χ2 value of 17.4 (p = 0.0036); i.e., one cannot

be convinced with unique correlation coefficients. Comparisons of the partial 2×2 tables with

the observed ones showed one significant deviation. For Department 1, the χ2 value became

19.2. All other χ2 values were smaller than 2.1.

Comparisons of the partial 2×2 tables with the tables for independence showed no signifi-

cant deviation. All χ2 values were smaller than 0.4. That means 0 ¼ D1;2j32
¼ D1;2j33

¼ � � � ¼

D1;2j36
can be assumed. These five equations are solved by the five arguments p1,1,1 = 0.0683,

p1,1,2 = 0.0455, p1,1,3 = 0.0466, p1,1,4 = 0.0608, and p1,1,5 = 0.0316. The comparison of the associ-

ated table with the observed data gave a χ2 value of 3.69; i.e., the model fits the data. Compari-

sons of the partial 2×2 tables with the observed ones also showed no significant deviation. All

χ2 values were less than 1.2. Comparisons of the partial 2×2 tables with those under indepen-

dence showed one significant deviation. For Department 1, the χ2 value became 10.8

(p = 0.001, the correlation was r1;2j31
¼ 0:107, somewhat smaller than before). All other χ2 val-

ues were of course zero. The table is presented under Method B in Table 11.

Method B gained from the finding that five partial correlations could be set to zero. Under dif-

ferent circumstances, it could be possible that the five partial correlations agree but are not zero.

In that case, r1;2j3i
¼ r1;2j3iþ1

can be assumed for i2{2, 3, 4, 5}. For these four equations, four vari-

ables can be eliminated. The last variable, p1,1,1, is determined via maximum likelihood, i.e., by

maximizing ∑i,j,kni,j,kln(pi,j,k). The solution can be viewed under Method C in Table 11. The com-

parison of the table with the observed data gave a χ2 value of 2.73; i.e., the model fits the data.

Comparisons of the partial 2×2 tables with the observed ones also showed no significant deviation.

All χ2 values were less than 0.72. Comparisons of the partial 2×2 tables with those under indepen-

dence showed one significant deviation. For Department 1, the χ2 value became 16.7 (p = 0.00004,

the correlation was r1;2j31
¼ 0:134). All other χ2 values were less than 0.03.

Thus, the apparent discrimination against women with respect to admittance turned out to

be untrue. In Departments 2 to 6, men and women were admitted equally. In the first depart-

ment, men had a significant handicap.

Table 11. Fitted counts of the Berkeley data. Five free variables were fitted in three ways. A: First variable n1,1,1 taken from Table 9, four from maximizing entropy. B:

Five fromD1,1,i = 0, i = 2,3,. . .,6. C: Four from agreeing r1;2j3i
¼ r1;2j3iþ1

; i ¼ 2; 3; 4; 5, with the fifth the log-likelihood estimate.

Dep. Men Women

Denied Admitted Denied Admitted

i A B C A B C A B C A B C

1 313.0 308.9 312.7 512.0 516.1 512.3 19.0 23.1 19.3 89.0 84.9 88.7

2 205.6 205.8 205.5 354.4 354.2 354.5 9.4 9.2 9.5 15.6 15.8 15.5

3 209.5 211.0 209.8 115.5 114.0 115.2 386.5 385.0 386.2 206.5 208.0 206.8

4 274.0 275.4 274.3 143.0 141.6 142.7 249.0 247.6 248.7 126.0 127.4 126.3

5 142.2 142.9 142.2 48.8 48.1 48.8 294.8 294.1 294.8 98.2 98.9 98.2

6 348.6 349.0 348.5 24.4 24.0 24.5 319.4 319.0 319.5 21.6 22.0 21.5

https://doi.org/10.1371/journal.pone.0262502.t014
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8 Discussion

In Section 2, the LD parameter was used to quantify Simpson’s paradox. The difference

between a two-way interaction and the averaged partial interactions was derived. For a 2×2×2

table, the difference was

D1;2 �
�D1;2j3 ¼

D1;3D2;3

p3ð1 � p3Þ
: ð47Þ

(Note that the notation D1,2, e.g., means the LD between the first category of variable 1 and

the first category of variable 2, formerly denoted by D11 ;21
.) In many experiments, there is one

response variable (here it is the first one) and two explanatory variables. The latter ones can be

arranged to ensure D2,3 = 0, for example, by applying the treatments to the same fraction of

males and females. In this way, the difference is zero and Simpson’s paradox is circumvented.

