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A B S T R A C T   

A broad range of evidence has confirmed that natural products and essential oils might have the potential to 
suppress COVID-19 infection. Therefore, this study aimed to develop an oral/throat spray formulation for pro-
phylactic use in the oral cavity or help treatment modalities. Based on a reference survey, several essential oils, a 
cold-pressed oil, and propolis were selected, and cytotoxicity and antiviral activity of each component and the 
developed spray formulation were examined against severe acute respiratory syndrome coronavirus-2 (SARS- 
CoV-2) infection using Vero E6 cells. Anti-inflammatory, antimicrobial, and analgesic activities as well as 
mutagenicity and anti-mutagenicity of the formulation were analysed. Forty-three phenolics were identified in 
both propolis extract and oral/throat spray. The spray with 1:640-fold dilution provided the highest efficacy and 
the cytopathic effect was delayed for 54 h at this dilution, and the antiviral activity rate was 85.3%. A combi-
nation of natural products with essential oils at the right concentrations can be used as a supplement for the 
prevention of SARS-CoV-2 infection.   

1. Introduction 

Humans have suffered from numerous epidemics and pandemics that 
have affected hundreds of millions of lives throughout the history. Just a 
century after the last disaster of Spanish pandemia in 1918, severe acute 
respiratory syndrome coronavirus-2 (SARS-CoV-2) infection started to 
affect people globally and caused severe and fatal illnesses in humans. 
Despite such significant advances in contemporary medicine, the virus 
has continued to challenge not only human lives but has also threatened 
the global economic security and healthcare systems. The scientific 
community has been burdened with developing effective prophylactic 
and treatment options intensively. Consequently, several types of vac-
cines and drugs have been developed and offered clinical relevance. 

A reference survey was carried out in PubMed with the keyword 

“corona pandemic” and 127,000 published manuscripts were found 
since the pandemic in 2020. However, only a small fraction of them 
(803) (as of Feb 2022) were related to herbals, and these mainly 
reviewed the possible herbal candidates hypothetically or from the re-
sults of in silico molecular docking studies. Actually, the number of 
experimental evidence published on the antiviral effects of herbals 
against viral infections is limited due to the required laboratory condi-
tions. On the other hand, treatment approaches with common antiviral 
chemotherapeutics have remained inconclusive against SARS-CoV-2 
infection. Therefore, it is obvious that the effect of a drug or herbal 
remedy candidate should be tested against the specific SARS-CoV-2 
strains. 

Since the nasal and the oral cavity have been reported as the main 
contact area with the body, this study aimed to develop an oral/throat 
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spray formulation for prophylactic use in the oral cavity or to help with 
treatment modalities. For the selection of herbal components to be 
included in the formulation, we reviewed the reported scientific evi-
dence published thus far with the keywords “covid, essential oil, and 
immunity” (Banerjee et al., 2021; Javed, Meeran, Jha, & Ojha, 2021; 
Valussi, Antonelli, Donelli, & Firenzuoli, 2021; Wani, Yadav, Khursheed, 
& Rather, 2021; Yosri et al., 2021). Based on in vitro and in silico evi-
dence, essential oils from oregano (carvacrol), trilobed sage (1,8-cineol), 
peppermint (menthol), lemon peel (citral), and geranium (geraniol) as 
well as cold-pressed black cumin seed oil (nigelline and thymoquinone) 
and black poplar propolis (caffeic acid phenethyl ester; CAPE) were 
selected as the main active components of the formulation. The ratio of 
these components in the formulation was adjusted based on the exper-
imental antiviral and antimicrobial tests and provided a tolerable taste 
in the mouth. Besides the formulation’s efficacy, the safety profile of this 
formulation was studied in detail. 

2. Materials and methods 

2.1. Materials 

Propolis extract with minimum 0.65% CAPE content, cold-pressed 
black cumin (Nigella sativa L.) oil, Anatolian sage (Salvia triloba L.) 
essential oil (minimum 20% 1,8-cineol), oregano (Origanum onites L.) 
essential oil (minimum 70% carvacrol), peppermint (Mentha piperita L.) 
essential oil, lemon peel (Citrus limon) essential oil, geranium (Pelargo-
nium graveolens L.) essential oil, α-tocopherol, food-grade alcohol (96%), 
and medium-chain triacylglycerols (MCT) with 60% caprylic acid and 
40% capric acid content were procured from Altıparmak Gıda San. & 
Tic. A.Ş., Istanbul, Turkey. 

2.2. Reagents and standards 

The compounds Na2CO3 (ACS grade, anhydrous, ≥ 99.5%), NaCl 
(ACS grade, ≥ 99.0%), and the analytical standards of phenolic acids 
and flavonoids [namely cinnamyl aldehyde, phloroglucinol, 3,4-dime-
thoxybenzaldehyde, 4-hydroxybenzoic acid, genistein, protocatechuic 
acid, p-coumaric acid, trans-cinnamic acid, 2-OH-coumaric acid, phenyl 
lactic acid, vanillic acid, homogentisic acid, gallic acid, shikimic acid, 
caffeic acid, m-coumaric acid, quinic acid, trans-ferulic acid, syringic 
acid, resveratrol, chrysin, pinocembrin, 3,4-dimethoxy cinnamic acid, 
apigenin, galangin, pinobanksin, methyl syringate, CAPE, kaempferol, 
luteolin, naringenin, (-)-epi-catechin, (+)-catechin hydrate, rutin hy-
drate, quercetin, (+/-)-taxifolin hydrate, epigallocatechin, iso-
rhamnetin, hesperetin, ellagic acid, chlorogenic acid, myricetin, and 
rosmarinic acid] were purchased from Sigma-Aldrich® (Merck KGaA, 
Darmstadt, Germany). The purity of all analytical standards was above 
98.8%. Acetic acid (ACS grade, ≥ 99.7%), ethanol (EtOH, absolute, ≥
99.8%), Folin-Ciocalteu′s phenol reagent, ethyl acetate (anhydrous, 
99.8%), chloroform (HPLC grade, ≥ 99.8%), hexane (HPLC grade, ≥
95%), formic acid (reagent grade, ≥ 95%), methanol (MeOH, LC grade), 
sodium nitrite, and acetonitrile (ACN, LC grade) were purchased from 
VWR International Laboratuvar Teknolojileri Ltd. Şti. (Istanbul, 
Turkey), unless otherwise stated. 

For mutagenicity/anti-mutagenicity assays, Salmonella typhimurium 
bacterial strains and the metabolic activation system (S9) prepared from 
rat liver were supplied from Moltox Molecular Toxicology, Inc (Boone, 
NC, USA). 4-Nitro-o-phenylenediamine (NPD), sodium azide, and 2-ami-
nofluorene were from Sigma-Aldrich® (Merck KGaA). The nutrient 
broth was obtained from HiMedia Laboratories Ltd. (Mumbai, Mahara-
shtra, India). 

Antimicrobial activity of samples was evaluated against six common 
oral/throat pathogens: gram-positive bacteria (Staphylococcus aureus- 
MRSA ATCC 25923, Streptococcus pyogenes ATCC 19615, and Staphylo-
coccus aureus-MSSA), gram-negative bacteria (Pseudomonas aeruginosa 
ATCC 27353 and Klebsiella pneumonia), and yeast such as fungus 

(Candida albicans ATCC 90028). Staphylococcus aureus-MSSA and Kleb-
siella pneumonia clinical isolates were obtained from Istanbul University 
Hospital (Istanbul, Turkey). All strains were maintained at − 80 ◦C in a 
vial containing cryoprotective fluid until used. In addition, brain heart 
infusion agar (BHIA; Merck KGaA), 5% sheep blood agar (SBA; GBL, 
Istanbul, Turkey), tryptone soy agar (TSA; Oxoid, Basingstoke, UK), and 
chlorhexidine gluconate 0.2% (w/v) (Klorhex-DentaSave, Ankara, 
Turkey) were obtained from the specified providers. The B.1.36 strain, 
utilized in SARS-CoV-2 antiviral efficacy tests, was generously provided 
by the Turkish Directorate of Public Health (Ministry of Health, Ankara, 
Turkey). 

