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Abstract: In this paper, we review the concept of entropy in connection with the description of
quantum unstable systems. We revise the conventional definition of entropy due to Boltzmann and
extend it so as to include the presence of complex-energy states. After introducing a generalized
basis of states which includes resonances, and working with amplitudes instead of probabilities,
we found an expression for the entropy which exhibits real and imaginary components. We discuss
the meaning of the imaginary part of the entropy on the basis of the similarities existing between
thermal and time evolutions.

Keywords: entropy and time evolution; resonances in quantum systems; the Friedrichs model;
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1. Introduction

The definition of entropy and its interpretation in terms of the evolution to equilibrium of
isolated systems was a crucial step in understanding the link between mechanical and thermal
features in classical mechanics [1]. The notion of probability applies, both in classical phase-space
as well as in quantum mechanics, and from this the connection between entropy and the number
of degrees of freedom of a system has been established [2]. The main difference between classical
and quantum mechanical counting of states is, of course, the existence of the exclusion principle (for
fermions) and other symmetry restrictions (both for fermions and bosons) imposed to quantum
states. In both cases, fermions and bosons, the definition of the probability assigned to a state
remains valid. This is not the case for states with complex energies, where the time evolution is
non-oscillatory. States with complex energy, such as the Gamow states [3], are well described in the
theory of scattering [4] and found as solutions of the analytical continuation of quantum relativistic
and non-relativistic equations [5]. Several problems arise in dealing with these states, particularly their
non-normalizability [6,7]. Most of these difficulties are removed with the use of amplitudes, which are
the solutions of the equations and/or with the corresponding propagators, instead of working with
their modulus. A suitable tool to work with Gamow states, in order to extract their thermodynamical
information, is the path integration. In performing the path-integration we shall be dealing with
amplitudes instead of probabilities, a concept which cannot be applied to states with complex energy.

In the present article, we are going to show that a comprehensive scheme leading to the definition
of entropy for resonances can be rigorously designed by adopting path integration techniques. We shall
discuss this method as well as its application to a model for resonances which is analytically solvable.

The paper is organized as follows. In Section 2 we revisit the conventional definition of
entropy and relate it to time dependent operations, such as time inversion and time displacement.

Entropy 2018, 20, 231; doi:10.3390/e20040231 www.mdpi.com/journal/entropy

http://www.mdpi.com/journal/entropy
http://www.mdpi.com
http://www.mdpi.com/journal/entropy
http://www.mdpi.com/1099-4300/20/4/231?type=check_update&version=1
http://dx.doi.org/10.3390/e20040231


Entropy 2018, 20, 231 2 of 9

Section 3 deals with the identification of resonances in quantum physical systems and illustrate
their time dependence. These properties are then shown to be found over solid mathematical basis;
e.g., we construct the decaying states in the framework of rigged Hilbert spaces [8]. Section 4 is devoted
to the notion of complex entropy and in Section 5 we investigate the possible connection between our
definition of complex entropy and the class of time operators [9]. Our final remarks and conclusions
are presented in Section 6.

2. Entropy and time Evolution

In the context of quantum mechanics in the Heisenberg picture, the time evolution of a system is
governed by its Hamiltonian. Each operator obeys the following equation of motion:

[H,O] = −ih̄Ȯ . (1)

In classical mechanics the commutator (1) is replaced by a Poisson bracket and the corresponding
time evolution is determined by the classical Hamilton–Jacobi equations. From a perspective other
than thermodynamics, the evolution of a system is determined by the extreme of its free energy.
For the moment we shall assume that the number of particles of the system is constant, this is why it
makes sense to refer to the Helmholtz free energy F = E− TS. In such a circumstance, the change of
the entropy S with respect to the energy, at constant temperature, is given by the equation

1
T

=
∂S
∂E

, (2)

where E is the mean value of the energy and T is the absolute temperature at which the extreme of the
free energy is reached (e.g., at the equilibrium). Though (2) seems to belong to a class of equations of
motion different from (1), the difference is only apparent, since both equations fix physical values at
equilibrium. Then, we may establish a correspondence between a class of operators and the entropy,
as the associated observable. We shall return to this point later.