Let D1,3 and D2,3 differ from zero. One could think that the difference is largest when p3 is

near zero or one. However, the value of LD depends on the one-way marginal totals. Using the

correlation coefficients (5) instead gives

D1;2 �
�D1;2j3 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p1ð1 � p1Þp2ð1 � p2Þ

p
r1;3 r2;3: ð48Þ

Thus, the absolute difference is largest when p1 and p2 are one half, and it is smallest when

p1 or p2 are zero or one. On the other hand, when p1 and p2 are zero or one, the associated LD,

i.e., D1,2, is zero. Therefore, it is useful to also consider the relative difference:

D1;2 �
�D1;2j3

D1;2

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p1ð1 � p1Þp2ð1 � p2Þ

p
r1;3 r2;3

D1;2

¼
r1;3 r2;3

r1;2

: ð49AÞ

For an I1×I2×I3 table, the appropriate expression is

1 �

�D1i ;2jj3

D1i ;2j

¼
PI3
k¼1
ð1 � p3k

Þ
r1i ;3k

r2j;3k

r1i ;2j

: ð49BÞ

When we are interested in the association between two categorical variables, such as sex

and admission at a university, it is useful to determine D1,2 or ρ1,2. If one finds preference for

one sex, this does not mean that the other sex experienced discrimination. The reason could

be that the abilities of the sexes happened to be different. Therefore, it was reasonable to con-

sider an index for the high school report as a factor. With the Berkeley data, it turned out that

the departments need to be considered as a factor. When a third factor has an effect, then �D1;2j3

gives a better estimate for the association of the two variables than D1,2. However, the value of

D1,2 is still useful. If the difference D1;2 �
�D1;2j3 is greater than zero, it follows automatically

from (47) that D1,3 and D2,3 cannot be zero and they have the same signs. If the difference is

zero, it follows that D1,3 or D2,3 are zero. If the difference is smaller than zero, D1,3 and D2,3

cannot be zero and they have different signs; i.e., the interactions have different directions.

Hence, Eqs (8) and (9) are a great help for interpreting the tables. It is particularly interest-

ing that their validity is independent of the free parameters.

Section 3 was dedicated to the question of whether the amount of interaction between two

variables depends on another categorical variable. In Section 7.2, the approach was generalized

to 2×2×I3 tables and applied to the Berkeley data. It was possible to find parsimonious models

that fit the data.
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If all variables have more than two categories, i.e., for a general I1×I2×I3 table, the third vari-

able has no effect on the associations between the first and second variable if

r1i ;2jj3k
¼ r1iþ1 ;2jþ1 j3k

ð50Þ

holds for i = 1,2,� � �,I1−1,j = 1,2,� � �,I2−1, and k = 1,2,� � �,I3−1. Analogously to (12), (13), and

(14), this system of linear equations can be solved, thereby delivering the hypothetical table

that can be compared with the observed one. If it does not fit the data, subsequently it can be

checked whether the k−th category of the third variable plays a special role. For each k, the

(I1−1)(I2−1) equations of (50) are solved. The remaining (I1−1)(I2−1)(I3−2) free variables are

found by maximizing entropy. For each k, the hypothetical table can again be tested against

the observed table.

When there is still no hit, the largest deviations from an average ρ can be searched in differ-

ent ways. There is a need for further investigations into an optimal systematic strategy to find a

parsimonious model. The model choice and multiple testing theories have to be kept in mind.

However, the new approach is suited to answering important questions and surely enriches

the theory of contingency tables.