Vero E6 cells (ATCC®, CRL-1586TM, Manassas, VA, USA) were 
cultured in complete media consisting of Dulbecco’s Modified Eagle’s 
Medium (DMEM; HyClone, Cat # SH30021.01, Gibco, NY, USA) sup-
plemented with 10% heat-inactivated fetal bovine serum (FBS; HyClone, 
Cat # SV30160.03, Gibco), 100 units/mL penicillin, and 100 g/mL 
streptomycin. Mycoplasma testing was performed at intervals on the cell 
lines using a MycoAlert PLUS Mycoplasma Detection Kit (Lonza, Cat # 
LT07-710, Basel, Switzerland). 

The RAW264.7 murine macrophage cell line and L929 healthy 
mouse fibroblast was provided by American Type Culture Collection 
(Manassas, VA, USA) and was cultured in DMEM supplemented with 
10% FBS, 1% penicillin (10.000 units/mL), and streptomycin (10.000 
µg/mL) (Gibco) at 37 ◦C under a humidified atmosphere of 5% CO2. 
Indomethacin, lipopolysaccharide (LPS) from Escherichia coli 0111: B4, 
and Griess reagent (1% sulfanilamide and 0.1 % N-(1-naphthyl)ethyl-
enediamine dihydrochloride in 5% phosphoric acid) were purchased 
from Sigma-Aldrich® (Merck KGaA). 

2.3. Development of oral/throat spray 

Frozen crude propolis (− 18 ◦C) was first grounded using a grinder 
and then extracted with 70% ethanol. Having stirred for 24 h at room 
temperature, the extract was kept at − 18 ◦C for another 24 h and finally 
filtered to remove wax. For oral/throat spray formulation, the obtained 
propolis extract (in solid form) was ground with liquid nitrogen to fine 
particles and dissolved in food-grade alcohol in an ultrasound water 
bath (Bandelin, Berlin, Germany). Then, MCT was added to propolis 
solution in alcohol and vortexed for 2 min. After that, α-tocopherol was 
dissolved in cold-pressed black cumin oil. Finally, cold-pressed black 
cumin oil together with α-tocopherol and all essential oils (Anatolian 
sage, thyme, medical mint, lemon, and geranium) were combined with 
the alcoholic mixture of propolis and MCT by vortexing for 5 min. 
Table 1 shows the content and specification of oral/throat spray 
formulation. Moreover, preliminary molecular docking works of litera-
ture was used in the present study to develop the current formulation 
(Senthil Kumar et al., 2020). 

2.4. Identification and quantification of phenolic profiles 

2.4.1. Sample preparation 
At the sample preparation step of phenolic profiling analysis, an in- 

house simultaneous extraction and clean-up method was developed. 
According to this protocol, a 0.2 mL of oral/throat spray was first taken 
into a 15 mL centrifuge tube. Then, 800 μL distilled water, 3.2 mL of 
EtOH, and 8 mL of hexane were added to the sample. The resulting 
heterogeneous solution was shaken using a rotary orbital shaker (MaxQ 
4000 Benchtop Orbital Shaker, Thermo Fisher ScientificTM, Inc., Wal-
tham, MA, USA) for 30 min to extract phenolics and for defatting the 
sample. After that, it was centrifugated at 3000 × g for 5 min, and the 
resulting lower phase was filtered to another tube using a 0.45 µm PVDF 
filter (Interlab®, Istanbul, Turkey). Then, a 25 μL aliquot of this solution 
was mixed with 500 μL water and 475 μL MeOH in an amber glass vial, 
and 10 μL of the sample was finally injected into Ultra Performance 
Liquid Chromatography-Tandem Mass Spectrometer (UPLC-MS/MS) 
(Waters®, Milford, MA, USA). For propolis extract, a 0.5 g of sample (in 
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fine particles) was diluted with 70% ethanol (1:1000-fold) and thor-
oughly shaken. Then, a 100 μL aliquot of this solution was mixed with 
900 μL of methanol:water (1:1) in an amber glass vial. Finally, a 10 μL of 
the sample was injected into UPLC-MS/MS system. 

Stock standards of phenolics were prepared by dissolving each in 
ethanol individually at 2 mg/mL concentration. The phenolic stock 
standard mixture was prepared at a concentration of 0.01 mg/mL by 
adding 50 µL from each stock standard in a 10 mL volumetric flask and 
diluted to an appropriate volume. External calibration plots for each 
substance were generated at 6 linear calibration points (0.05, 0.1, 0.25, 
0.5, 1.0, and 2.0 μg/mL) by serial dilution of stock standard mixture 
using MeOH/distilled water (50:50, v/v) solution. Phenolics were 
quantified based on their peak areas and comparison with a calibration 
curve obtained with corresponding standards. 

2.4.2. Instrumentation and MS data acquisition parameters 
Phenolic profiles were determined according to the UPLC-MS/MS 

method of Escriche and Juan-Borrás (2018), with slight modification. 
The equipment consisted of a Waters® ACQUITY UPLC binary solvent 
delivery system, a column oven, and an autosampler equipped with 
Waters® Xevo triple-quadrupole (TQ) MS/MS (Waters®). The analytical 
separation and chromatographic resolution were performed on Waters® 
CORTECS T3 column (1.6 µm, 2.1 × 150 mm) (Waters®) using a 
gradient elution of (A) water containing 0.01% acetic acid and (B) ACN/ 
MeOH (80:20, v/v) containing 0.01% acetic acid at a flow rate of 0.25 
mL/min. Run time was 40 min and applied gradient elution program 
was used as follows: 2% B (0–1.30 min), 2–55% B (1.30–35 min), 
55–95% B (35–37 min), 95–2% B (37–37.01 min), and 2% B (37.01–40 
min). The autosampler tray and column temperature were set at 10 and 
30 ◦C, respectively. 

The ion source and desolvation temperature were optimised for the 
best response and held at 150 and 450 ◦C, respectively, for MS/MS. 
Desolvation and cone gas flow rate was maintained at 850 and 50 L/h, 
respectively. 2 kV of needle capillary voltage provided the best ionisa-
tion efficiency. Multiple Reaction Monitoring mode was employed and 
the peak areas were automatically integrated using Waters® Mass-Lynx 
software at Target Lynx Program (Waters®). All electrospray ionization 

and MS parameters were optimised individually for each target com-
pound, and they are listed in Table 2. 

2.5. Determination of total phenolics 

The total phenolics of samples were determined by the spectropho-
tometric method (Popova et al., 2007; Ecem-Bayram & Gercek, 2019), 
with slight modifications. For oral/throat spray analysis, a 25 µL of the 
defatted phenolic extract, which was previously prepared for the ana-
lyses of phenolic profiles, was taken into a clean centrifuge tube and 200 
µL Folin-Ciocalteu reagent, 300 µL sodium carbonate solution (20%; w/ 
v) in water, and 1975 µL distilled water were added, respectively. For 
propolis extract analysis, a 0.5 g of propolis extract (in fine particles) 
was diluted with 70% ethanol (1:200-fold) and thoroughly shaken. 
Then, a 25 µL of the diluted propolis was taken into a clean centrifuge 
tube. Similar procedure was performed as described for defatted 
phenolic extract. 

The same procedure for both samples was performed for calibration 
solutions at different concentrations [blank, 0.2, 0.4, 0.8, 1.6, and 2.0 
mg/mL] prepared using gallic acid stock solution (10 mg/mL). Mixtures 
were incubated at room temperature for 1 h and the absorbances at 760 
nm were measured (Thermo Scientific™ Electron Evolution 300 UV–VIS 
Spectrophotometer, Waltham, MA, USA). Concentration values ob-
tained from the calibration curve were calculated by multiplying the 
dilution factor and expressed as gram of gallic acid equivalents (g GAE/L 
for oral/throat spray and g GAE/kg for propolis extract). 