It was Boltzmann who realized that the number of degrees of freedom of a classical system
is proportional to the logarithm of the number Ω of micro-states of the system, from where one
derives the relation between the number of degrees of freedom and the entropy, i.e., S = −k log Ω.
The way, in which the entropy evolves as a physical system approaches to the equilibrium, is given by
a celebrated theorem due to Boltzmann, the H-theorem [2]. The H-theorem states that if Pr(t) is the
probability that a system is in the state r at time t and if we define H := ∑r Pr(t) log Pr(t), where the
sum extends to all possible states of the system; then, dH/dt ≤ 0. The consequence is clear, since the
entropy is given by S = −kH, so that dS/dt ≥ 0. The entropy monotonically increases with time until
the system reaches the thermodynamic equilibrium.

The same time evolution is expressed by means of the quantum evolution operator e−itH , so that
if O is the operator representing a given quantum observable at time t = 0, the operator at time
t is given by O(t) = eitHOe−itH (Unless otherwise stated, we take h̄ = 1 everywhere in the text.).
Therefore, it should exist a direct connection between both descriptions of the evolution to equilibrium.
However, from the time dependence of the observables of a system, one cannot always extract the
direction of the evolution. The time reversal operation inverses the sense of time, so that it performs
the operation t 7→ −t. In classical mechanics, this means that the time reversal operation reverses
momenta, velocities, etc, so that it reverses the velocities of the charges. This produces a change of the
sign in the magnetic field, while leaves invariant the electric field.

In quantum mechanics, the time reversal operation is represented by the action of an operator, T ,
on the space of wave functions. According to Wigner [10], time reversal is an operation such that the
following operations performed sequentially give the identity:

time displacement by t× time reversal × time displacement by t× time reversal .
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The above operations result on the identity if

time displacement by t× time reversal = time reversal× time displacement by − t .

This point of view implies that the time reversal operator T has to be anti-linear in the sense
that for any linear combination of states ψi and two complex numbers λi, i = 1, 2, T (λ1ψ1 + λ2ψ2) =

λ∗1 T (ψ1) + λ∗2 T (ψ2), where the star denotes complex conjugation. In fact, if ψ(x, t) is the wave
function for some quantum pure state at time t, we have that T ψ(x, t) = ψ∗(x,−t) [11]. In addition,
Wigner showed that in the construction of projective representations of the Poincaré group, extended
with time inversion and parity, four independent choices exist for the time reversal operator. One is the
just mentioned operator T and the other three require a doubling of the representation space [10,12].
From a conceptual point of view, we are faced to a difficult question, namely: If equilibrium appears
in a particular instant of the time evolution of a system and is governed by a Hamiltonian, which is
the operator that obeys Equation (1) and has the entropy given by the associated observable so that
Equation (2) is fulfilled? One may also think that equilibrium is just a manifestation of the violation of
the time-reversal symmetry, as shown by the behaviour of the entropy as a time dependent observable,
as follows from the H-theorem.

3. Resonances in Quantum Systems

As is well known, unstable quantum states are very frequent in Nature. They are characterized
by two parameters: ER and Γ, which are the real and imaginary parts of the energy, respectively.
The quantity Γ is the inverse of the state half-life. Usually, one may consider that unstable quantum
states are produced by the capture of a particle by a center of forces and its subsequent decay, a situation
which is conveniently described by quantum scattering. The process of capture is often ignored as one
is mainly concerned with the process of decay [5,8]. They are detected experimentally by the presence
of some scattering features, such as a sharp bump in the cross section or a sudden change in the value
of phase shifts. Due to this fact, unstable quantum states are usually called resonances. We shall use
this denomination hereafter.