In Section 4, the relation between Bartlett’s and Bennett’s measure on the three-way inter-

action was investigated. As summarized in the introduction, Bartlett’s measure (which he

mentioned came from R.A. Fisher) had a high degree of impact, while Bennett’s measure was a

generalization of the two-way LD based on intuition. The meaning and correctness of this

measure could therefore only be checked through its relation to Bartlett’s measure. As it turned

out, it is a simplified version of the first-order Taylor expansion of the latter one.

For 2×2×2×2 tables, the criterion for an absence of four-way interaction is a straightforward

generalization of Bartlett’s multiplicative criterion, shown by Good [27]. A generalization of

Bennett’s linear three-way measure is not straightforward [16–20].

Unfortunately, the roots of the seven-degree polynomial arising for the multiplicative mea-

sure cannot be determined algebraically, and the Taylor expansion cannot be generated

directly. However, the criterion is a function of the parameter p1,1,1,1, which is itself a function

of the one-, two-, and three-way marginal totals. Thus, further progress depends on the avail-

ability of an effective algorithm to derive multivariate Taylor expansions for implicit functions.

Since the implicit function is a polynomial (where the order of derivatives unequal to zero is

finite) and there is a high amount of symmetry, there appears to be hope.

The focus in Section 5 was on tables with zero counts. The question was whether these

counts appeared by chance or whether they were a necessary consequence from the given two-

way marginal totals. The application of linear programming was successful in obtaining fixed

zero counts. Furthermore, fixed nonzero counts can be determined.

One example of Fienberg and Rinaldo [2] was reanalyzed and lead to Table 2. For complete-

ness, the other examples were also investigated. For their Tables 4 and 7, no fixed cells were

obtained. For their Table 5, all cells turned out to be fixed. Fienberg and Rinaldo [2] character-

ized this table as yielding no MLE and wrote, “In fact, the values of both goodness of fit statis-

tics will always be almost zero, no matter what the positive counts are”. This underlines that

they did not acknowledge that the contingency table was the only one with the given marginal

totals. So far, there was no tool available to find this simple but important truth.

In cases where the number of variables could be reduced, such as with Table 2, the question

arises whether the determination of the MLEs can be optimized. One way would be to modify

commonly used procedures. Alternatively, Good’s [27] method of maximizing the entropy

under restraints can be used. Numerical maximization of the entropy of the data of Table 2

(divided by n = 113), given the two-way marginal totals, yielded p1,1,2 = 0.0316, p1,1,3 = 0.0120,
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p2,3,1 = 0.0102, and p3,2,1 = 0.0081. Due to the concavity of entropy, the convergence was excel-

lent. The other cell counts can be calculated according to the expressions in Table 2.

In Section 6, improvements were achieved for the simulation of ordinally scaled variables.

The main task was to determine an admissible table satisfying the demands. As noted above,

there might be difficulties in obtaining an admissible table, simply because such a table does

not exist when the restraints are too strong. Ignoring the assumptions pi�0, a solution would

exist (if the number of equations expressing the restraints does not exceed the number of vari-

ables). However, the bona fide table would have negative entries. Therefore, one can search for

an admissible solution by minimizing

X

Qc

j¼1
Ij

i ¼ 1

pi < 0

p2

i ; ð51Þ

where the free variables must be fit. If the obtained minimum is zero, an admissible solution is

found. Alternatively, the maximum entropy principle under restraints can be used. When a

bona fide table has negative entries, the entropy becomes complex. Therefore, it is useful to

minimize

X

Qc

j¼1
Ij

i¼1

fIm½HðpÞ�g2
; ð52Þ

where Im(x) is the imaginary part of x. Our limited experiences would emphasize the latter

method.

Lee [35] derived an algorithm for simulating nominal variables with given pairwise correla-

tions measured with Goodman and Kruskal’s τ, 0�τ�1. Since the original measure does not

ensure τ(Y1, Y2) = τ(Y2, Y1), Lee suggested the symmetric measure τ = Max[τ(Y1, Y2), τ(Y2,

Y1)]. This measure is one when τ(Y1, Y2) or τ(Y2, Y1) is one. However, a maximum correlation

of one should only appear when both τ(Y1, Y2) and τ(Y2, Y1) showed a correlation of one.

