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ZEB1 and IL-6/11-STAT3 signalling cooperate to define
invasive potential of pancreatic cancer cells via differential
regulation of the expression of S100 proteins
Qais Al-Ismaeel1,9, Christopher P. Neal2, Hanaa Al-Mahmoodi1, Zamzam Almutairi1, Ibtihal Al-Shamarti1, Kees Straatman3,
Nabil Jaunbocus1, Andrew Irvine1, Eyad Issa1, Catherine Moreman4, Ashley R. Dennison2, A. Emre Sayan5, Jonathan McDearmid6,
Peter Greaves1, Eugene Tulchinsky1,7,8 and Marina Kriajevska1

BACKGROUND: S100 proteins have been implicated in various aspects of cancer, including epithelial-mesenchymal transitions
(EMT), invasion and metastasis, and also in inflammatory disorders. Here we examined the impact of individual members of this
family on the invasion of pancreatic ductal adenocarcinoma (PDAC) cells, and their regulation by EMT and inflammation.
METHODS: Invasion of PDAC cells was analysed in zebrafish embryo xenografts and in transwell invasion assays. Expression and
regulation of S100 proteins was studied in vitro by immunoblotting, quantitative PCR and immunofluorescence, and in pancreatic
lesions by immunohistochemistry.
RESULTS: Whereas the expression of most S100 proteins is characteristic for epithelial PDAC cell lines, S100A4 and S100A6 are
strongly expressed in mesenchymal cells and upregulated by ZEB1. S100A4/A6 and epithelial protein S100A14 respectively
promote and represses cell invasion. IL-6/11-STAT3 pathway stimulates expression of most S100 proteins. ZEB1 synergises with IL-6/
11-STAT3 to upregulate S100A4/A6, but nullifies the effect of inflammation on S100A14 expression.
CONCLUSION: EMT/ZEB1 and IL-6/11-STAT3 signalling act independently and congregate to establish the expression pattern of
S100 proteins, which drives invasion. Although ZEB1 regulates expression of S100 family members, these effects are masked by IL-
6/11-STAT3 signalling, and S100 proteins cannot be considered as bona fide EMT markers in PDAC.
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BACKGROUND
Pancreatic ductal adenocarcinoma (PDAC) is one of the deadliest
types of human cancer. High mortality is caused by late diagnosis,
therapy resistance, immunosuppression, and high invasive poten-
tial, which often makes these tumours surgically incurable.1

Chronic pancreatitis (CP) represents a progressive disease of the
pancreas with a strong fibrotic component. CP is characterised by
persistent low-grade inflammation and increases the risk of PDAC
10-fold, indicating an association between inflammatory processes
and the aetiology of PDAC. The key drivers of PDAC are activating
mutations in KRAS, detected with 80–100% frequency in cancerous
lesions.1 The vast majority of PDAC arise from pancreatic
intraepithelial neoplasia (PanIN), and inflammation is an important
mediator of the progression of pancreatic tumours. Implication of
the epithelial-mesenchymal transition (EMT) in KRAS-driven PDAC
development has been intensively studied in recent years.2

EMT and a reverse process, mesenchymal-epithelial transition
(MET), are genetic programs important in normal embryonic
development, and in tissue response to an injury.3 During

EMT cells lose epithelial polarity, experience massive reorganisa-
tion of the cytoskeleton, acquire mesenchymal traits, and become
motile and invasive. EMT/MET programs are determinants of
cellular plasticity, they are reactivated in metastatic cancers
facilitating tumour spread.4

EMT/MET programs are regulated by a number of signalling
pathways, e.g., TGFβ or WNT, and also by inflammatory stimuli,
such as IL-6 in colorectal cancer5 and IL-6/IL-8 in breast cancer.6

Several transcription factors, such as those belonging to the ZEB,
SNAIL and TWIST families, execute EMT programs in normal and
pathological conditions. The relevance of these factors to
metastasis has been addressed in recent studies performed in
the Pdx1-Cre/KrasG12D/P53R172H/+ mouse model of PDAC. Whereas
deletion of Snai1 or Twist1 genes was dispensable for PDAC
dissemination,7 knockout of Zeb1 strongly reduced invasion and
metastases in this mouse strain.8 Particular importance of ZEB1 for
PDAC dissemination is in line with the previous observation that
its presence in primary tumours significantly correlates with
shortened overall patient survival.9
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In vivo lineage tracing experiments have shown that a small
proportion of Zeb1-positive invasive cells are detectable at early
stages of pancreatic tumorigenesis in PanIN-bearing mice. These
cells formed a pool of circulating tumour cells (CTCs) which
possessed enhanced tumour-initiating potential and an ability to
seed in the liver.10 Remarkably, formation of this cell population
within PanIN and in the circulation could be blocked by the
immunosuppressive agent dexamethasone, again indicating the
importance of inflammatory signalling in PDAC. Circulating Zeb1-
positive cells were characterised by enhanced expression of S100A4
(or Fsp1), a member of the S100 protein family implicated in EMT.10