After this characterization of resonances in the context of scattering theory, they can be identified
with poles in the analytic continuation of the S-matrix, provided that some smooth conditions be
satisfied [13]. If this analytic continuation is performed in the energy representation the S matrix
becomes a function of a complex energy defined on a two sheeted Riemann surface [13]. Resonances
appear as pairs of complex conjugate poles located on the second Riemann sheet at the points
zR = ER ± iΓ/2, where ER > 0 is the resonance energy and Γ > 0 the inverse of the half life,
as said before.

The description of a quantum scattering process requires of two Hamiltonians. One is the free
Hamiltonian H0 that gives the free evolution of states. The other is a total Hamiltonian H = H0 + V,
where V is the potential which produces the scattering. In the case of having resonances due to
scattering, the potential V determines the forces that produce the capture and the later decay of the
resonant particle.

A particularly interesting model for quantum resonances is the Friedrichs model [14–16]. In the
simplest formulation of the Friedrichs model a bound state interacts with an external field. As the result
of this interaction, the bound state becomes unstable and, therefore, it is interpreted as a resonance.
In the language of the Hamiltonian pair {H0, H}, we have that

H0 = ω0 a† a +
∫ ∞

0
ω b†

ω bω dω , V = λ
∫ ∞

0
f (ω)[a† bω + a b†

ω ] dω . (3)

We see that H0 is the sum of two terms. In the former, a† and a are, respectively, the creation and
annihilation of a bound state of energy ω0 > 0. The integral term in H0 is the simplest representation
of a field in the energy representation, where b†

ω and bω are, respectively, the creation and annihilation
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operators of a state in the continuum with energy ω > 0. Thus, H0 has a non-degenerated continuous
spectrum, [0, ∞), plus a discrete eigenvalue ω0 > 0 imbedded in the continuum. The potential V
intertwines discrete and continuous spectrum, where f (ω) is a regular function called the form factor
and λ a real coupling constant. When the interaction V is switched on, the bound state becomes a
resonance with complex energy given by

zR = ER − iΓ/2 . (4)

Observations on the resonance decay show that the decay rate is approximately given by e−tΓ/2.
Now, if any bound state is represented by a square integrable wave function, is this the same for
unstable quantum states (resonances)? Let us assume that a resonance state is represented by a vector
state ψ. The survival amplitude is defined as 〈ψ|e−itH |ψ〉 and the survival probability, P(t), as the
modulus square of the survival amplitude, i.e., P(t) = |〈ψ|e−itH |ψ〉|2. If ψ is to represent a resonance
state, we expect that P(t) ≈ e−tΓ for all values of t.

However, this is not the case. In general, one may prove that there exist states ψ for which P(t) is
approximately e−tΓ for most of observational values of time. These states may serve as resonance states.
However, simple theoretical considerations show that deviations from the exponential decay law must
exist for small and large values of time. These deviations are essential, i.e., they are a consequence
of quantum theory, in particular of the semi-boundedness of the Hamiltonian, and not the product
of noise or other interactions [17]. There exists some experimental evidence on the existence of such
deviations [18,19].

As a matter of fact, P(t) = |〈ψ|e−itH |ψ〉|2 shows a similar behaviour at very small times for all
scattering states ψ. A simple calculation shows that P′(0) = 0, where P′(t) is the derivative of P(t)
with respect to t. This has a subtle consequence known as the Zeno effect: sequential (repeated)
measurements of the decay probability at very short intervals of time may prevent a decaying system
to decay [20]. (This is the origin of the deviations of the purely exponential decay law for very short
times, since if P(t) = e−tΓ, then P′(0) = −Γ 6= 0.)