Therefore, it is more appropriate to define τ = [τ(Y1, Y2)+τ(Y2, Y1)]/2.

It can be shown that nominal variables result in similar problems as with ordinally scaled

variables. Their treatment is analogous to that presented in Sections 6.2 and 6.3. Unfortu-

nately, the method from Section 6.4 cannot be applied. The reason is that a measure for nomi-

nal variables is invariant with respect to permutations of the categories, while this does not

apply to the correlation coefficient generally.

Although a lot of care was spent on the simulation of tables with nominal pairwise associa-

tion measures, it seems that the meaning of such scenarios is limited. In practice, when an

observed table is analysed, it is more important to simulate either tables under a null hypothe-

sis or tables under different alternative hypotheses. In both cases, the two-way marginal totals

can be viewed as fixed. With given two-way marginal totals, the two-way associations can be

determined. (When there are c variables, even the c-way marginal totals can be viewed as

fixed.) Then, it remains to define the properties of the table to simulate and to determine the

cell properties. The simulation can then be carried out with the inversion method of Lee [35].

The statements resulting from such simulations are normally about the effect of certain

properties of a table. This is only correct when there is just one table with the properties. Com-

monly, there are several such tables; i.e., it is necessary to simulate at least some extreme tables

(where the cell probabilities are edges of the convex set of admissible tables) and an average

table (e.g., the table with the given restraints and maximum entropy).
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In this study, Good’s [27] investigations on maximum entropy under restraints were

repeatedly used. It allows us to determine hypothetical tables without knowing the MLEs of

the log- linear model explicitly, as it suffices to formulate the equations of the hypotheses.

The 2×2×2 data of Mood [42] were repeatedly used to demonstrate improved theories. The

observations were n1,1,1 = 79, n1,1,2 = 73, n1,2,1 = 62, n1,2,2 = 168, n2,1,1 = 177, n2,1,2 = 81, n2,2,1 =

121 and n2,2,2 = 75. Application of the maximum entropy principle led to the results in

Table 12. Due to the concavity of entropy, convergence was excellent. Comparison with results

of previous theories shows the appropriateness of the principle. A comment on the results [43]

is given below.

Note that the row for maximum entropy satisfies the theoretical results of Roy and Kasten-

baum [39] on the MLE for the log-linear model with given zero-, one-, and two-way margins.

The approach [43] yielded the correct result only in one case.

Due to the concavity of entropy, the maximum is a global one. This explains why Bartlett’s

criterion, which is a cubic equation, has one real and two complex solutions under all admissi-

ble circumstances.

This fact makes it easy to prove that Bartlett’s and Bennett’s criteria agree if p1 = p2 = p3 = 1/

2 holds or if at least two of the three two-way interactions are zero. When these conditions are

substituted into (17), the criterion (15) with the appropriate cell frequencies can be expanded.

The result is in both cases

D ¼ L1;2;3: ð53Þ

Good’s [27] paper on maximum entropy under restraints, however, was sometimes over-

looked. For example, Streitberg [25, 26] did not include this approach in his contemplations.

When Fienberg and Rinaldo [2] cited Good, they did not write about entropy, and when Fien-

berg and Rinaldo [30, 31] wrote about entropy, they did not cite Good. The authors of [43]

wrote about entropy without recognizing Good’s results. They stated that an equivalence test

for the independence between one variable and the remaining two in [39] was not correct. For

a 2×2×2 table, the statement of [39] can be formulated as follows: Assuming D1,3 = D2,3 = 0,

the validity of Bartlett’s criterion, i.e., D = 0, is equivalent to pi,j,k = p•,•,k pi,j,• for i,j,k2{1,2}.

Applying D1,3 = D2,3 = 0 to (16), we get via (53)

D ¼ p1;1;1 � ðp1 p2 p3 þ p3 D1;2Þ ¼ p1;1;1 � p3ðp1 p2 þ D1;2Þ ¼ p1;1;1 � p3 p1;2: ð54Þ

A proof for Roy and Kastenbaum’s [39] statement is now given. Starting the proof with

D = 0, we get p1,1,1 = p3 p1,2. Substituting p3 p1,2 for p1,1,1 in (11), together with p1,3 = p1p3 and

Table 12. The χ2 values for certain interaction hypotheses concerning the data of Mood (1950).