The S100 family comprises 23 small calcium-binding proteins,
most of which exert intra- and extracellular functions. In the
human genome, 17 of the S100-encoding genes are located
within a gene cluster at chromosome 1q21.3, referred to as the
epidermal differentiation complex (EDC).11 S100 proteins have
been implicated in various pathological conditions including
cancer, cardiovascular diseases, fibrosis, and chronic inflammation.
When released into the extracellular milieu by tumour cells, S100
proteins take part in the formation of the tumour microenviron-
ment by attracting inflammatory cells.12 Inside cells, S100 proteins
interact with their targets and affect various biological processes.
Their most frequently reported role is in the control of cell
migration and invasion via direct interaction with cytoskeletal
components.13,14 One of the S100 family members, S100A4 is
considered as a biomarker of EMT in several cancer types
including PDAC10,15 and has been proven to play a role in cancer
metastasis.16 The association between EMT and other members of
the S100 protein family in pancreatic cancer remains less clear.
Here, we analysed the expression of S100 proteins in vitro and

in PDAC samples and report that two family members only,
S100A4 and S100A6, are associated with EMT and drive invasion of
PDAC cells in vitro and in zebrafish embryo xenografts. In contrast,
other members exhibited a more epithelial expression pattern,
with S100A14 demonstrating a strong correlation with the
epithelial phenotype in cell lines and in human PDAC samples.
Accordingly, S100A14 repressed cell invasion and was required for
the maintenance of the epithelial phenotype. Expression of S100
proteins is independently regulated by two signalling mechan-
isms, EMT/ZEB1 and IL-6/11-STAT3. While IL-6/11-STAT3 enhances
the expression of most S100 proteins, ZEB1 activates S100A4/A6,
but decreases expression levels of other family members including
S100A14. ZEB1 synergises with IL-6/11-STAT3 in activating
S100A4/A6, but counteracts the effect of inflammatory signalling
on S100A14 levels. Thus, EMT/ZEB1 and IL-6/11-STAT3 act
together to establish the expression pattern of S100 proteins that
favours cell invasion.

METHODS
Patients’ samples and immunohistochemistry
Immunostaining of PDAC series of samples (n= 31) was
performed on 4-μm thick sections, serially cut from the paraffin
blocks. Tissue microarrays (TMA) were purchased from US-Biomax
(Rockville, MD, USA). The primary antibody/antigen complex was
detected using the Novolink™ Polymer Detection System (Novo-
castra Laboratories, Newcastle upon Tyne, UK). All slide images
were viewed and captured using Hamamatsu Slide Scanner
microscope. The staining was performed in parallel with a
negative control (no primary antibody added) to exclude any
nonspecific background staining. Specificity of anti-S100A4, anti-
S100A6 and anti-S100A14 antibodies was validated using cyto-
blocks prepared from PDAC cells, in which corresponding proteins
were depleted using siRNAs. Evaluation of pancreatic pathology
specimens was performed by two independent qualified pathol-
ogists. The intensity of staining was assessed for each section on
a four-point scale: −= negative,+= low, ++=moderate and
+++= intense staining.

Cell lines, treatments, and transfections
Pancreatic cancer cell lines were obtained from the American Type
Culture Collection (ATCC) and cultured in the 5% CO2 and 37 °C
incubator in Roswell Park Memorial Institute medium supplemental
with 10% FBS according to the ATCC recommendations. In
some experiments, cells were treated 200 ng/ml of cytokines or
chemokines and cultured for 48 h before harvesting. A431 or MCF7
cell lines with doxycycline-regulated expression of ZEB2 or ZEB1
were cultured in Dulbecco’s Modified Eagle’s medium supplemen-
ted with 10% foetal bovine serum (FBS) in the presence of absence
of 1 μg/ml doxycycline. STAT3 inhibitor stattic (Sigma Aldrich,
St Louis, MO, USA) was used at the concentration 5 μM. Proteasome
inhibitor MG132 (Sigma Aldrich) was added at the increasing
concentrations 16 h prior cell lysis. Cells were transfected by
electroporation (a single pulse of 250V and 250 Fd by using the
Gene Pulser Xcell electroporation system; BioRad Laboratories,
Hercules, CA, USA) according to the manufacturer’s protocol.

Plasmids and siRNAs
Construction of a vector expressing GFP-tagged ZEB1 was
described previously.17 siRNA control, and siRNA targeting
S100A4, S100A6, S100A11, S100A14, and STAT3 were purchased
from Dharmacon (Lafayette, CO, USA), Sigma-Aldrich or Ambion
(Austin, TX, USA) (see Supplementary Table S1).

Immunoblotting
Cells were lysed in Laemmli buffer; lysates were normalised for equal
protein concentrations, size fractionated in SDS-PAGE gels and
subsequently transferred to the PVDF membranes (Millipore, Bed-
ford, MA, USA). The membranes were blocked in 3% bovine serum
albumin for 1 h, and then incubated in the primary antibodies either
for 1 h or overnight at 4 °C. Next, the membranes were incubated
with the horseradish peroxidase-conjugated secondary antibodies
(1:2000; DAKO, Glostrup, Denmark) for 1 h. The protein bands were
detected using enhanced chemiluminescence Western blotting
substrate (Thermo Scientific, Waltham, MA, USA).
We used the following primary antibodies raised against ZEB1 and

S100A8, (both from Santa Cruz Biotechnology, Dallas, USA); S100A4
and S100A6 (both from Proteintech, Manchester, UK); S100A2,
S100A9, S100A14, S100P, Tubulin and β-Actin (all from Sigma Aldrich);
SNAIL1, SNAIL2, STAT3, pSTAT3, p65 (Cell Signaling Technology,
Danvers, MA, USA); E-cadherin and P-cadherin (BD Bioscience, San
Jose, CA, USA); S100A11 (R&D Systems, Minneapolis, MN, USA);
TWIST1 (Abcam Cambridge, MA, USA); ZEB2 (in-house made18).
Tubulin or β-Actin staining was used to control equal loading.