Nevertheless, a wide range of experiments on decaying systems show that the exponential decay
is a good approximation for most purposes. Then, the consideration of states that have a purely
exponential decay should be in order. These states can be rigorously constructed as eigenvectors, ψD,
of H with eigenvalue zR as in (4), HψD = zR ψD. Each of the eigenvectors ψD is called a decaying
Gamow vector and has the property that e−itHψD = e−iERt e−Γt/2ψD, i.e., it decays exponentially as
t 7−→ ∞. Since ψD is an eigenvector of a self adjoint Hamiltonian with complex eigenvalue, then ψD

cannot belong to the Hilbert space where H is densely defined and self-adjoint. Instead, it belongs to
the dual Φ× of a rigged Hilbert space Φ ⊂ H ⊂ Φ×.

If a normalizable vector ψ is taken to represent a resonance state, one may write ψ = ψD + ψB,
where ψB accounts for the deviations from exponential law for very short and very large times [5,17].
Except for these two regimes of time, ψD is a good approximation for ψ. However, as ψD is not
normalizable in the usual sense, one finds methodological difficulties to define mean values of
observables on ψD [6,7]. These difficulties will re-emerge as one attempts to assign a value to the
entropy for quantum decaying systems.

4. Complex Entropy

It should be clearly stated that any quantum unstable system should obey the laws of
thermodynamics. The point is that a precise formulation of these laws for quantum decaying states
has not been formulated yet, up to our knowledge. Also, quantum statistical mechanics should extend
its scope so as to embrace these kind of systems.

Based on this idea, one may ask for a suitable definition of the entropy for quantum unstable
systems. At least three approaches have been proposed. A first approach was proposed by the Brussels
group, it relies on the construction of an entropy operator, defined as a monotonic function of the time
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operator [9,21], which can be rigorously defined from a mathematical point of view under reasonable
physical properties, see [22]. This way has not been fully explored yet.

A second approach was suggested by Kobayashi and Shimbori [23,24]. There the entropy for a
quantum unstable state, described by a pole of the form zR = ER − iΓ/2, is a sum of a contribution of the
entropy of the real part, ER, and a contribution from the imaginary part Γ, so that S = S(ER) + S(Γ) [24].
This keeps the entropy as a real function of the resonance pole. In fact, real and imaginary parts of
the complex resonance energy zR are treated as if they were two independent systems. In this picture,
decaying processes transfer entropy from S(Γ) to S = S(ER) and the rate of this transference depends on
time. Each part has its own temperature, which suggests a notion of complex temperature.

We advocate a third approach, which does not make use of the entropy operator and avoids any
possible reference to complex temperatures. Following a suggestion in [23], we assume that quantum
decaying states are in thermodynamic equilibrium, provided that the half life be sufficiently large,
or equivalently, that the imaginary part of its energy, Γ, be sufficiently small.

Then, in order to give a definition of the entropy for quantum unstable states, we need a universal
model of resonances for which mathematical operations could be performed as much as possible.
This is given by the Friedrichs model described in the previous section. In the Friedrichs model,
resonances are produced after the interaction of a discrete bound state with a continuum of states
with a much larger degeneracy, so that it may be taken as a good example of a situation amenable to a
statistical description based on the canonical ensemble representation, where the continuum is playing
the role of the environment interacting with the isolated discrete state. For simplicity, we may consider
a Friedrichs model with one resonance only, although more complicated models could be used for the
same purpose [16]. As is well known, the canonical entropy is given by the formula:

S = k
(

1− β
∂

∂β

)
log Z , (5)

where Z = Tr e−βH is the partition function corresponding to the total hamiltonian H and β = 1/(kT),
where T is the absolute temperature and k the Boltzmann constant.

In order to evaluate Z = Tr e−βH , it seems reasonable to use a generalized basis of vectors which
includes the Gamow state ψD. This is given by ψD and the so called generalized outgoing eigenvectors
of the total Hamiltonian {|ω+〉}, with H|ω+〉 = ω |ω+〉, for all ω ≥ 0. Then, the partition function
would have taken the following form:

Z = Tr e−βH = 〈ψD|e−βH |ψD〉+
∫ ∞

0
〈ω+|e−βH |ω+〉 dω . (6)

However, this formula is not computable, as brackets of the form 〈ψD|ψD〉 or 〈ω+|ω+〉 are not
well defined [7,16,25].