Method Null hypothesis

Mutual independence C independent of A and B Zero three-way interaction

DA,B = DA,C = DB,C = 0 DA,C = DB,C = 0 D = 0

Mood [42] 110.1 86.7 -

Lancaster [21] 132.0 107.9 7.80

Snedecor [44] 132.0 93.7 19.57

Cheng [43] 120.6 96.4 6.82

Maximal entropy 132.0 93.7 6.80

Marked cells contain (nearly) correct results.

https://doi.org/10.1371/journal.pone.0262502.t015
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p2,3 = p2p3, gives

pðp1;1;1Þ ¼

p1;1;1

p1;1;2

p1;2;1

p1;2;2

p2;1;1

p2;1;2

p2;2;1

p2;2;2

2

6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
5

¼

p3 p1;2

ð1 � p3Þp1;2

p3ðp1 � p1;2Þ

ð1 � p3Þðp1 � p1;2Þ

p3ðp2 � p1;2Þ

ð1 � p3Þðp2 � p1;2Þ

p3ð1 � p1 � p2 þ p1;2Þ

ð1 � p3Þð1 � p1 � p2 þ p1;2Þ

2

6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
5

¼

p�;�;1p1;1;�

p�;�;2p1;1;�

p�;�;1p1;2;�

p�;�;2p1;2;�

p�;�;1p2;1;�

p�;�2p2;1;�

p�;�;1p2;2;�

p�;�;2p2;2;�

2

6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
5

; ð55Þ

i.e., indeed pi,j,k = p•,•,k pi,j,• holds for i,j,k2{1,2}.

Starting with p1,1,1 = p2 p1,2 and regarding (54), we immediately get D = 0. Therefore, the

statement in [43] was not correct. This caused the wrong results in Table 12.

Another advantage of the entropy principle is that there are no problems with zero counts.

As Khinchin [29] noted, an event with probability zero need not be considered. It might be

viewed as mythical to exclude an event from a contingency table, but this view is overcome

when the table is considered as a multinomial distribution. In that case, the dimension simply

reduces. In this way, there are also no problems with the evaluation of the χ2 – or G2 − test sta-

tistics, since singularities cannot appear.

Hence, a numerical procedure that maximizes entropy should test whether a probability pi
is larger than, say, 10−8. Otherwise, the term pi ln pi is set to zero when summing up entropy

via (2).

The concept of entropy has a great meaning in thermodynamics. There, a system drives to

an equilibrium state, one with maximum entropy. Similar processes are observable in popula-

tion genetics, where large populations with random mating converge to independence of

genotypes, even for closely linked loci. (Only the one-way margins are maintained.) The

obtained state is named the linkage equilibrium, while the presence of a two-way interaction is

called the linkage disequilibrium. In population genetics, there are also events that decrease

entropy, such as mutations, inbreeding, and selection. While the aspects of processes concern-

ing populations are complex, they are simple compared with social or metabolic processes. In

human society, there are forces toward increase of entropy and forces toward reduction of

entropy, from the smallest groups up to the human race.

Hence, analyzing disequilibria using contingency tables encompasses the task of thinking

about forces that affect a process.

In this study, two points were repeatedly applied: the maximization of entropy and the

treatment of a contingency table as a multinomial distribution. The question arises whether

entropy has an analytical relation to the likelihood function of a multinomial distribution.

The k-dimensional multinomial probability distribution is L ¼ n!=ð
Qk
i¼1
ni!Þ

Qk
i¼1
pini . In

the ideal case pi = ni/n (which is at least asymptotically satisfied), the log-likelihood of the fac-

tor
Qk
i¼1
pini is n

Pk
i¼1
pilnpi ¼ � nH. This relation suggests that the maximal likelihood is

related to the minimal entropy and the maximum entropy to the minimal likelihood. In the

given context, however, the observations ni underlie constraints, such as the given one- and

two-way marginal totals. Therefore, the multinomial coefficient n!=ð
Qk
i¼1
ni!Þ is no longer a
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constant. The application of Stirling’s formula ln n! � n ln n � nþ ln
ffiffiffiffiffiffiffiffi
2pn
p

leads to

ln
n!

