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The brainstem is one of the most vulnerable brain structures in many neurological

conditions, such as pain, sleep problems, autonomic dysfunctions, and

neurodegenerative disorders. Diffusion tensor imaging and tractography provide

structural details and quantitative measures of brainstem fiber pathways. Until recently,

diffusion tensor tractographic studies have mainly focused on whole-brain MRI

acquisition. Due to the brainstem’s spatial localization, size, and tissue characteristics,

and limits of imaging techniques, brainstem diffusion MRI poses particular challenges

in tractography. We provide a brief overview on recent advances in diffusion

tensor tractography in revealing human pathways connecting the brainstem to the

subcortical regions (e.g., basal ganglia, mesolimbic, basal forebrain), and cortical

regions. Each of these pathways contains different distributions of fiber tracts from

known neurotransmitter-specific nuclei in the brainstem. We compare the brainstem

tractographic approaches in literature and our in-lab developed automated brainstem

tractography in terms of atlas building, technical advantages, and neuroanatomical

implications on neurotransmitter systems. Lastly, we summarize recent investigations of

using brainstem tractography as a promising tool in association with pain.

Keywords: diffusion tensor imaging, diffusion tensor tractography, brainstem, pain, descending pain modulation

INTRODUCTION

The brainstem is a central structure that connects the brain cerebrum to the spinal cord and
cerebellum. The brainstem contains nuclei and fiber pathways that synthesize and transfer specific
neurotransmitters and neuromodulators to the peripheral receptors and effectors for the regulation
of such basic functions as arousal, motor function, memory, reward, nociception, and autonomic
control. Along a dorsoventral axis, the brainstem consists of three subdivisions with distinctive
parts: the dorsal side of the midbrain known as the tectum, including the mid-dorsal part of the
aqueduct, a central region of nuclei and fibers known as tegmentum beneath the ventricular system,
and a massive fiber communication system connecting to the spinal cord and the cerebellum in the
ventral part. Nuclei and fiber pathways in the tectum relay pain signals from peripheral stimuli via
the spinal cord to the cerebral sensory cortices that result in the sensation of pain (nociception).
They also transmit anti-nociceptive signals down to the spinal cord which induces endogenous
opioid-based analgesia (pain regulation). Many pain syndromes can be caused by damage to or
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dysregulation of the brain, brainstem, spinal cord and fibers
connecting them. Invasive (surgical) inspection of such damage
is often carrying considerable risk which is why non-invasive
imaging techniques are a very attractive alternative.

Conventional brain structural MRI studies have assessed how
graymatter volume andwhitematter integrity are associated with
acute pain processing or the severity in chronic pain. Diffusion
tensor imaging (DTI) is a specific structural MRI sequence that
allows for non-invasive measurement of altered microstructural
integrity in particularly white matter regions and tracts in
human brain. DTI measures such as fractional anisotropy
(FA) explain the strength of the orientational organization
of microstructures, radial (RD), axial (AD) and mean (MD)
diffusivities are likely to be sensitive to myelin/axon as well as
non-specific physiopathology states. In neurological conditions,
it is generally believed that reduced FA and increased MD,
RD or AD are attributed to demyelination, loss of axons (1,
2), or an interrupted connection (3), which might represent
potential damage of the structure in the testing anatomy. Several
DTI studies (see Table 1), using non-hypothesis-driven whole
brain voxel-wise analysis, found significant microstructural
damage in many cerebral regions/fiber connections (some
including brainstem fiber tracts) in painful conditions, such
as temporomandibular disorders (4), episodic cluster headache
(5) or traumatic brain injury-induced chronic headache (6),
ankle muscle proprioception in low back pain (12), chronic
irritable bowel syndrome (7), chronic pelvic pain (8), cervical
spondylosis-induced pain (9), chronic musculoskeletal pain (10),
and analgesia in response to pain stimuli (11). These studies
have suggested that microstructural damage in the brainstem
fiber connections may be associated with pain regulation or pain
sensation. Figure 1 indicates the brain tracts that were found to
be significantly affected by pain conditions from all published
clinical studies reviewed in this article. The majority of these
findings were reported in large fiber bundles and brainstem-to-
cerebral cortical connections (16).

To date, the human brainstem remains one of the most
challenging regions to explore with DTI due to the difficulty
of accurately delineating small nuclei and complex fiber
connections in this area. It is thus necessary to create an atlas of
the brainstem small nuclei/fiber tracts in standard neuroimaging
space (e.g., in MNI space) (17, 18), and perform imaging analysis
by co-registering individual DTI to theMNI space (or vice-versa).