Then, we have to circumvent this problem by using a different technique based on the use of path
integrals to calculate partition functions as introduced by Feynman and Hibbs [26]. In our approach,
we have adopted path integration in order to write the partition function using a basis of coherent
states. Thus, we construct coherent states in the following form: creation, A†

IN, and annihilation, AOUT,
operators for the Gamow state ψD may be constructed for the second quantized Friedrichs model as
described in [16]. Then, for any complex number α, we define the coherent state |α〉 as:

|α〉 = exp[α A†
IN − α∗ AOUT] |0〉 , (7)
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where |0〉 is the vacuum state and the star denotes complex conjugation. Then, an evaluation of the
partition function, although somehow cumbersome, can be done. Details are given in [27–29]. We arrive
to the following result for the entropy of a Gamow state with complex energy zR = ER − iΓ/2:

S = k

[
1− ln

(
β

√
E2

R +
Γ2

4

)
− i arctan

(
Γ

2ER

)]
. (8)

The result for S is complex and this fact requires of some comments. Firstly, the method used
to obtain the above formula is a straightforward generalization of a similar method, which uses
path-integration and coherent states, developed to obtain an approximation to the entropy of the
harmonic oscillator [29] avoiding the use of probabilities. For the case of the harmonic oscillator it
yields S ≈ k(1− log(βh̄ω)). Note that this is exactly the result that we obtain in the limit Γ 7→ 0
and ER = h̄ω. Secondly, since quantum resonances have complex energies with a different physical
interpretation of real and imaginary parts, it is not a surprise that the same situation arises for the
entropy. The resonance in the Friedrichs model is produced by the interaction of the bound state with
the external field that plays the role of an external bath [30]. With this idea in mind, one may interpret
the real part of (8) as the system entropy and its imaginary part as the entropy transferred from the
resonance to the external bath.

There is another approach, described in [29], which leads to a complex entropy for an unstable
quantum state. It is based on the fact that the total Hamiltonian has the form H = zR A†

IN AOUT, plus a
much smaller background term which is neglected. Then, by using the property that the trace is
invariant under cyclic permutations and formulas like

[H, A†
IN(τ)] =

∂

∂τ
A†

IN(τ) = zR A†
IN ; [H, AOUT(τ)] =

∂

∂τ
AOUT = −zR AOUT , (9)

and for operators of the form O(τ) = eτH O e−τH with τ = β, we obtain the desired result, of which (8)
could be considered as a reasonable approximation. Note that the definition for O(τ) has a great
similarity with the definition for the time evolution of an operator, as suggested before (see Section 2).

5. Time-Temperature Plane

Let us consider a quantum observable O and define O(τ) as in the previous section, right after
formula (9), where τ = β = 1/(kT), being T the absolute temperature. O(τ) denotes the thermal
evolution of the observable. On the other hand, if we consider the time evolution of the observable
O under a Hamiltonian H, we have that τ = −it. The transformation from the first to the second is
sometimes called the Wick rotation [1].

This suggests the possibility of a description of time evolution for non-equilibrium systems using
the dependence on both variables time and inverse temperature. The picture would be a complex
plane in which the real part is given by the inverse of the temperature and the imaginary part by
time. Similar notions have been applied to introduce dual-thermal degrees of freedom and close-path
integrals [31].

Time operators have been defined for different purposes and different contexts [32,33].
For instance, assume that H is a densely defined Hamiltonian on a given Hilbert spaceH. This system
has an internal time operator T if for any density operator ρ in a domain dense in the space of
Hilbert-Schmidt operators onH, we have that e−itH T eitH ρ = (T+ tI)ρ, for any t real, where I is the
identity. Not any Hamiltonian system may have an internal time operator [34].