2.6. Determination of cytotoxicity and antiviral activity of oral/throat 
spray against SARS-CoV-2 infection 

Cytotoxicity and antiviral activity against SARS-CoV-2 infection 
were examined using the xCELLigence real-time cell analyser (RTCA) 
multiple plates (MP) (Agilent Technologies Inc., Santa Clara, CA, USA) 
system. The xCELLigence RTCA label-free technology was used to 
continuous monitoring the cell numbers via impedance changes recor-
ded by gold electrodes inserted in patented E-Plates. Once the cells were 
seeded, their proliferation rate was quantified by tracking the increase in 
the impedance-related cell index (CI) parameter. The data was collected 
at 15-minute intervals for a total of 140 h. The cell index time median 
(CITmed) and cytopathic effect (CPE) delay hours and antiviral activity 
rate were estimated using the test results (Charretier et al., 2018; Fang, 
Ye, Wang, Xu, & Reisen, 2011). All samples from the experiment were 
normalised to the time point when the virus was added. This point was 
used as normalised cell index (NCI) (Durdagi et al., 2022; Taşlı et al., 
2022). In addition, control wells without viruses were used to calculate 
the antiviral activity rate by subtracting from the CI in the control (virus- 
only) wells that demonstrated the highest CPE at 40–48 h after adding 
the virus-containing sample mixture to the cell population. When SARS- 
CoV-2-induced CPE was entirely or partly suppressed, samples were 
successively categorised as totally neutralising or partially neutralising. 
The test sample was considered fully antiviral if it inhibited the SARS- 
CoV-2-induced CPE at the highest concentration tested. In contrast, it 
was considered partially antiviral if it was delayed, but did not entirely 
inhibit CPE at the highest concentration tested (Zost et al., 2020). 

2.6.1. Preparation of oral/throat spray 
During the preliminary experiments, initial attempts to determine 

the cytotoxic effect of the oral/throat spray formulation were not suc-
cessful. Considering this might be due to the higher concentration of 
black cumin in the composition and its lipophilic character, possibly 
inducing the decomposition of the cells membrane (data not shown). As 
black cumin has commonly been recognised as a safe food and natural 
medicine (Generally Recognized as Safe by the FDA) for centuries 
(Pelvan et al., 2022; Silva, Haris, Serralheiro, & Pacheco, 2020), the 
formulation was produced by excluding black cumin oil from the com-
bination before in vitro antiviral activity testing. Working samples were 

Table 1 
Content and specification of oral/throat spray formulation.  

Content Specification Recommended Daily Oral 
Spraya   

4 sprays/ 
day (mg) 

6 sprays/ 
day (mg) 

Propolis min. 0.65% CAPE 10.80 16.20 
Ethanol 96% food grade b b 

MCT 60% caprylic acid and 
40% capric acid 

c c 

Cold-pressed black 
cumin oil 

1.14% - thymoquinone 165.6 248.4 

Anatolian sage 
essential oil 

min. 20% 1,8-cineol 8.28 12.42 

Oregano essential 
oil 

min. 70% carvacrol 1.80 2.70 

Lemon essential oil min. 45% limonene 12.60 18.90 
Geranium essential 

oil 
min. 20% citronellol d d 

Peppermint 
essential oil 

Flavour enhancer 5.04 7.56 

Alpha-tocopherol Antioxidant against lipid 
peroxidation 

e e 

Abbreviations: CAPE, caffeic acid phenethyl ester; MCT, medium chain tri-
acylglycerols. 
Notes: a Recommended daily amount is 4 to 6 sprays per day for adults and 
children (11 years of age and older). It is recommended to use 2 or 3 times a day, 
in the form of 2 sprays (Commercial Name: ApiteraPlus Propolis Spray). b Used as 
solvent. c Used as emulsifier. d Used as natural flavour agent. e Used as 
antioxidant. 
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Table 2 
MRM transitions and mass spectrometry acquisition parameters of phenolics identified and quantified in propolis extract and oral/throat spray.  

Phenolics Precursor ion 
(m/z) 

Product ions (m/ 
z) *(Q/q1/q2) 

Dwell 
times 
(sec.) 

Cone 
voltage (V) 

Collision energy 
(eV) *(Q/q1/q2) 

Ionization 
mode (þ/-) 

Propolis 
extract (mg/ 

kg)a 

Oral/throat 
spray (mg/L)b 

Cinnamyl aldehyde 133.2 55.0 / 77.2 / 
105.2 

0.005 20 15 / 20 / 15 + – – 

3,4-Dimethoxy 
benzaldehyde 

167.0 124.0 / 139.2 0.005 20 15 / 15 + – – 

Phloroglucinol 124.9 56.9 / 82.8 0.005 25 15 / 15 – – – 
4-Hydroxybenzoic acid 137.0 92.9 0.005 20 15 – – – 
Trans-cinnamic acid 147.0 77.0 / 102.8 0.005 25 20 / 20 – 1,672 ± 150* 45 ± 7* 
Protocatechunic acid 152.9 108.8 0.005 25 15 – – – 
p-Coumaric acid 163.0 93.0 /119.0 / 

147.0 
0.005 25 20 / 20 / 20 – 1,897 ± 34* 79 ± 2* 

2-OH Coumaric acid 163.0 93.0 / 119.0 / 
147.0 

0.005 25 20 / 20 / 20 – – – 

m-Coumaric acid 163.0 93.0 /119.0 / 
147.0 

0.005 25 20/20/20 – – – 

Phenyllactic acid 165.1 102.8 / 118.9 / 
146.9 

0.005 25 15 / 15 / 10 – – – 

Vanilic acid 166.9 90.8 / 108.1 / 
123.2 / 152.2 

0.005 25 20 / 20 /10 /25 – – – 

Homogentisic acid 167.0 122.9 / 123.1 0.005 20 20 / 20 – – – 
Gallic acid 169.0 124.9 0.005 25 20 – – – 
Shikimic acid 173.0 73.0 / 93.0 / 

111.0 
0.005 25 20 / 20 / 20 – – – 

Caffeic acid 179.0 135.0 0.005 25 20 – 1,526 ± 92* 109 ± 7* 
Quinic acid 191.1 59.0 / 84.8 / 92.8 

/ 126.8 
0.005 35 20 / 20 / 20/ 20 – – – 

Ferulic acid 193.0 134.0 / 149.0 / 
178.0 

0.005 25 20 / 20 / 20 – 1,081 ± 63* 51 ± 0* 

Syringic acid 197.0 123.0 / 167.0 / 
182.0 

0.005 25 20 / 20 / 20 – – – 

3,4- 
Dimethoxycinnamic 
acid 

206.7 102.7 0.005 25 20 – 6,073 ± 240* 227 ± 3* 

Methylsyringate 211.2 181.0 / 196.0 0.005 25 20 / 20 – – – 
Resveratrol 227.0 143.0 / 185.0 0.005 30 20 / 20 – – – 
Chrysin 253.0 151 / 209 / 225 0.005 25 20 / 20 / 20 – 19,024 ± 414* 661 ± 17* 
Pinocembrin 255.0 151.0 / 171.0 / 

213.0 
0.005 25 20 / 20 / 20 – 31,403 ± 1798* 959 ± 64* 

Apigenin 269.0 117.3 / 149.0 / 
151.0 

0.005 40 30 / 25 / 25 – 2,938 ± 203* 101 ± 3* 

Genistein 269.0 133.2/ 159.2/ 
224.2 /240.0 

0.005 40 30 / 20 / 25/ 20 – 466 ± 46* 17 ± 0* 

Galangin 269.0 197.0 / 213.0 / 
227.0 

0.005 25 20 / 20 / 20 – 20,420 ± 722* 648 ± 5* 

Naringenin 271.0 145.0 / 151.0 0.005 25 20 / 20 – 2,401 ± 160* 85 ± 4* 
Pinobanksin 271.2 153.0 / 225.0 / 

253.0 
0.005 25 20 / 20 / 20 – 16,248 ± 1116* 544 ± 35* 

CAPE 283.0 135.0 / 161.0 / 
179.0 

0.005 25 20 / 20 / 20 – 13,497 ± 454* 503 ± 0* 

Kaempferol 285.0 93.0 / 151.0 / 
257.0 

0.005 25 20 / 20 / 20 – 3,155 ± 198* 118 ± 8* 

Luteolin 285.0 133.0 / 241.0 / 
267.0 

0.005 25 20 / 20 / 20 – 886 ± 73* 64 ± 29* 

Epicatechin 289.1 108.8 / 203.0 / 
245.0 

0.005 25 20 / 20 / 20 – – – 

Catechin 289.1 108.8 / 203.0 / 
245.0 

0.005 25 20 / 20 / 20 – – – 

Quercetin 301.0 150.8 / 178.9 0.005 35 20 / 20 – 1,145 ± 53* 80 ± 14* 
Ellagic acid 301.0 185.2 / 229.0/ 

257.0/ 284.2 
0.005 30 30 / 25 /25 / 30 – – – 

Hesperetin 301.3 135.8/ 150.8/ 
164.1/ 241.7 

0.005 25 20 / 20 / 20/ 20 – – – 

Taxifolin 303.0 125.0 0.005 25 20 – – – 
Epigallocatechin 305.2 124.8/ 164.8/ 

166.9/ 219.0 
0.005 25 20 / 20 / 20/ 20 – – – 

Isorhamnetin 315.0 300.0 0.005 25 20 – 1,445 ± 108* 58 ± 3* 
Myricetin 317.0 137.2 / 151.2 / 

179.2 
0.005 35 25 / 25 / 20 – – – 

Chlorgenic acid 353.3 179.0 / 191.0 0.005 25 20 / 20 – – – 
Rosmarinic acid 359.0 161.0 / 197.0 0.005 25 20 / 20 – – – 
Rutin 609.1 300.0 / 301.0 0.005 25 20 / 20 – – – 
Total phenolic content – – – – – – 205 ± 11* (g 

GAE/kg) 
7.91 ± 0.4* (g 

GAE/L) 
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prepared using 1X medium containing 2% FBS from serial dilutions 
ranging from 1:160 to 1:10240-fold. 