Quantitative PCR
Total RNA was isolated by the RNeasy RNA isolation kit (Qiagen,
Germantown, MD, USA) and applied for the cDNA synthesis using
RevertAid H Minus First Strand cDNA Synthesis Kit (Thermo
Scientific). Quantitative PCR was carried out in triplicate experi-
ments on Roche 480 Fast Real-Time PCR system using Fast SYBR
Green Master Mix (Applied Biosystems, Warrington, UK) in 40
cycles with the annealing/extension temperature 60 °C. The
quantitative data were normalised to an internal control (GAPDH).
Dissociation curves were examined to exclude the risk of
nonspecific amplification. Conventional ΔΔCT method was
adopted to analyse the data. PCR primer sequences are shown
in Supplementary Table S2.

Immunofluorescence
Cells were cultured on coverslips, fixed in 4% paraformaldehyde,
permeabilised in 0.5% Triton X-100, incubated with the primary
anti-S100A14 antibody (Sigma Aldrich) for 1 h, and AlexaFluor 594-
conjugated secondary antibody (Invitrogen, Grand Island, NY,
USA). After counterstaining with DAPI (Molecular Probes, Invitro-
gen), cells were examined and photographed using a confocal
microscope (Zeiss Axiovert 200 M).
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In vitro cell invasion assay
PDAC cells were transfected with siRNAs and seeded on 60mm
dishes. 24 h post-transfection, cells were counted, and 5 × 104

(BxPC-3); 7 × 104 (AsPc-1, MIA PaCa-2) or 105 cells (SU.86.86) were
resuspended in 100 μl RPMI medium and seeded on porous
transwell membranes (pore size, 8 μm; BD Biosciences) coated
with collagen I or fibronectin (Corning, NY, USA). Cells were
allowed to migrate through collagen I barrier towards FBS
gradients for 18 h. Invasion of MIA PaCa-2 cells through
fibronectin-coated membranes was stopped and analysed in 6 h
after seeding. Cells remaining at the upper surface of the
membranes were removed using a cotton swab. The membranes
were treated with methanol and stained with Gurr rapid staining
kit (BDH, Poole, UK). The number of invaded cells was counted in
five random fields using an inverted Nikon TE2000-U microscope.

Zebrafish embryo invasion assay
Twenty four hpf embryos were dechorionated under a stereo-
microscope, anaesthetised in 0.02% Tricaine solution (ethyl 3-
aminobenzoate methane sulfonate, Sigma Aldrich) and immobi-
lised in 1% low melting agarose. Cells were harvested, quantified,
fluorescently labelled by incubating for 1 h with the DilC12 dye
(2.5 μg/ml, Thermo Scientific) and extensively washed with PBS. In
the experiments with IL-11, cells were treated with the cytokine
for 48 h, or mock-treated. In the experiments with siRNAs, cells
were transfected, seeded on 60mm dishes, harvested 48 h post-
transfection, labelled and washed. 1000 cells per fish were
microinjected into the perivitelline cavity regions using a
Pneumatic Injector set at a pressure of 500–1000 hPa and time
of 0.3–0.8 s. Embryos were checked under fluorescent microscope
one-hour post-injection (hpi), and those with fluorescent cells
outside the desired injection region were excluded from the
analysis. Next, the embryos were cut out from agarose using
forceps, kept in water at 33 °C, and 48 hpi the fish were mounted
in agarose again, and imaging was conducted by phase contrast
combined with fluorescence microscopy using ×4 objective.
Image montage and analysis of cell migration were carried out
using ImageJ software. If fluorescence was detected in the
vasculature and throughout the fish body, this was considered
as an evidence of invasion. In the absence of invasion,
fluorescence was localised exclusively to the perivitelline space
and yolk sac.

Statistics
In IHC experiments, all statistical analyses were performed using
Statistical Package for the Social Sciences 20.0® (SPSS, Chicago,
Illinois, USA). Associations between different proteins were
determined using the Pearson correlation coefficient. Results from
this test produced a correlation coefficient, indicating the strength
and direction of the association, and a p-value, indicating the
significance. The Kruskal–Wallis test and Mann–Whitney U-test
were used to compare continuous and ordinal variable between
subgroups. Statistical significance was defined as p < 0.05.
To correlate expression of S1004, S100A6 and S100A14 genes

with EMT markers in PDAC cell lines, data from Expression Atlas
(CCLE cohort) were downloaded to the R software. Data were
analysed using Pheatmap add-on to generate non-hierarchical
clustering of the selected genes.
To compare invasive potentials of cells in zebrafish embryos

statistical differences were determined using the Student’s t-test.

RESULTS
EMT perturbs expression of S100 gene family in pancreatic
carcinoma cells
The implication of individual S100 family members in EMT has
been reported in several cancer types. However, to our knowl-
edge, no effort has been made to address how an EMT affects