One of the interesting aspects of time operators is the possibility of constructing Liapunov
quantum variables, i.e., variables monotonic on time. One may understand the role of such variables
as indicators of the approach to equilibrium for complex systems, particularly for a definition of
an entropy operator. Here, we refer to a construction proposed in [9] and valid for a large class of
situations. A necessary condition for the use of the procedure outlined in [9] is that the Hamiltonian be
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unbounded and have an absolutely continuous spectrum, usually the half line [0, ∞), if this condition
is fulfilled H is said to be semi-bounded.

The idea of a time operator emerges from the comparison between the position-momentum and
energy-time uncertainty relations. However, and due to the semi-boundedness of the Hamiltonian in
non-relativistic quantum mechanics, a commutation relation of the type [H,T] = iI cannot hold. In any
case, if the Hamiltonian is semi-bounded with absolutely continuous spectrum, its corresponding
Liouvillian L = H ⊗ I − I ⊗ H has a continuous spectrum that covers the whole real axis. In this case,
it may be possible to define a time operator T as the conjugate of the Liouvillian operator, [L,T] = −iI.
Note that these operators have to be defined on H⊗H, i.e., the space of Hilbert-Schmidt operators
onH.

If this were the case, one may define the entropy as some monotonic function of the time operator,
as done in [9], i.e., S = f (T). Attempts to define a time operator, and hence an entropy operator for
unstable decaying systems are on the course.

6. Final Remarks

In classical mechanics, the approach to equilibrium is a manifestation of the time reversal
symmetry breaking. This is formulated via the Boltzmann H theorem according to which the
entropy monotonically increases up to a critical point, usually a maximum, at equilibrium. In classical
electrodynamics, the retarded solutions of the Maxwell equations are privileged over the advanced
solutions, thus showing a time asymmetry.

In quantum mechanics, the decay of unstable systems such as quantum resonances gives a sense
of time reversal symmetry breaking. One finds a need for a proper formulation describing this situation
in a similar context as in classical mechanics, whenever possible. Then, it seems necessary to define
the notion of entropy for quantum decaying systems.

We have introduced an idea toward a proper definition of this entropy based on the use of Gamow
states as state vectors for resonances. However, a naive presentation using standard tools of quantum
mechanics yields to inconsistencies due to the ill definition of some formal averages. We have shown
that the use of path integration over coherent states, which have been constructed with the help of
creation and annihilation operators of Gamow vectors, gives a reasonable outcome. The resulting
entropy is complex, with an imaginary part which gives an account for the interactions of decaying
states with their surroundings.

We have discussed the formal similarities between thermal and time evolution of states.
Concerning quantum decaying states, we have introduced a representation, (9), that gives the thermal
evolution of the creation and annihilation operators for the Gamow states. These are differential
equations that admit the following solutions:

A†
IN(τ) = eτzR A†

IN , and AOUT(τ) = e−τzR AOUT . (10)

Identities (10) are useful in order to obtain an expression for the complex entropy valid for the
quantum unstable state created by A†

IN and annihilated by AOUT. Here, we choose τ = β = 1/(kT),
as given in [29]. In this case, and since the resonance energy ER is taken to be positive, the highest the
temperature, the smaller A†

IN(τ) and the larger AOUT(τ).
A completely different interpretation comes when τ = −it, i.e., when we consider the time

evolution of Gamow states. Now, A†
IN(t) = e−itER e−Γt/2 A†

IN and AOUT(t) = eitER eΓt/2 AOUT, so that
the creation operator for a Gamow state decays with time while the annihilation operator grows with
time. This is called the Wick rotation.

A future perspective could be a definition of the entropy operator as a function of the time
operator. This is defined on an algebras of observables where Gamow states play a role as functionals
over this algebra. A prototype of this algebraic model has been constructed [35] and the investigation
is on the course.
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