2.6.2. Determination of cytotoxicity of oral/throat spray using RTCA assay 
Vero E6 cells were cultured in 1X DMEM supplemented with 10% 

FBS. The cells were then seeded (25,000 cells/well) in the xCELLigence 
RTCA MP device (96-well E-plate) to determine the cytotoxicity of oral/ 
throat spray samples. The device was placed at 37 ◦C with 5% CO2 
humidity incubator throughout the procedure. Seeded cells were 
maintained in the widget to settle for 24 h. After incubation, diluted 
samples (from 1:160 to 1:10240-fold) were placed in the xCELLigence 
RTCA MP device (96-well E-plate). Cells were subsequently incubated 
with samples at 37 ◦C for 160 h with 5% CO2. During this period, the 
xCELLigence RTCA MP device quantified the electrical impedance into 
CI with intervals of 15 min. Higher CI values indicated increased cell 
viability, whereas lower ones suggested poor health and reduced cell 
viability in the test medium. At the end of the test, obtained data were 
analysed using a CI value plot of each well against controls via RTCA 
Software Pro 2.6.0 (Basic) (Agilent Technologics, Inc., Santa Clara, CA, 
USA). 

2.6.3. Determination of antiviral activity of oral/throat spray using RTCA 
assay 

High-throughput and quantitative RTCA assay developed with the 
help of xCELLigence RTCA MP was used to detect the antiviral activity of 
oral/throat spray samples by measuring the virus’s cytopathic effect and 
the progression of the virus’s infection in infected cells. Vero E6 cells 
were seeded (25,000 cells/well) in sterile, disposable wells of the 
xCELLigence RTCA MP device (96-well E-plate). Throughout the pro-
cedure, the instrument was placed in an incubator and seeded cells were 
monitored for settling and proliferation for 24 h. The samples were 
prepared following the protocols described in the “Preparation of oral/ 
throat spray” section. They were incubated at 37 ◦C for 1 h under 5% 
CO2 saturation and with 3.5x105 pfu/mL SARS-CoV-2 virus. After 
removal of the media from each well, the samples were placed in the 
wells and incubated at 37 ◦C for 140 h under 5% CO2. The cell-only 
control sample was prepared using untreated wells consisting of only 
cells and the media containing 2% FBS (state of no infection). While the 
wells containing only cells and viruses in a medium containing 2% FBS 
served as a control sample for viruses only (state of infection). Wells 
holding just cells and sample dilutions were evaluated as a cytotoxicity 
control for the samples. The apparatus quantified electrical impedance 
into CI with intervals of 15 min during the whole procedure. Finally, the 
results were examined using a CI value plot of each well versus controls 
using RTCA Software Pro 2.6.0 (Basic) (Agilent Technologics Inc.). 
Virus-free control at the same dilution was used in the estimation of 
antiviral activity percentage of a sample dilution. 

2.6.4. Biosafety 
All cytotoxicity and antiviral activity experiments were carried out at 

Biosafety Level 3 (BSL-3) Laboratory of Life Sciences (TÜBİTAK-Mar-
mara Research Center, Gebze-Kocaeli, Turkey), having all necessary 
national certifications for handling SARS-CoV-2. 

2.7. Determination of antimicrobial activity 

The antimicrobial assay was performed by the disc diffusion method 
(Tadtong, Wannakhot, Poolsawat, Athikomkulchai, & Ruangrungsi, 
2009). BHIA (Merck KGaA) and 5% SBA (GBL) were used for culturing 
the Streptococcus pyogenes, while TSA (Oxoid) was used for culturing 
other microbial strains. S. pyogenes was cultured in SBA medium under 

the same condition. The other strains were cultured in TSA at 37 ◦C for 
24 h before being used as inoculum. The grown cultures were washed of 
the agar using sterile saline solution, and the suspensions were adjusted 
according to 0.5 McFarland standard turbidity (1-5x108 CFU/mL). The 
antimicrobial screening was performed using BHIA for S. pyogenes and 
TSA for other strains and inoculated with 100 μL of suspension. The 
inoculum was spread on the agar surface and allowed to dry for 2 h. Each 
test solution (20 μL) was impregnated on a sterile paper disc of 6 mm 
diameter and placed on the inoculated agar. The agar plates were then 
left 30 min at room temperature to allow the diffusion of the test solu-
tions before they were incubated for 24 h at 37 ◦C. Alcohol, as one of the 
components in the oral/throat spray, was used as the negative control 
and a broad-spectrum throat antiseptic chlorhexidine [Chlorhexidine 
gluconate 0.2% (w/v), Klorhex- DentaSave, Ankara, Turkey] as the 
positive control. The antimicrobial activity was assessed by measuring 
the diameter of the inhibition zone (mm) of the test microorganism after 
incubation. Three independent experiments were performed, and each 
experiment was run in triplicate. Data were presented as means ±
standard deviation. 

2.8. Cell culture experiments 

2.8.1. Cytotoxicity 
Cell viability of each component in oral/throat spray (e.g., each 

essential oil and propolis extract) and the formulation itself was assessed 
by using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide 
(MTT; Merck KGaA) assay, as described by Erdoğan et al. (2021). 
RAW264.7 cells at the density of 1 × 105 cells/well were plated in a 48- 
well plate and treated with different concentrations of essential oils, 
propolis extract, and oral/throat spray formulation for 24 h. After the 
incubation period, the cell medium was removed. MTT solution (0.5 
mg/mL) was added to all wells and cells were then incubated for an 
additional 2 h at 37 ◦C. After incubation, the cell culture medium was 
discarded and 100 μL of isopropanol was added to wells to dissolve 
formazan. The absorbance was measured at 570 nm wavelength by an 
enzyme-linked immunosorbent assay (ELISA) microplate reader (Ther-
moFisher Scientific, Waltham, MA, USA). Cell viability of cultures 
treated with samples<70% compared to untreated control cultures 
(medium group) is considered cytotoxic. The percentage of cell viability 
was calculated by using the following equation: 

CellViability(%) = (Absorbancetreatmentgroup)/(Absorbancecontrol) × 100%.

2.8.2. Evaluation of anti-inflammatory activity 
Anti-inflammatory activity of each essential oil, propolis extract, and 

oral/throat spray was evaluated by measuring the nitrite oxide (NO) 
levels in the cell culture supernatant using Griess reagent (Okur et al., 
2020). Briefly, RAW264.7 cells were plated in a 48 well-plate at a 
density of 1 × 106/mL and incubated for 24 h at 37 ◦C in 5% CO2. The 
cells were pretreated with essential oils, propolis extract, and oral/ 
throat spray at different concentrations and the reference drug indo-
methacin at 100 µM. Indomethacin was used as a positive control. Two 
hours later, cells were stimulated with 1 µg/mL of LPS for an additional 
22 h. After that, cell culture supernatant was collected. The nitrite 
concentration in the supernatant was measured using a colorimetric 
method based on the Griess reaction. The supernatant was mixed with 
an equal volume of Griess reagent [1% sulfanilamide and 0.1 % N-(1- 
naphthyl)ethylenediamine dihydrochloride in 5% phosphoric acid] in a 
96-well plate for 10 min at room temperature in the dark. The absor-
bance was read using a microplate reader (ThermoFisher Scientific) at 
540 nm. A sodium nitrite standard curve was used to calculate the nitrite 

Data are expressed as means ± the standard deviation (n = 3) on an extract. Statistical significant differences were indicated for each compound (*p > 0.05). 
Abbreviations: CAPE, caffeic acid phenethyl ester; GAE, gallic acid equivalents. 

a Solid. 
b Liquid. 
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concentration in the samples. 