expression of different family members in one study. To address
this, we correlated the expression levels of S100 proteins with the
EMT status in a panel of pancreatic carcinoma cell lines. Among
five EMT-TFs (SNAIL1, SNAIL2, ZEB1, ZEB2 and TWIST1) analysed in
these experiments, only ZEB1 correlated with enhanced vimentin
expression, and reduced levels of E- and P-cadherins (Fig. 1a). Two
cell lines, AsPC1 and MIA PaCa-2, exhibited mesenchymal
expression patterns and expressed high levels of S100A4,
S100A6 and S100A11. Most of the S100 proteins, however, were
overrepresented in PDAC cell lines displaying epithelial character-
istics, and the expression of S100A14 perfectly correlated with the
presence of epithelial markers (Fig. 1a). The same correlations
were observed on the transcriptional level, mesenchymal AsPC1
and MIA PaCa-2 cell lines expressed highest levels of S100A4/6 but
no S100A14 mRNA (Supplementary Fig. S1). We extended this
analysis by interrogating Cancer Cell Line Encyclopaedia (CCLE)
gene expression dataset. Unsupervised clustering identified
association of S100A4/A6 genes with the mesenchymal marker
VIM and ZEB1. S100A14 clustered with the CDH1 gene encoding E
-cadherin (Supplementary Fig. S2).
To analyse whether an EMT is capable of altering the S100

expression profile in pancreatic cancer cells, we overexpressed
ZEB1 in two epithelial PDAC cell lines, BxPC-3 and SU.86.86. In 96 h
post-transfection, we observed a remarkable downregulation of E-
cadherin and induction of vimentin indicating that both cell lines
are responsive to ZEB1-induced EMT (Supplementary Fig. S3). In
48 h post-transfection, we performed qPCR analysis of S100
transcriptomes in both cell lines. ZEB1-induced expression of only
two genes, S100A4 and S100A6, whereas transcription of eight
genes (S100A2, S100A7, S100A8, S100A9, S100A11, S100A14 and
S100P) was repressed (Fig. 1b). Similarly, we found that most of
these genes were downregulated by ZEB proteins in cellular
models of EMT unrelated to PDAC, MCF7/ZEB1 and A431/ZEB2
(data not shown). Thus, we concluded that most of the S100 genes
are predominantly expressed in epithelial cell lines, and two family
members, S100A4 and S100A6 can be categorised into a
mesenchymal group. S100A14 displayed features of an epithelial
marker: it clustered with epithelial cadherins in PDAC cell lines and
was strongly repressed by ZEB1 (Fig. 1a, b; see also Fig. 6).

Mesenchymal S100 proteins are required for the enhanced
invasion of mesenchymal pancreatic cancer cells in zebrafish
xenograft models
S100A2, S100A4, S100A6, S100A7, S100A14 and S100P proteins
are involved in the regulation of cell migration/invasion and
cytoskeletal dynamics, i.e., biological processes representing
hallmarks of EMT.19 We aimed to investigate whether perturbed
expression of S100 family members is a part of a mechanism
through which EMT activates cell invasion. We analysed the effect
of depleting mesenchymal S100 proteins on the invasion of PDAC
cells in vitro. Knockdown of S100A4 or S100A6 using two different
siRNAs had no effect on cell viability (data not shown), but
significantly reduced invasion of AsPC1 cells through collagen I-
coated membranes in transwell assays (Supplementary Fig. S4).
MIA PaCa-2 cells lack collagen I receptor integrin α2β1 and do not
adhere to this substrate.20 However, knockdown of either of the
mesenchymal S100 genes decreased invasion of these cells
through a layer of fibronectin more than twofold (Supplementary
Fig. S4). Conversely, S100A4 or S100A6 depletion in a unique
epithelial cell line expressing these proteins, CAPAN-1, produced
no effect on cell invasion in vitro (data not shown).
Next, we employed zebrafish embryo xenotransplantation

model to analyse invasive capabilities of PDAC cells in vivo.
Zebrafish embryo invasion assay has been broadly used to study
invasion of PDAC cells and early stages of tumour metastasis in
the past.21,22 As the immune system in zebrafish embryos is
immature, there is no rejection of human xenografts. Optical
transparency of the embryos allows visualisation of injected
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fluorescently-labelled cells. Additionally, relative simplicity of the
methodology allows simultaneous examination of many embryos
improving the validity of the statistical analysis. Expectedly,
mesenchymal cell lines AsPC1 and MIA PaCa-2 displayed
enhanced invasive capabilities as compared to the epithelial
PDAC cells (Fig. 1c). Depletion of either S100A4 or S100A6 by
siRNA strongly reduced invasive capacity of both AsPC1 and MIA
PaCa-2 cell lines in vivo (Fig. 1d), whereas depletion of S100A11
had no effect (Supplementary Fig. S5). S100A11 is ubiquitously
expressed in pancreatic cancer cell lines and show no correlation
with the differentiation status of PDAC cells (Fig. 1a, and
Supplementary Fig. S1). Of note, combined depletion of both
S100A4 and S100A6 produced the same effect on cell invasion as
individual knockdowns suggesting that these two proteins do not
functionally compensate for each other (Fig. 1d).

S100A14 is an epithelial marker repressing cell invasion
S100A14 is an epithelial protein, expressed exclusively in epithelial
pancreatic cancer cell lines, and repressed by ZEB1. Reduction in
S100A14 expression was also reported in A549 lung cancer cells
undergoing an EMT in response to TGFβ1 treatment (GEO
GSE17708) and S100A14 clustered with epithelial markers in

breast cancer cells.23 In epithelial PDAC cells, S100A14 is localised
to the cell–cell contacts indicating its potential role in main-
tenance of the epithelial morphology (Fig. 2a). Indeed, siRNA-
mediated S100A14 knockdown resulted in morphological EMT
(Fig. 2b) and an increase in the expression levels of mesenchymal
S100 proteins (Fig. 2c), but the canonical EMT markers were not
affected (data not shown). Knockdown of S100A14 with two
unrelated siRNAs in BxPC-3 or SU.86.86 cell lines produced no
effect on cell viability (data not shown), but significantly activated
cell invasion through collagen barrier (Fig. S6). Furthermore, in
accordance with these results, S100A14 depletion significantly
activated in vivo invasion of epithelial cells (Fig. 2c).