Qk
i¼1
ni!
� ln

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n

ð2pÞ
k� 1Qk

i¼1
ni

s

þ n H: ð56Þ

Therefore,

ln L � ln
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

n
ð2pÞ

k� 1Qk
i¼1
ni

s

ð57Þ

is an asymptotic expansion of the log-likelihood function. The likelihood function is then

L �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

n
ð2pÞ

k� 1Qk
i¼1
ni

s

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

ð2pnÞk� 1Qk
i¼1
pi

s

; ð58Þ

where the right-hand-side expression corresponds to the formulas given in [45].

Leaving out the constants, the derivative of the likelihood function is

d
dx
L ¼

d
dx

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1

Qk
i¼1
ni

s

¼
d
dx
Qk
i¼1
n� 1=2

i ¼
Pk
i¼1
�

1

2

� �

n� 3=2

i
dni
dx

Y

j6¼i
n� 1=2

j ¼ �
1

2

Pk
i¼1

1

ni
dni
dx

ffiffiffiffiffiffiffiffiffiffiffiffiffi
Qk
i¼1
ni

q : ð59Þ

The constraints investigated in this study, given one-, two-, or three-way marginal totals,

lead to cells ni or pi, which are linear combinations of free parameters and given constants.

Actually, each free parameter x appears in the cells either as x or–x; see Eqs (4), (11), (17) and

Table 2. Therefore, dni/dx is either 1 or -1. Thus, the derivative (59) is zero if

P
þ

1

ni
¼
P
�

1

ni
ð60Þ

is satisfied. The plus sign means that summation has to be taken over all cells where x appears

as +x, and the minus sign means that summation has to be taken over all cells where x appears

as–x. Both cases appear with the same frequency. Therefore, Eq (60) indicates that the agreeing

harmonic means guarantee an optimum. It can be shown that the second derivative is strictly

positive; i.e., solving Eq (60) gives the value x for which the likelihood is minimal.

Two examples of 2×2 tables are presented in Fig 1.

One can see in Fig 1 that the minimum likelihood corresponds to the maximum entropy.

For the first example, the condition (60) for the minimum of L, and therefore also for ln L, is

1

x
þ

1

x � 9
¼

1

21 � x
þ

1

16 � x
: ð61Þ

The solution is x�12.3, while the maximum entropy appears for x = 12. The second exam-

ple particularly shows the goodness of the asymptotic expression, as it nearly agrees with the

exact one.

The asymptotic condition for the minimum likelihood (60) has a special relation to the

maximum entropy principle. When Good [27] determined the maximum entropy in the same

context as here, he found the condition

Y

þ
ni ¼

Y

�
ni: ð62Þ
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A comparison of this condition with condition (60) proves that the equality of geometric

means applies for maximizing the entropy while the equality of harmonic means applies for

minimizing the likelihood.

The most elementary restraint is that the number of observations is just n. Then, we can

write nk ¼ n �
Pk� 1

i¼1
ni, and both Eqs (60) and (62) give the same results nk = ni, i = 1,2,� � �,k

−1. From this, ni = n/k and pi = 1/k result for i = 1,2,� � �,k; i.e. the maximum entropy solution is

identical with the asymptotic minimum likelihood solution.

9 Conclusions

Five methods contributed to a considerable improvement in the theory of contingency tables:

(1) the use of the LD measure, (2) the treatment of a table as a multinomial distribution, (3)

the use of algebraic software, (4) the consequent utilization of linear programming, and (5) the

application of the maximization of entropy under restraints.