2.8.3. Evaluation of analgesic activity 
Prostaglandin E2 (PGE2) levels in the collected cell culture super-

natants were evaluated using a commercially available quantitative 
ELISA kit (Abcam PGE2 ELISA Kit, Cambridge, UK), following the 
manufacturer’s instructions. Only doses that showed the highest nitrite 
inhibition activity for each sample were used. 

2.9. Mutagenicity and anti-mutagenicity assays 

The standard plate incorporation test was carried out according to 
the method of Maron and Ames (1983). Mutagenicity assay was per-
formed using S. typhimurium TA98 and TA100 strains in the presence 
and absence of S9 metabolic activation. The sample was diluted with 
dimethyl sulfoxide (DMSO) and different concentrations (0, 1, 10, 100, 
1,000, and 5,000 μg/plate) in 50 μL of DMSO were used for both 
mutagenicity and anti-mutagenicity assays. The concentration of 5,000 
μg/plate was determined as the highest concentration of test samples 
according to the Organisation for Economic Co-operation and Devel-
opment (OECD) 471 guidelines (OECD, 1997). 

The anti-mutagenicity assay was performed similarly using the same 
bacterial strains against direct and indirect mutagens. The number of 
revertant colonies grown on plates containing mutagens without sample 
was defined as 100%, which means 0% inhibition. The percentage of 
inhibition was calculated according to a previously described method. 
The anti-mutagenic effect was considered moderate and strong when the 
inhibitory effects were 25–40% and over 40%, respectively. The inhib-
itory effect of<25% was deemed weak and was not recognised as a 
positive result (Charehsaz, Sipahi, Giri, & Aydin, 2017). 

2.10. Statistical analysis 

Comparisons among samples were made by using GraphPad Prism 8 
(Version 9.4.0, GraphPad Prism, San Diego, CA, USA). Differences 
among samples were determined by using two-way ANOVA approach. 
All measurements were carried out in triplicates, unless otherwise 
stated. 

3. Results and discussion 

3.1. Development of oral/throat spray formulation 

Content and specification of oral/throat spray are given in Table 1. 
Briefly, an alcoholic mixture of propolis and MCT were mixed with cold- 
pressed black cumin oil together with α-tocopherol and essential oils 
from Anatolian sage, oregano, peppermint, lemon peel, and geranium. 
The ratios of raw materials were selected according to their solubility, 
taste, antiviral, and anti-microbial effects. Recommended daily amount 
is 4 to 6 sprays per day for adults and children (11 years of age and 
older). It is recommended to use 2 or 3 times a day, in the form of 2 
sprays. 

3.2. Identification and quantification of phenolics in propolis extract and 
oral/throat spray 

Phenolics are valuable secondary metabolites that render various 
health benefits. Propolis has long been recognised as a rich source of 
phenolics (Osés et al., 2020). Forty-three natural phenolic compounds 
were tentatively identified using the upgraded UPLC-MS/MS method; 
these include 19 phenolic acids, 18 flavonoids and 6 non-flavonoids 
(aromatic aldehydes (2), ester derivatives (2), stilbenoids (1) and, ben-
zenetriol (1) (Table 2). Out of 43 phenolics, 17 were quantified using 
authentic standards (Table 2). Among these, pinocembrin (31,403 mg/ 
kg) predominated in propolis extract followed by galangin (20,420 mg/ 
kg), chrysin (19,024 mg/kg), pinobanksin (16,284 mg/kg), CAPE 

(13,497 mg/kg), and 3,4-dimethoxycinnamic acid (6,073 mg/kg). It was 
observed that the aforementioned phenolics were also abundant in the 
final recipe, which especially arose with the addition of propolis extract 
to oral/throat spray. In this study, black poplar propolis was chosen as 
the raw propolis type since its CAPE ingredient was relatively high 
compared to other propolis types. CAPE has been reported to possess 
various health benefits (Cagli et al., 2005; Kabala-Dzik et al., 2017; 
Patel, 2016). Propolis offers more than one type of phenolics at the same 
time. 

Total phenolic contents of propolis extract and oral/throat spray 
were 205 g GAE/kg and 7.91 g GAE/L, respectively (Table 2). The re-
sults revealed that the propolis extract used in the oral/throat spray has 
a sufficient amount of phenolics to fulfil the potential demand for 
phenolic activity. Remarkable total phenolics measured for spray 
formulation were able to reflect the possible phenolic-dependent activ-
ities of the final product, such as antimicrobial, antiviral, antifungal, 
anti-inflammatory, and radical scavenging potential (antioxidant). 

Due to its richness in phenolics, propolis can suppress the virus 
replication and modulate the host immune response. It is a common 
problem that influenza viruses, which cause respiratory tract infections, 
regularly acquire mutation, making it difficult for successful antiviral 
therapies (Osés et al., 2020). Recently, the effect of poplar propolis 
extract (35 µg/mL) on H1N1 (influenza virus) was studied in vitro, 
verifying that it stimulated pro-inflammatory cytokines [interleukins 
(IL)-6 and IL-1β] secretion by peripheral blood mononuclear cell 
(PBMC) and reduced neuraminidase enzyme, which is a key protein for 
virus propagation (Governa et al., 2019). Herpes simplex virus (HSV) 
infections are also very common health problems worldwide. Huleihel 
and Isanu (2002) mentioned that propolis hinders the viral absorption 
and replication cycle of HSV-1 with 0.5% LC50 (a lethal concentration 
that kills half of the cells) in VERO cells, whereas they used a 5% dose for 
in vivo testing in rats and rabbits. Furthermore, Sartori et al. (2012) 
found that brown propolis (50 mg/kg) reduced the damage caused by 
HSV-2 infection in BALB/c mice. In the wake of the recent coronavirus 
outbreak, research on functional products has significantly increased. 
Since March 2020, in response to the coronavirus pandemic, the South 
Korean Ministry eased regulations for propolis, which is regarded as a 
functional food and allowed new oral formulations (Koe, 2020). There is 
prominent evidence that propolis can diminish and extenuate the 
symptoms of inflammatory diseases by affecting various metabolic cy-
cles (Hori, Zamboni, Carrão, Goldman, & Berretta, 2013; Machado et al., 
2012; Piñeros et al., 2020). Infection by SARS-CoV-2 is characterised by 
binding between angiotensin-converting enzyme 2 (ACE2) and viral 
spike protein. Activation of the spike protein is mediated through pro-
teases, such as transmembrane serine protease 2 (TMPRSS2), which play 
important roles in viral infection (Hoffmann et al., 2020; Wan, Shang, 
Graham, Baric, & Li, 2021). Two mechanisms can be responsible for the 
antiviral activity of propolis. Among identified components, CAPE and 
quercetin are the main ones. CAPE can inactivate serine/threonine- 
protein kinase (PAK1) directly or upstream, an important enzyme for 
the entry and replication of several human viruses (Bachevski, Dam-
evska, Simeonovski, & Dimova, 2020; Maruta & He, 2020; Van den 
Broeke, Radu, Chernoff, & Favoreel, 2010). Quercetin can help against 
infection by modulating unfolded protein response, preventing the 
complete viral cycle (Colunga Biancatelli, Berrill, Catravas, & Marik, 
2020). 

Osés et al. (2020) also reported propolis components (such as cate-
chin, p-coumaric acid, and flavonols) displayed an ACE-inhibitory ac-
tivity. There are numerous evidences for the interference of propolis 
and/or its components with viral replication and infectivity, potentially 
reducing lung inflammation owing to anti-inflammatory properties 
while promoting immune system fortification. These are beneficial 
properties that could help diminish the symptoms and harmful effects of 
COVID-19. Propolis has a broad spectrum of effects on bacterial, fungal, 
or viral infections as an apitherapy product. 
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3.3. Antiviral activity in oral/throat spray 

Before conducting a complete investigation on the antiviral effect of 
oral/throat spray formulation, the cytotoxicity was evaluated under 
experimental conditions. Throat spray stock sample and ten different 
concentrations were prepared as 1/2-fold serial dilutions. Cell index was 
obtained after monitoring for 140 h via the RTCA MP analyser device 
(Fig. 1A and 1B). The data collected during this period revealed that 
some concentrations of oral/throat spray samples had a cytotoxic effect 
on Vero E6 cells. The throat spray dilutions of 1:160 and 1:320 signifi-
cantly reduced cell viability by over 90% (Fig. 1C) (results were nor-
malised to the time when the virus was added to the experiment). Since 
both dilutions were considered cytotoxic, samples were deemed non- 
cytotoxic from 1:640- to 1:10,240-fold dilutions (cell viability percent-
ages were ≥ 90%). To properly assess the antiviral efficacy of samples, it 
was vital to ensure that they were not cytotoxic. Otherwise, it was 
difficult to determine if a virus or cytotoxicity was responsible for cell 
death. 