Immunodetection of S100A4/S100A6 and S100A14 proteins in
PDAC samples: correlation with the EMT status of the tumours
To validate our in vitro observations, we employed a series of
PDAC samples (n= 31) to examine the expression of mesench-
ymal proteins (S100A4 and S100A6) and two proteins detected
exclusively in the epithelial cell lines, S100A14 and S100A2
(Fig. 1a). Normal acinar and ductal cells expressed no or very low
levels of S100A4, S100A6, or S100A2 but were positive for
S100A14 (Fig. 3a). 61, 83 and 83% of tumours showed moderate to
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Fig. 1 Expression of S100 family members is associated with EMT, and mesenchymal S100 proteins stimulate invasion of PDAC cells.
a Immunoblot analysis of EMT-TFs, EMT markers and S100 proteins in a panel of PDAC cell lines. b Analysis of the transcription of ZEB1-
regulated S100 genes in epithelial PDAC cells. BxPC-3 and SU.86.86 cell lines were transfected with the plasmid vectors expressing GFP-tagged
ZEB1 or GFP control and cultured for 48 h. Bar charts show the expression of genes encoding S100 proteins and EMT markers analysed by
qPCR. Data represent the mean of three replicate experiments ± StDev. c Invasion of mesenchymal and epithelial PDAC cell lines in zebrafish
embryos. Cells were fluorescently DilC12-labelled (red), microinjected into the perivitelline cavities of zebrafish embryos, imaged and analysed
48 hpi as described in Methods. Merged phase contrast and fluorescence images are representative examples of zebrafish embryos with no
invasion (upper image) or with PDAC cells that intravasate into the circulation (lower image). Minimum 10 fish per cell line were used in each
experiment. Results are mean ± StDev of three independent experiments. d Mesenchymal S100 proteins, S100A4 and S100A6, contribute to
the enhanced invasive potential of PDAC cells in vivo. siRNA-mediated knockdowns of mesenchymal S100 genes reduce the invasion of AsPC-
1 and MIA PaCa-2 cells in zebrafish assay. Western blots show the extent of depletion of S100A4 and S100A6. Results are means (n= 3
biological replicates; 10 fish in each experiment) ± StDev. *p < 0.05; **p < 0.01; ***p < 0.001
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strong staining for S100A4, S100A6 and S100A14, respectively,
whereas only 22% were positive for S100A2. The expression of
S100A2, S100A4 and S100A6 were detected in the cytoplasm and/
or nuclei (Fig. 3a). In contrast, S100A14 exhibited predominantly
membranous staining in accordance with the results of the
immunofluorescence analysis in vitro (see Fig. 2a). While positive
and negative correlations of S100A14 expression with E-cadherin
and vimentin, respectively were extremely significant (p < 0.0001),
we observed no correlation between S100A2 and other markers
(Table 1). Expressions of S100A4 and S100A6 significantly
correlated with each other (p= 0.012); and S100A4 positively
correlated with ZEB1 (p= 0.016) and, consistent with a previous
report,24 negatively with E-cadherin (p= 0.022) (Table 1). Although
significant, this correlation was far from being perfect. Remarkably,
out of 18 specimens scored as strongly positive for E-cadherin
expression, 6 were also strongly positive for S100A4 (Fig. 3b). We
interpreted this observation as an indication that EMT is not the
only mechanism responsible for the upregulation of mesenchymal
S100 proteins in pancreatic cancer cells.

Mesenchymal S100 proteins are expressed in chronic pancreatitis
(CP), pancreatic intraepithelial neoplasia (PanIN) and PDAC albeit
at different levels
As S100A4 and S100A6 proteins were detected in a subset of well-
differentiated PDAC, we hypothesised that their activation occurs
in early malignant or premalignant pancreatic lesions. To test
whether expression of S100A4 and S100A6 proteins is detectable
in early lesions, we applied a commercial tissue microarray

containing CP (n= 22), PanIN (n= 18), and PDAC (n= 8) samples.
Both proteins were present in the majority of CP and PanIN
samples, but the expression was either mostly weak (S100A4) or
weak-to-moderate (S100A6). Immunopositivity for both S100A4
and S100A6 increased sequentially from CP to PanIN to PDAC (p <
0.001 for both markers; Fig. 3c, Supplementary Tables S3 and S4).

Cytokine/STAT3 signalling regulates expression of S100 proteins in
pancreatic cancer
Inflammation is commonly correlated with the initiation and
development of PDAC, and CP is a prerequisite for the initiation of
K-Ras-induced PDAC in a mouse model.25 The presence of
mesenchymal S100 proteins in CP, PanIN and PDAC was
compatible with the hypothesis that inflammatory pathways
regulate their expression in pancreatic lesions. To test this, we
stimulated two epithelial PDAC cell lines, BxPC-3 and SU.86.86,
with a series of selected recombinant human cytokines and
chemokines including IL-1α, IL-6, IL-8, IL-10, IL-11, IL-15, CCL-2,
CCL-3, CLL-5 and M-CSF. The effect of these treatments on the
expression of S100A4 and S100A6 was analysed in 48 h. We found
that two phylogenetically related cytokines, IL-11 and IL-6,
activated expression of both mesenchymal S100 proteins more
efficiently than other stimuli. Whereas IL-11 induced expression of
both mesenchymal S100 proteins in both cell lines, IL-6 effectively
induced S100A4 in BxPC-3 and SU.86.86 cell lines, and S100A6 in
SU.86.86 cells (Fig. 4a, b). Upregulation of both genes occurred at
the transcriptional level (Supplementary Fig. S7). Of note,
expression of epithelial S100 proteins, such as S100A8, S100A9