This mini-review is aimed to provide a brief overview
on recent advances in brainstem tractography based on
DTI, particularly focusing on the technical improvement of
automated tractographic approaches. We also discuss the
neuroanatomical relevance of brainstem tractography to pain,
practical applications and potential implications of brainstem
tractography for clinical studies of pain. We hope this article
will improve the understanding of the basic principles, help
with result interpretation, and increase the appreciation of
technical advantages/limitations in DTI tractography. A critical
understanding of this technique will promote its use and foster
its application in the clinical setting for surgical interventions
(19, 20) treatment and evaluation.

DIFFUSION TENSOR TRACTOGRAPHY OF
THE BRAINSTEM

Manual Tractography
Diffusion tensor tractography offers orientation-based 3-
dimensional reconstruction to display neural fiber tracts using
data collected from DTI. Specifically, a tractographic algorithm
integrates continuous voxel-to-voxel predominant orientations
into a fiber streamline that connects distant brain voxels/regions.
The initial step of tractography is to fit the non-directional
(i.e., b = 0) image and the directional (at least 6) diffusion
weighted-images to a tensor model with eigenvectors (i.e., the
directions) and eigenvalues (i.e., the strength of diffusions along
certain direction). After tensor fitting, tractographic approaches
basically use deterministic algorithms (e.g., fiber assignment by
continuous tracking – FACT) (21) or the probabilistic algorithms
(22) to reconstruct fiber streamlines. These algorithms require
placement of anatomical landmarks (region-of-interest, ROI)
at one (a single “seed”) or two ends (a pair of “seed” and
“target”) of the proposed tract to display pathway between
distant brain regions. Deterministic tractography assumes a
principal orientation at each voxel, and propagates streamlines
from the “seed” voxel to the next voxel with similar principal
direction, until stopping criterion (such as a low FA or a sharp
angle). The deterministic tractography algorism runs simple,
fast, reliable but is sensitive to low directional voxel (e.g., crossing
fibers or noise), leading to underestimation/interruption of the
streamlines. Probabilistic tractography assumes a distribution
of orientations between voxels. It reacts “how likely” each other
voxel orientation (according to their likelihood) is to lie along
a fiber, and presents the connection likelihood or probability
of the streamlines. Probabilistic tractography recovers more
extensive fiber bundles but at the price of generating more
invalid connections (i.e., overestimation/“false positive” fiber
tracts) (23). Despite these limitations, in human medicine,
diffusion tensor tractography visualizes anatomical fiber tracts
of the most important pathways of the central nervous system,
and has been useful in understanding human brain anatomy and
surgical planning. Further, the quantitative measurement of fiber
tracts provides evaluation of the microstructural status of the
myeline membrane, axon bundles, and structural connectivity,
and thus has great potential for studying pathological conditions
and correlations with clinical symptoms.

Amajority of diffusion tensor tractography approaches extract
major cerebral fiber tracts that are well myelinated. Brainstem
tractography is difficult and requires accurate ROI delineation
by neuroanatomical experts because anatomical landmarks are
small, fiber networks are short, poor myelinated, joining,
and/or crossing over. Manual DTI tractography was used in
many studies that aimed to represent the complex anatomy
of the brainstem (24–29). Beyond providing normal brainstem
anatomy, some other studies focused on specific pathways
that have physiopathologic implication, such as the main
sensory pathways [e.g., the medial lemniscus, spinothalamic, the
cerebropontocerebellar_tracts (30–37), the cranial nerves and
their nuclei (38–41), the ascending reticular activating system
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TABLE 1 | Technical details and major findings of the DTI application studies (voxel-based, as well as tract-based) in pain.

Reference Sample size MRI scanner DTI parameters Analytic

approaches

Key features of

pain

Brainstem regions

with significant FA

reduction /

association

Other brain regions with

significant FA reduction /

association

Moayedi et al.

(4)

17 patients vs.

17 HC

3T, GE b = 0,1 k s/mm2, 23

directions, 1.9 x 1.9

x 3 mm3 resolution

Non-hypothesis-

driven

TBSS

TMD-related chronic

pain

Trigeminal nerve;

brainstem

Internal/external capsules,

thalamic and corpus

callosum, cingulum

Teepker et al.

(5)

7 patients vs.

7 HC

1.5T, Siemens b = 0,1k, 30

directions, 2 x 2 x

2.4 mm3 resolution

Non-hypothesis-

driven

TBSS

Cluster headache Brainstem Frontal, temporal, occipital

lobes, internal capsule,

thalamus and cerebellum

Leung et al. (6) 10 patients vs.