Accordingly, the oral/throat spray sample with 1:640-fold dilution 
provided the highest efficacy (Fig. 2A-2D). The CPE was delayed for 54 h 
at this dilution and the antiviral activity rate was 85.3%. This result was 
followed by 1:1280-fold and 1:2,560-fold dilutions which delayed CPE 
for 24 and 6 h and antiviral activity rates were 22.7 and 1.4%, respec-
tively (Fig. 2C and 2D). In contrast, further reduced dilutions (1:5,120- 
and 1:10,240-fold) had no antiviral activities on cells (data not shown). 

When the antiviral effectiveness data were analysed, it was not 
possible to identify antiviral efficacy at these dosages since the oral/ 
throat spray was cytotoxic at higher doses. However, after 140 h of in-
cubation with the SARS-CoV-2 virus, the oral/throat spray was not 
cytotoxic and inactivated 85% of the virus titre when presented at 1:640 
dilution. 

3.4. Antimicrobial activity in oral/throat spray 

The antimicrobial activity of oral/throat spray was evaluated by the 

disc diffusion method against six common throat pathogen microor-
ganisms (S. aureus-MRSA, S. aureus-MSSA, S. pyogenes, P. aeruginosa, 
K. pnemoniae, and C. albicans), and the results are summarised in 
Table 3. Among the tested microorganisms, the oral/throat spray 
formulation showed strong antimicrobial activity on gram-positive 
bacteria (S. aureus-MRSA, S. aureus-MSSA, and S. pyogenes) and yeast- 
like fungus (C. albicans), whereas it was inactive against gram- 
negative bacteria such as P. aeruginosa and K. pnemoniae. Chlorhexi-
dine, as a positive control, was effective against all tested microorgan-
isms, and the diameter values were within the range of 12–25 mm. 

S. aureus, an important pathogen bacteria, causes sore throat and is 
especially responsible for a wide range of hospital infections worldwide 
(Kim et al., 2006; Matthews, Adegoke, & Shephard, 2020). As shown in 
Table 3, oral/throat spray formulation exhibited a larger zone of inhi-
bition against S. aureus-MRSA (34 ± 2.9 mm) and S. aureus-MSSA (32 ±
2.1 mm) when compared to that of chlorhexidine as a positive control 
(20 ± 1.2 mm and 19 ± 1.2 mm, respectively). In addition, the throat 
spray exhibited the largest inhibitory zone (54 ± 2.7 mm) against 
S. pyogenes, which is another important respiratory gram-positive 
pathogen, compared to that of positive control (25 ± 2.2 mm). When 
the antifungal effect of the throat spray on C. albicans (15 ± 1.1 mm) was 
examined, an immediate effect with chlorhexidine (18 ± 1.2 mm) was 
observed. 

Several studies have been carried out on the antimicrobial effects of 
black cumin oil, essential oils, and propolis, as the components in the 
oral/throat spray. In these studies, different magnitudes of effects have 
been observed depending on the active compounds, extraction methods, 
concentration, and tested organisms (Ristivojevic et al., 2018; Probst, 
Sforcin, Rall, Fernandes, & Fernandes Júnior, 2011; Thosar, Basak, 
Bahadure, & Rajurkar, 2013; Denkova-Kostova et al. 2021; Navit, 
Margarita, & Liki, 2021; Al-Bakri, Othman, & Afifi, 2010). From the 
result, it can be concluded that the oral/throat spray formulation 
exhibited antimicrobial activity against the selected set of microorgan-
isms except for gram-negative bacteria. 

Fig. 1. Cytotoxic effect of oral/throat spray on Vero E6 cell line. A) Obtained graph using the xCELLigence RTCA MP real-time cell analysis experiment. Data shows 
the xCELLigence system’s CI. ControlMedia: Vero E6 cells that were not infected with virus (red line) and virus alone; Vero E6 cells that were infected with 3.5x 105 

PFU/mL of SARS-CoV-2 (B.1.36) (green line). B) The second graph depicts the same data but with the standard deviation. C) The bar graph shows the cytotoxic effect 
of samples on the vero E6 cell line. Cell Index data were normalised and renamed NCI based on the time point at when the virus was added to the experiment. 
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3.5. Cell culture studies for activity and safety of oral/throat spray 

3.5.1. Cytotoxicity 
Cytotoxicity is a measure of an agent’s ability to cause cell injury. 

The ability of all agents to be cytotoxic is dependent on their concen-
tration and exposure time. Events immediately associated with cell 
death can be measured (e.g., assays of cell viability). Viability assays can 

be widely applied to determine the cytotoxic potential of an agent 
(Shaw, 1994). 

Prior to the evaluation of anti-inflammatory and analgesic activity, 
non-toxic concentrations of oral/throat spray and its individual com-
ponents (such as essential oils, cold-pressed black cumin oil, propolis 
extract with cell viability of more than 70% were determined. Conse-
quently, cytotoxicity of extracts was carried out on RAW264.7 cells for 
24 h by MTT colorimetric assay (Table 4). The selected non-toxic doses 
for oregano essential oil were 0.0625, 0.125, and 0.25 mg/mL, and the 
anti-inflammatory and analgesic activity trial continued with these 
doses. 

3.5.2. Anti-inflammatory activity 
In vitro anti-inflammatory activities of extracts were assessed by 

monitoring the decrease in nitrite production levels using the Griess 
reagent. Essential oils, propolis extract, and oral/throat spray were 
tested for their inhibitory activities against LPS-induced nitrite pro-
duction in RAW264.7 cells. In the present study, indomethacin was used 
as a reference drug (Okur et al., 2021). Upon LPS (1 µg/mL) treatment, 
nitrite concentration in the cell culture supernatant increased markedly. 
Various essential oils have been popularly used as anti-inflammatory in 
aromatherapy (Shen, Jiang, Zhu, & Ou-Yang, 2017). As seen in Table 4, 
all essential oils showed the capability of reducing LPS-induced nitrite 
production in a concentration-dependent manner. Anatolian sage and 
geranium essential oils exhibited the highest anti-inflammatory activity 
compared to those of others. In particular, the essential oil mixture 
showed significantly higher anti-inflammatory activity at all doses (p <

Fig. 2. The graph antiviral activity of the oral/throat spray was evaluated using the xCELLigence RTCA MP real-time cell analysis equipment on the Vero E6 cell 
line. A) The xCELLigence system’s CI with the oral/throat spray and control. Control Media: Vero E6 cells that were not infected with virus (red line) and virus alone; 
Vero E6 cells that were infected with 3.5x 105 PFU/mL of SARS-CoV-2 (B.1.36) (green line). The dilution of oral/throat samples. B) The second graph depicts the 
same data but with the standard deviation included. C) The table depicted the CITmed and CPE delay hours, respectively. Cell Index data were normalised and 
renamed NCI based on when the oral/throat spray was added to the experiment. Each curve was obtained from at least four separate duplicates of NCI values. D) The 
bar graph depicted the antiviral activity rate of oral/throat spray. Cell Index data were normalised and renamed NCI based on the time point at when the virus was 
added to the experiment. After comparing the diluted samples to the control group, the collected data were considered significant, with a p value < 0.0001 (****). 
(For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

Table 3 
Antimicrobial activity of oral/throat spray and chlorhexidine (positive control).    