Table 1. Association between EMT markers and expression of S100 proteins in PDAC samples

S100A2 S100A4 S100A6 S100A14 Vimentin P-Cad E-Cad Slug Twist ZEB1 pSTAT3

S100A2 Pearson Correlation 1 0.246 .047 .121 −.001 0.173 0.170 0.030 0.057 0.301 −0.091

Sig. (2-tailed) 0.181 0.801 0.517 0.994 0.351 0.362 0.872 0.760 0.100 0.627

N 31 31 31 31 31 31 31 31 31 31 31

S100A4 Pearson Correlation 0.246 1 0.444* −0.371* 0.042 0.074 −0.409* 0.207 0.310 0.428* 0.470**

Sig. (2-tailed) 0.181 0.012 0.040 0.821 0.692 0.022 0.263 0.090 0.016 0.008

N 31 31 31 31 31 31 31 31 31 31 31

S100A6 Pearson Correlation 0.047 0.444* 1 0.096 −0.007 −0.030 0.012 0.156 0.189 0.083 0.387*

Sig. (2-tailed) 0.801 0.012 0.607 0.970 0.873 0.948 0.403 0.310 0.657 0.032

N 31 31 31 31 31 31 31 31 31 31 31

S100A14 Pearson Correlation 0.121 −0.371* 0.096 1 −0.589*** 0.338 0.828*** −0.088 −0.221 −0.264 −0.261

Sig. (2-tailed) 0.517 0.040 0.607 0.000 0.063 0.000 0.636 0.232 0.152 0.155

N 31 31 31 31 31 31 31 31 31 31 31

Vimentin Pearson Correlation −0.001 0.042 −0.007 −0.589*** 1 −0.180 −0.422* 0.069 0.237 −0.035 0.283

Sig. (2-tailed) 0.994 0.821 0.970 0.000 0.332 0.018 0.712 0.199 0.854 0.124

N 31 31 31 31 31 31 31 31 31 31 31

P-Cad. Pearson Correlation 0.173 0.074 −0.030 0.338 −0.180 1 0.426* 0.210 0.042 0.369* −0.077

Sig. (2-tailed) 0.351 0.692 0.873 0.063 0.332 0.017 0.257 0.823 0.041 0.680

N 31 31 31 31 31 31 31 31 31 31 31

E-Cad. Pearson Correlation 0.170 −0.409* 0.012 0.828*** −0.422* 0.426* 1 −0.203 −0.318 −0.176 −0.296

Sig. (2-tailed) 0.362 0.022 0.948 0.000 0.018 0.017 0.273 0.081 0.345 0.106

N 31 31 31 31 31 31 31 31 31 31 31

Slug Pearson Correlation 0.030 0.207 0.156 −0.088 0.069 0.210 −0.203 1 0.233 0.310 0.056

Sig. (2-tailed) 0.872 0.263 0.403 0.636 0.712 0.257 0.273 0.206 0.090 0.765

N 31 31 31 31 31 31 31 31 31 31 31

Twist Pearson Correlation 0.057 0.310 0.189 −0.221 0.237 0.042 −0.318 0.233 1 0.125 0.419*

Sig. (2-tailed) 0.760 0.090 0.310 0.232 0.199 0.823 0.081 0.206 0.505 0.019

N 31 31 31 31 31 31 31 31 31 31 31

ZEB1 Pearson Correlation 0.301 0.428* 0.083 −0.264 −0.035 0.369* −0.176 0.310 0.125 1 0.122

Sig. (2-tailed) 0.100 0.016 0.657 0.152 0.854 0.041 0.345 0.090 0.505 0.512

N 31 31 31 31 31 31 31 31 31 31 31

p-STAT3 Pearson Correlation −0.091 0.470** 0.387* −0.261 0.283 −0.077 −0.296 0.056 0.419* 0.122 1

Sig. (2-tailed) 0.627 0.008 0.032 0.155 0.124 0.680 0.106 0.765 0.019 0.512

N 31 31 31 31 31 31 31 31 31 31 31

Asterisks indicate significant positive and negative correlations. *p < 0.05; **p < 0.01; ***p < 0.0001
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and S100A14 was also activated upon IL-11 treatment (Fig. 4b, see
also Figs. 4c and 6c, and Supplementary Fig. S7).
IL-6 and IL-11 activate signal transducer and activator of

transcription 3 (STAT3), and this canonical pathway may represent
a mechanism by which chronic inflammation contributes to
tumour initiation and progression. Consistently, phosphorylated
STAT3 was detected in the lysates of cells treated with IL-6 or IL-11
(Fig. 4a, b). To analyse STAT3 function in IL-mediated regulation of
S100 proteins we made use of stattic, a specific small-molecule
inhibitor of STAT3 activation and dimerisation. Treatment with
stattic diminished the IL-11-mediated increase in the expression
levels of S100A4, S100A6 and S100A14 proteins (Fig. 4c). In
agreement with this observation, stattic strongly decreased the
levels of S100A4, and S100A6 proteins also in MIA PaCa-2 cells,
where both proteins are highly abundant (Fig. 4d). Although
S100A4 and S100A6 were reported to be NF-κB target genes,26,27

and NF-κB is implicated in PDAC pathogenesis,28 this signalling
played no role in upregulation of S100 proteins in PDAC cells
(Supplementary Fig. S8).
To address whether our observation is relevant to the activation

of S100A6 and S100A4 in tumours, we assessed the expression of
pSTAT3 in PDAC specimens by IHC. Remarkably, pSTAT3
immunopositivity significantly correlated with the expression of
S100A4 (p= 0.008) and S100A6 (p= 0.032), but not with that of
the epithelial protein S100A14 or S100A2 (Table 1, and Fig. 4e).