Using the linkage disequilibrium parameter D as a measure of association between two cat-

egorical variables, which is essentially the determinant D = p11p22−p12p21 of a 2×2 table, suf-

ficed to quantify Simpson’s paradox. The difference between a two-way interaction and the

averaged partial interactions for the categories of a third variable was derived. For a 2×2×2

table, the difference was D1;2 �
�D1;2j3 ¼ D1;3D2;3=½p3ð1 � p3Þ�. It became particularly clear that

the agreement of D1,2 and �D1;2j3 can only arise when the third variable is independent of the

first or second one (because Di,j = 0 means independence between variables i and j).
In many experiments, there is one response variable together with two explanatory vari-

ables. The latter ones can be arranged to ensure D2,3 = 0, for example, by applying the treat-

ments to the same fraction of males and females. In this way, the difference D1;2 �
�D1;2j3 is zero

and Simpson’s paradox is circumvented.

However, with unplanned experiments or with two or three response or random variables,

Simpson’s paradox, which is essentially D1;2 6¼
�D1;2j3, is to be expected.

It is of particular interest that, with knowledge of merely one- and two-way parameters,

implications for the three-way structure are possible. This was demonstrated with the Berkeley

data and could be shown with other real data reflecting Simpson’s paradox.

Fig 1. The log-likelihood function ln L and the entropy H for the free parameter x of two 2×2 tables. The broken

lines correspond to the asymptotic expression (57).

https://doi.org/10.1371/journal.pone.0262502.g001
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With the log-linear model, a variety of important hypotheses can be tested. However, prac-

tically relevant hypotheses were not the focus. One such hypothesis is that the actual degree of

interaction between two categorical variables is the same within all levels of another categorical

variable. This study derived a model for this hypothesis and applied it to the Berkeley data. It

was possible to show that the model of agreeing associations between sex and admittance

(measured with Pearson’s correlation coefficient) within the departments does not fit the data.

However, with a refinement, it could also be shown that just one department caused the het-

erogeneity. Within the other departments, there was no significant association between sex

and admittance.

There is a need for further investigations into an optimal systematic strategy to find a parsi-

monious model. However, the new approach presented here is suitable for answering impor-

tant questions and surely enriches the theory of contingency tables.

Tables with zero counts provoke the question of whether these counts appeared by chance or

whether they were a necessary consequence of the given two- or more-way marginal totals. The

application of linear programming provided a much simpler and successful way to obtain fixed

zero counts than other methods used so far. Furthermore, fixed nonzero counts can be deter-

mined; thus, the number of independent variables (degrees of freedom) could be further reduced.

Improvements were achieved for the simulation of categorical variables with given relation-

ships, and the restrictions of formerly used procedures could be circumvented.

In this study, Good’s [27] investigations on maximum entropy under restraints were

repeatedly used. Maximizing entropy under restraints means determining the table or multi-

nomial distribution that is characterized by a minimum of information, the largest disorder,

or as-uniform-as-possible cell frequencies under given assumptions. It allows the numerical

determination of hypothetical tables by incorporating the equations of the hypotheses. It was

recalled that, with appropriate hypotheses, the results of the maximum entropy principle agree

with those of the MLEs of the log-linear model. Recent doubts about the validity of hierarchical

log-linear models could be eliminated.

The relation between Bartlett’s multiplicative and Bennett’s additive measure of the three-

way interaction was investigated. As it turned out, Bennett’s measure is a simplified version of

the first-order Taylor expansion of Bartlett’s measure. Since Bartlett’s measure (which is in

concordance with the maximum entropy principle and with the log-linear model) has a deeper

meaning than Bennett’s measure, it is concluded that Bartlett’s measure is the first choice.

When an easy-to-calculate measure is preferred, the full first-order Taylor expansion should

be applied instead of Bennett’s measure.

It was shown for contingency tables that the concept of entropy is related to the likelihood

principle for the multinomial distribution. In particular, a hypothetical table with maximum

entropy under linear restraints (like the given marginal totals) and a table with minimum like-

lihood under the same restraints are similar but not identical. The tables at the bounds of the

admissible region yield local minima of entropy and local maxima of the likelihood function.

It is hoped that applicants feel encouraged to test not only the classical hypotheses but also

those of particular interest and that theoreticians further improve the suggested methods.
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