Diametera of inhibition zone (mm)  

Microorganisms Oral/throat 
spray 

Chlorhexidine (positive 
control) 

Gþ Staphylococcus aureus- 
MRSA 

34 ± 2.9 20 ± 1.2  

Staphylococcus aureus- 
MSSA 

32 ± 2.1 19 ± 1.2  

Streptococcus pyogenes 54 ± 2.7 25 ± 2.2 
G- Klebsiella pneumonia Ni 12 ± 0.5  

Pseudomonas aeruginosa Ni 14 ± 1.5 
Ylf Candida albicans 15 ± 1.1 18 ± 1.2 

Data are expressed as means ± the standard deviation (Three independent ex-
periments were performed and each experiment was run in triplicate). 
Abbreviations: G-, Gram negative bacteria; G+, gram positive bacteria; MRSA, 
Methicillin-resistant Staphylococcus aureus; MSSA, Methicillin-susceptible 
Staphylococcus aureus; Ni, No inhibition; Ylf, Yeast-like. fungus. 

a Includes diameter of disc (6 mm). 
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0.05) on LPS stimulated RAW264.7 cells when compared to the control 
group. Moreover, the percentage inhibition of nitrite at the highest non- 
toxic dose was relatively high (83.9%) than the reference compound, 
100 µM indomethacin (58.7%). The anti-inflammatory activities of these 
essential oils have been documented in several studies. Previous studies 
demonstrated that Thymus vulgaris (Abdelli et al., 2017), Salvia officinalis 
(Abu-Darwish et al., 2013), Mentha piperita (Hejna, Kovanda, Rossi, & 
Liu, 2021), Pelargonium graveolens (Ali, Saleh, & Jalal, 2020), Citrus 
lemon (Shen, Jiang, Zhu, & Ou-Yang, 2017), and Nigella sativa (Bordoni 
et al., 2019) essential oils exhibited anti-inflammatory effects via 
different mechanisms and pathways. Propolis extract exhibited 
remarkable anti-inflammatory activity compared to the LPS control. Our 
findings on anti-inflammatory activity of propolis are in agreement with 
previous studies (Ali, Saleh, & Jalal, 2020). In addition, various 

concentrations of oral/throat spray (0.125, 0.25, and 0.5 mg/mL) 
showed significant reductions in LPS-induced NO production (56.10 ±
1.02, 63.03 ± 2.85, and 71.30 ± 1.66%, respectively). Based on these 
results, the oral/throat spray may be used as an efficient anti- 
inflammatory agent by inhibiting NO production. 

3.5.3. Analgesic activity 
PGE2, a cyclooxygenase (COX) product, is the best-known lipid 

mediator that contributes to inflammatory pain. Nonsteroidal anti- 
inflammatory drugs (NSAIDs), primarily PGE2 inhibitors of COX-1 
and/or COX-2, reduce inflammatory pain by reducing prostanoid pro-
duction (Kawabata, 2011). 

PGE2 levels were determined in LPS (1 µg/mL) stimulated RAW264.7 
murine macrophage cells by using an ELISA method. Herein, the 

Table 4 
Cell viability (%), nitrite levels, nitrite inhibition capacity, and PGE2 levels on LPS stimulated RAW 264.7 cell line treated with samples.  

Groups Concentration (mg/ 
mL) 

Cell viability (% ± 
SD) 

Nitrite levels (µM ± 
SD) 

Nitrite inhibition capacity 
(%) 

PGE2 levels (pg/ 
mL) 

Control  114.8 ± 2.11 1.87 ± 1.28  43.67 ± 1.78 
Control + LPS  100.0 ± 1.26 36.23 ± 1.44  2552 ± 26.62 
Indomethacin  96.16 ± 1.87 14.96 ± 1.17* 58.72 ± 2.17 22.55 ± 2.78** 
Oregano (Origanum onites) essential oil 0.0625 84.52 ± 4.19 28.67 ± 1.47* 20.86 ± 4.05   

0.125 79.11 ± 2.63 27.08 ± 2.28* 25.27 ± 6.30   
0.25 76.72 ± 2.33 26.13 ± 2.58* 27.87 ± 7.12 16.74 ± 0.52**  
0.5 20.74 ± 2.16     
1 18.53 ± 1.87    

Anatolian sage (Salvia triloba) essential oil 0.0625 83.56 ± 2.25 18.38 ± 1.51* 49.27 ± 4.16   
0.125 75.73 ± 2.76 17.99 ± 2.69* 50.46 ± 5.43   
0.25 73.74 ± 6.26 12.36 ± 1.15* 65.92 ± 3.17 38.99 ± 8.99**  
0.5 43.04 ± 3.96     
1 28.83 ± 4.32    

Peppermint (Mentha piperita) essential oil 0.015625 97.03 ± 2.89 27.98 ± 2.13* 22.77 ± 5.89   
0.03125 83.98 ± 3.38 25.60 ± 4.76* 29.35 ± 4.13   
0.0625 79.45 ± 4.64 26.98 ± 1.99* 25.54 ± 5.49 1198 ± 270.2  
0.125 56.61 ± 0.36     
0.25 52.07 ± 1.31     
0.5 47.50 ± 1.43     
1 14.96 ± 2.00    

Geranium (Pelargonium graveolens) 
essential oil 

0.015625 85.08 ± 3.32 20.29 ± 3.58* 44.01 ± 9.88   

0.03125 79.97 ± 5.36 21.16 ± 2.64* 55.39 ± 7.28   
0.0625 74.19 ± 3.74 18.39 ± 1.52* 49.23 ± 4.19 2542 ± 119.2  
0.125 67.39 ± 3.33     
0.25 42.44 ± 4.59     
0.5 17.45 ± 3.70     
1 15.92 ± 3.15    

Lemon (Citrus limon) essential oil 0.125 83.40 ± 2.92 28.09 ± 1.16* 22.46 ± 3.21   
0.25 81.29 ± 0.58 27.14 ± 2.57* 25.11 ± 7.08   
0.5 71.06 ± 2.83 24.25 ± 1.51* 33.06 ± 4.17 212.1 ± 3.32**  
1 15.98 ± 2.43    

Cold-pressed black cumin (Nigella sativa) 
oil 

0.125 112.4 ± 5.52 23.14 ± 2.56* 36.12 ± 8.62   

0.25 116.7 ± 1.01 21.14 ± 3.12* 41.66 ± 8.62   
0.5 110.8 ± 1.90 3.76 ± 1.99* 89.63 ± 5.48 299.8 ± 86.58**  
1 15.44 ± 0.70    

Essential oil mixture 0.03125 88.51 ± 3.47 13.63 ± 2.41* 62.38 ± 6.66   
0.0625 79.98 ± 3.86 7.55 ± 1.13* 79.16 ± 3.13   
0.125 77.36 ± 4.10 5.85 ± 1.70* 83.85 ± 4.68 874.6 ± 72.81**  
0.25 62.18 ± 2.11     
0.5 54.02 ± 1.34     
1 38.76 ± 2.85    

Propolis extract 0.03125 102.8 ± 2.14 11.05 ± 7.17* 69.50 ± 4.12   
0.0625 92.97 ± 3.51 11.94 ± 5.26* 61.04 ± 5.23   
0.125 91.57 ± 1.96 11.52 ± 3.71* 56.10 ± 1.02 175.0 ± 7.30**  
0.25 67.13 ± 2.15     
0.5 55.69 ± 3.46     
1 42.16 ± 2.67    

Oral/throat spray 0.125 93.12 ± 1.18 15.90 ± 0.37* 56.10 ± 1.02   
0.25 84.45 ± 2.10 13.39 ± 1.03* 63.03 ± 2.85   
0.5 74.13 ± 1.01 10.40 ± 0.60* 71.30 ± 1.66 126.6 ± 1.20**  
1 64.45 ± 2.13    

Values in bold indicate to non-cytotoxic doses of samples. Statistical significant differences were indicated for each compound vs. LPS (*p < 0.05,**P < 0.001). 
Abbreviations: L-NAME, Nω-Nitro-L-arginine methylester hydrochloride; LPS, lipopolysaccharides; PGE2, prostaglandin E2. 
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analgesic activity on PGE2 productions was evaluated for doses of ex-
tracts showing the highest anti-inflammatory activity. Indomethacin 
(100 µM) was used as a positive control in the PGE2 assay. Table 4 shows 
that all essential oils, except geranium essential oil, significantly 
decreased PGE2 levels more than that of LPS-induced control. Especially, 
oregano and Anatolian sage essential oils reduced the PGE2 levels (99.3 
and 98.47%, respectively), almost to medium control levels. Previous 
studies demonstrated that Thymus vulgaris (Rašković et al., 2021), Salvia 
officinalis (Qnais, Abu-Dieyeh, Abdulla, & Abdalla, 2010), Mentha 
piperita (Taher, 2012), and Citrus lemon (Campêlo et al., 2011) essential 
oils and Nigella sativa (Pop et al., 2020) crude oil showed analgesic ac-
tivity using different pathways, whereas the analgesic activity of Pelar-
gonium graveolens essential oil has not been reported. This is consistent 
with the present study. In the present study, the propolis extract 
exhibited similar analgesic activity as seen with the Anatolian sage and 
lemon essential oils. Moreover, 0.5 mg/mL of the oral/throat spray 
significantly (p < 0.05) suppressed the LPS stimulated PGE2 production 
(95%). 