S100A4 and S100A6 are determinants of cytokine-STAT3-induced
invasion of PDAC cells
IL-6-type cytokines promote invasive ability in carcinoma cells
including PDAC.29,30 In agreement with numerous reports
implicating STAT3 signalling in invasiveness, treatment of BxPC-3
and SU.86.86 cells with IL-11 strongly activated cell invasion in
zebrafish embryos. The effect of IL-11 was largely dependent on
STAT3 activation, because invasion of IL-11-treated cells was

inhibited by siRNA specific for STAT3 (Fig. 5a) or by stattic (Fig. 5b).
Likewise, stattic significantly reduced invasion of MIA PaCa-2 cells,
in which the STAT3 pathway was constitutively active (Fig. 5c).
Application of STAT3-targeting siRNA reduced expression of
S100A4/6 proteins in IL-11-stimulated cells and supported our
conclusion that interleukins induced expression of S100 proteins
via STAT3 (see Fig. 5a). Remarkably, siRNA-mediated reduction in
the expression of mesenchymal S100 proteins nearly blocked the
stimulatory effect of IL-11 on cell invasion, and the effect of
S100A4 or S100A6 knockdown on cell invasion was similar to that
produced by the depletion of STAT3 (Fig. 5a).

STAT3 and EMT pathways act in parallel to define the expression
pattern of S100 genes in PDAC
Reciprocal regulation of JAK/STAT and EMT pathways was
reported in different carcinoma types.31 Therefore, we aimed to
investigate whether ZEB1 and the IL-6/11-STAT3 module are parts
of the same signalling pathway, or they act in parallel to modulate
expression of S100 proteins and activate cell invasion. To this end,
we analysed the effect of IL-11 on EMT status in epithelial PDAC
cells. 48 h treatment was sufficient to induce expression of S100A4
and S100A6 proteins in both cell lines, BxPC-3 and SU.86.86, but
no changes in the expression of EMT markers (Fig. 6a) or
alterations in cell morphology (data not shown) was detected.
Ectopic expression of ZEB1 enhanced the levels of S100A4 and
S100A6, but this was independent of STAT3 activation (Fig. 6b).
Importantly, these observations are in line with the lack of the
correlation between ZEB1 and pSTAT3 in the series of PDAC
samples (Table 1).
As no positive correlation between pSTAT3 and S100A14 was

observed in PDAC specimens (Table 1), we speculated that certain
oncogenic events uncouple S100A14 expression from STAT3
activation during pancreatic tumorigenesis. As ZEB1 acts inde-
pendently of IL-6/11-STAT3 and down-regulates S100A14 (Fig. 1b),
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we proposed that it is a good candidate for a role of such a factor.
Indeed, ectopic expression of ZEB1 reduced IL-11-mediated
activation of S100A14 nearly to the steady-state level. In contrast,
IL-11 and ZEB1 synergistically induced expression of both
mesenchymal proteins, S100A4 and S100A6 in epithelial PDAC
cells (Fig. 6c).
Overall, these data indicate that EMT and STAT3 do not

constitute the same signalling pathway, but rather act in parallel
to define the expression pattern of S100 family members leading
to a highly invasive phenotype of PDAC cells (Fig. 6d).

DISCUSSION
S100 proteins have no intrinsic enzymatic activity and exert
biological functions by modulating functions of their direct
intracellular or extracellular targets. Global events in cell
physiology such as oncogenic transformation, EMT or response
to inflammation are associated with alterations in numerous
signalling pathways and include changes in the expression pattern
of the S100 gene cluster. The relevance of this cluster to tumour
biology has been demonstrated in many reports.11 In particular, a
recent work has shown that amplification of the chromosome
1q21.3 region bearing the S100 genes is associated with stem cell-
like features, early relapse in breast cancer patients and
chemotherapy resistance.32 These characteristics of aggressive
tumours, as well as the ability of tumour cells to invade
surrounding tissues, are hallmarks of EMT.

Most of the S100 proteins have been considered as EMT
facilitators or EMT markers in certain carcinoma cell lines.14

S100A4 seems to represent a unique member of this protein
family as its expression is universally used to detect EMT or EMT-
like processes in various settings. Moreover, recent work has
shown that S100A4 acts upstream of EMT-TFs in glioblastoma and
is a master regulator of EMT-like events in this cancer type.33 Our
study has shown that S100A4 and also S100A6, a family member
displaying the highest homology with S100A4 (46% of identity
and 59% of similarity), are indeed activated in the course of the
ZEB1-induced EMT in PDAC cell lines. In agreement with this
observation, expression of S100A4 was detected in most of ZEB1-
expressing PDAC cell lines (Fig. 1a, S1 and S2), and correlated with
ZEB1 expression in PDAC samples (Table 1). Of note, neither in
tumour samples nor in the cell lines could we detect a correlation
between S100 proteins and the other EMT-TFs, ZEB2, TWIST1 or
SNAIL2.
Consistent with the enhanced expression of S100A4 and