3.6. Mutagenicity and anti-mutagenicity assays 

The results of the mutagenicity assay showed that the oral/throat 
spray did not affect bacterial viability, suggesting no cytotoxicity in the 
tested strains at concentrations up to ≤ 5,000 μg/plate. The results also 
revealed that the oral/throat spray was not mutagenic at all concen-
trations tested compared to spontaneous mutation with or without S9 
activation (data not shown). 

The inhibitory rate percentages of the sample with S9 activation in 
TA98 and TA100 strains are given in Fig. 3. In the experiment without 
S9 activation, the oral/throat spray did not show any anti-mutagenic 
activity against direct mutagens NPD and SA in TA98 and TA100 
strains, respectively. The sample showed strong anti-mutagenicity at the 
dose of 1,000 µg/mL (74% inhibition) and 5,000 µg/mL (99% inhibi-
tion) against indirect mutagen 2-aminofluorene (AF) in TA98 strain. In 
TA100 strain, the inhibition rates of 79 and 103% were observed in 
1,000 and 5,000 µg/mL concentrations. 

In the anti-mutagenicity assay of this study, the protective effect of 
the oral/throat spray against the known mutagens in both TA98 and 
TA100 strains increased after metabolic activation with S9. The effect of 
metabolic activation on the antimutagenic activity of plant polyphenols 
was also stated in previous studies (Charehsaz, Sipahi, Giri, & Aydin, 
2017). Al-Jenoobi et al. (2010) reported that black cumin seed oil 
inhibited CYP2D6 and CYP3A4 mediated metabolism of dextromethor-
phan in human liver microsomes and healthy human volunteers. Such 
inhibitions may prevent mutagenic/carcinogenic metabolite formation 
from some pro-carcinogenic chemicals such as B(a)P and aflatoxin B1. 
Hence, the antimutagenic activity observed in the present study may be 
attributed to the CYP enzyme inhibition. 

4. Conclusions 

The oral/throat spray formulation is rich in phenolics (such as 
pinocembrin, galangin, chrysin, pinobanksin, CAPE, and 3,4 dimethoxy 
cinnamic acid), essential oils (such as carvacrol, 1,8-cineol, menthol, 
citral, and geraniol), and cold-pressed black cumin oil (such as nigelline 
and thymoquinone). Experimental studies have confirmed that the 
formulation exerted several biological activities i.e. antiviral, antimi-
crobial, anti-inflammatory, and analgesic. It is noteworthy that after 
140 h of incubation with the SARS-CoV-2 virus, the spray was not 
cytotoxic and inactivated 85% of the virus titre presented at 1:640 
dilution. Therefore, this formulation can be used as a dietary supplement 
not only for the prevention of SARS-CoV-2 infection but also for several 
other bacterial or viral infections. Further research is required to find out 
possible benefits of the formulation for individuals infected with SARS- 
CoV-2 to alleviate the disease complications and effect on the duration 
of the disease. 
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Karaoğlu: Formal analysis, Investigation, Validation, Visualization, 
Writing – original draft. Bülent Karadeniz: Formal analysis, Investi-
gation, Validation. Ceyda Pembeci Kodolbaş: Investigation, Writing – 
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maz: Investigation, Resources. İsmail Emir Akyıldız: Data curation, 
Investigation, Methodology, Software, Visualization, Writing – original 
draft. Gamze Düz: Data curation, Formal analysis, Investigation, Soft-
ware, Validation, Visualization. Sezer Acar: Formal analysis, Software, 
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Pöhlmann, S. (2020). SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is 
blocked by a clinically proven protease inhibitor. Cell, 181, 271–280. https://doi. 
org/10.1016/j.cell.2020.02.052 

Hori, J. I., Zamboni, D. S., Carrão, D. B., Goldman, G. H., & Berretta, A. A. (2013). The 
inhibition of inflammasome by Brazilian propolis (EPP-AF). Evidence-Based 

Complementary and Alternative Medicine, 418508. https://doi.org/10.1155/2013/ 
418508 

Huleihel, M., & Isanu, V. (2002). Anti-herpes simplex virus effect of an aqueous extract of 
propolis. Israel Medical Association Journal, 4, 923–927. 

Javed, H., Meeran, M. F. N., Jha, N. K., & Ojha, S. (2021). Carvacrol, a plant metabolite 
targeting viral protease (Mpro) and ACE2 in host cells can be a possible candidate for 
COVID-19. Frontiers in Plant Science, 11, Article 601335. https://doi.org/10.3389/ 
fpls.2020.601335 

Kim, J.-S., Song, W., Kim, H.-S., Cho, H. C., Lee, K. M., Choi, M.-S., & Kim, E.-C. (2006). 
Association between the methicillin resistance of clinical isolates of Staphylococcus 
aureus, their staphylococcal cassette chromosome mec (SCCmec) subtype 
classification and their toxin gene profiles. Journal of Microbiology and Infectious 
Diseases, 56, 289–295. https://doi.org/10.1016/j.diagmicrobio.2006.05.003 

Kabala-Dzik, A., Rzepecka-Stojko, A., Kubina, R., Jastrzebska-Stojko, Z., Stojko, R., 
Wojtyczka, R. D., & Stojko, J. (2017). Comparison of two components of propolis: 
Caffeic acid (CA) and caffeic acid phenethyl ester (CAPE) induce apoptosis and cell 
cycle arrest of breast cancer cells MDA-MB-231. Molecules, 22, 1554. https://doi. 
org/10.3390/molecules22091554 

Kawabata, A. (2011). Prostaglandin E2 and pain-an update. Biological and Pharmaceutical 
Bulletin, 34, 1170–1173. https://doi.org/10.1248/bpb.34.1170 

Koe, T. (2020). New Rules: South Korea Expands Propolis Oral Formats, Removes Upper 
Limit For Functional Ingredients. Retrieved from https://www.nutraingredients- 
asia.com/Article/2020/03/09/. Accessed June 20, 2022. 

Machado, J. L., Assunçao, A. K. M., da Silva, M. C. P., dos Reis, A. S. , Costa, G. C., 
Arruda, D. d. S., Rocha, B. A., Vaz, M. M. d. O. L. L., Paes, A. M. d. A., Guerra, R. N. 
M., Berretta, A. A., & do Nascimento, F. R. F. (2012). Brazilian green propolis: anti- 
inflammatory property by an immunomodulatory activity. Evidence-Based 
Complementary and Alternative Medicine, 157652. https://doi.org/10.1155/2012/ 
157652. 

Maruta, H., & He, H. (2020). PAK1-blockers: Potential therapeutics against COVID-19. 
Medicine in Drug Discovery, 100039. https://doi.org/10.1016/j.medidd.2020.100039 

Matthews, D., Adegoke, O., & Shephard, A. (2020). Bactericidal activity of 
hexylresorcinol lozenges against oropharyngeal organisms associated with acute 
sore throat. BMC Research Notes, 13, 99. https://doi.org/10.1186/s13104-020- 
04954-1 

Maron, D. M., & Ames, B. N. (1983). Revised methods for the salmonella mutagenicity 
test. Mutation Research, 113, 173–215. https://doi.org/10.1016/0165-1161(83) 
90010-9 

Navit, O.-S., Margarita, Y., & Liki, v. O.-B. (2021). Antimicrobial activity by a unique 
composition of cold pressed Nigella sativa seed (black cumin) oil. Journal of Food 
Science and Nutrition Research, 4, 1–9. https://doi.org/10.33425/2641-4295.1050 

Organisation for Economic Co-operation and Development (OECD) (1997). Test No. 471: 
Bacterial reverse mutation test. Paris, France: OECD. 
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