S100A6 in EMT, their presence (but not the presence of
S100A11 or S100A14) in PDAC cells was a determinant of the
increased invasion in vitro and in vivo. S100A4 physically interacts
with the heavy chain of non-muscle myosin IIA, a major
chemomechanical protein responsible for force generation in
moving cells,34–36 and this interaction regulates formation of
protrusions in the course of cell migration.13 Furthermore, S100A4
may stimulate cell migration and invasion via its association with
rhotekin, a scaffold protein implicated in Rho signalling.37 The
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effect of S100A4 on cell motility is not necessarily limited to
interactions within the cells. Indeed, treatment of cells with
recombinant S100A4 may promote their motility, via interactions
with growth factors or cytokines in extracellular milieu38 or via
RAGE pathway stimulation.39 S100A6 was also shown to stimulate
in vitro migration of tumour cells, including PDAC, but mechanistic
understanding is still missing.40,41

The IHC analysis of PDAC specimens has shown that some of
the samples retaining epithelial morphology expressed S100A4
and S100A6. This observation was in line with the assumption
that other mechanisms, such as inflammation-activated path-
ways, regulate expression of S100A4 and S100A6 proteins at
early stages of pancreatic tumorigenesis. Indeed, we detected
both proteins in ductal cells in the CP and PanIN tissue samples,
although at a significantly lower level than in PDAC specimens
(Fig. 3c). In PanIN and PDAC, inflammatory signalling is amplified
via a positive feedback mechanism. The driver mutation in the K-
Ras oncogene induces production of IL-6 family cytokines or IL-
1α leading to the autocrine activation of STAT3 or NF-κB
pathways, and recruitment of the immune cells. The recruited
cells, mostly of myeloid lineage, secrete IL-6, IL-1α and TNFα to

further stimulate STAT3 and NF-κB in a paracrine manner,42,43

and these K-Ras-initiated pathways cooperate to promote the
development of PDAC.44 Thus, inflammatory pathways mutually
activated in cancer and myeloid cells via tumour-
microenvironment crosstalk drive invasion and tumour
spread.45,46 We established in vitro that S100A4 and S100A6
are targets of the IL6/IL11-STAT3 pathway, and found that their
expression correlates with the presence of pSTAT3 in PDAC
samples (Table 1). Therefore, we speculate that the amplification
of the IL-6/11-STAT3 signalling during pancreatic tumorigenesis
is a factor contributing to the gradual increase in the expression
of mesenchymal S100 proteins in the CP-PanIN-PDAC sequence.
An interplay between the IL-6/11-STAT3 pathway and EMT has

been extensively studied in different cancer types. In breast cancer
cells, IL-6 dramatically induced the expression of TWIST1 and
SNAIL1 via STAT3 activation, leading to the initiation of an EMT.
TWIST1, in turn, stimulated production of soluble IL-6, thereby
generating a positive feedback loop that maintained the
mesenchymal phenotype and constitutively active
STAT3 signalling.46 Likewise, in colorectal cancer, pSTAT3 pro-
moted an EMT by direct transcriptional activation of the ZEB1
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gene.47 This observation is, however, in stark contrast to the
studies demonstrating that in other colorectal carcinoma cell and
mouse models, pSTAT3 inhibited EMT by destabilising SNAIL1 via
the GSK-3β pathway.48,49 In accordance with the latter finding,
STAT3 is capable of antagonising TGFβ-induced EMT in hepato-
cellular carcinoma cells through direct interaction with SMAD4.50

Therefore, as inflammation and EMT may exert reciprocal effects
on each other, we proposed that ZEB1 and IL-6/11-
STAT3 signalling belong to the same molecular pathway in PDAC.
Contrary to our expectations, we could not find any interdepen-
dence between IL-11-STAT3 module and ZEB1-induced EMT in
PDAC cell lines (Fig. 6a, b). Moreover, IHC examination of a series
of PDAC samples revealed no correlation between pSTAT3 and
EMT markers (E- and P-cadherins and vimentin) or ZEB1 (Table 1).
However, IL-11-STAT3 and ZEB1 synergistically enhanced expres-
sion levels of S100A4 and S100A6 proteins, and pSTAT3 presence
significantly correlated with S100A4 and S100A6 immunopositivity
in pancreatic lesions. Thus, because IL-11-STAT3 signalling is a
strong EMT-independent modulator of the expression of these
genes, our data challenge the common view on S100A4 protein as
a universal marker of EMT in PDAC.
IL-6/11-STAT3 signalling upregulated the expression of S100

genes down-regulated by ZEB1. S100A14 was of particular
interest, because this protein showed the features of a classical
epithelial marker. Indeed, S100A14 expression extremely signifi-
cantly correlated with EMT markers in PDAC samples (Table 1), its
subcellular localisation was reminiscent of the distribution of
proteins implicated in cell-cell adhesion in epithelial tissues, and
S100A14 depletion activated cell invasion. The positive effect of IL-
11 on S100A14 expression was neutralised by ZEB1, and therefore
we propose a scheme whereby two independent pathways, IL-6/
11-STAT3 and ZEB1, converge to stimulate expression of
mesenchymal S100 proteins without increasing the expression
of S100A14, which leads to the enhanced invasiveness of PDAC
cells (Fig. 6d).
Our data imply that different S100 proteins may promote

or repress invasion of PDAC cells. Development of selective
inhibitors targeting the interactions of particular family
members may have potential for clinical application in PDAC
patients.
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