10 HC

1.5T, GE b = 0,1k s/mm2, 54

directions, 2 x 2 x 2

mm3 resolution

Non-hypothesis-

driven

TBSS

MTBI-induced

persistent headache

No significant

findings

Left superior longitudinal

fasciculus, right anterior

thalamic radiation

Ellingson et al.

(7)

33 patients vs.

93 HC

3T, Siemens b = 0,1k s/mm2, 61

directions, 3 x 3 x 3

mm3 and

2x2x3mm3

resolution

Non-hypothesis-

driven

SPM

Irritable bowel

syndrome

No significant

findings

Thalamic regions, the basal

ganglia and sensory/motor

association/integration

regions

Farmer et al. (8) 34 patients vs.

32 HC

3T, GE Not mentioned Non-hypothesis-

driven

TBSS

Interstitial

cystitis/bladder pain

syndrome

No significant

findings

Right anterior thalamic

radiation, left forceps major,

and right longitudinal

fasciculus

Li et al. (9) 42 patients vs.

42 HC

3T, GE b = 0,1k, 30

directions, 2 x 2 x 4

mm3 resolution

Non-hypothesis-

driven

TBSS

Cervical

spondylosis-induced

pain

No significant

findings

Genu, body, and splenium

of corpus callosum, and the

right anterior corona radiata

Lieberman et al.

(10)

46 patients vs.

33 HC

3T, Philips b = 0,1k, 46

directions, 2 x 2 x 2

mm3 resolution

Non-hypothesis-

driven

TBSS

Chronic

musculoskeletal pain

No significant

findings

Splenium of corpus

callosum, and left cingulum

adjacent to the

hippocampus

Stein et al. (11) 24 HC 3T, Siemens b = 0,1k s/mm2, 60

directions, 1.7 x 1.7

x 1.7 mm3 resolution

Non-hypothesis-

driven

TBSS

Placebo analgesic

responses to

thermal stimulation

Periaqueductal gray

and connection to

the rostral anterior

cingulate and

prefrontal cortices

Right dorsolateral prefrontal

cortex, left rostral anterior

cingulate cortex

Pijnenburg et al.

(12)

18 Patients vs.

18 HC

3T Philips b = 0,1.3k s/mm2,

60 directions, 2.5 x

2.5 x 2.5 mm3

resolution

Hypothesis-driven

tract -atlas based

non-specific low

back pain

Superior cerebellar

peduncle

Not applicable

Zhang et al. (13) 90 patients 3T, GE b = 0,1k s/mm2, 60

directions, 1 x 1 x

2.5 mm3

Hypothesis-driven

brainstem tract-atlas

based

Fibromyalgia-like,

chronic pain

Dorsal longitudinal

fasciculus

Not applicable

Geisler et al.

(14)

38 HC 3T, Siemens b = 0,1.2k s/mm2,

81 directions, 1.7 x

1.7 x 1.7 mm3

resolution

Hypothesis-driven

manual tractography

based

Pain intensity to heat

stimuli

Medial forebrain

bundle

Not applicable

Jang et al. (15) 5 Patients vs.

8 HC

1.5T, Philips b = 0,1k s/mm2, 32

directions, 1.3 x 1.3

x 2.5 mm3 resolution

Hypothesis-driven

manual tractography

based

Central post-stroke

pain

Spinothalamic tract Not applicable

HC, healthy control; TMD, temporomandibular disorder; TBSS, tract-based spatial statistics; MTBI, mild traumatic brain injury; SPM, statistical parametric mapping.

(ARAS) (24, 42–44), the dopaminergic pathways, (45–48), and
the medial forebrain bundle (49–53).

Automated Tractography and Atlas
Building
Manually placing anatomical landmarks is time-consuming and
relies on accurate placement of landmarks by neuroanatomical
experts. Recent research studies have developed two popular
strategies for automated white matter parcellation (54–56),

including a white-matter-atlas-based fiber clustering method
(57–61) and a landmark-based (through an atlas of gray
and white matter ROIs) method (62–70). Both strategies
launch individual tractography by transforming an atlas of
fiber clusters/landmarks from standard space (e.g., MNI,
ICBM, Talairach, etc.) to a subject’s native space. In detail:
(1) The Fiber clustering strategy provides anatomical fiber
tract parcellation (including deep white matter tracts, short
and medium range superficial fiber trajectories) by grouping
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FIGURE 1 | Results from tract-based analyses based on DTI of pain studies: FA significantly reduced in patients; FA significantly increased in patients; FA

was not significantly different; Reduced FA signficantly correlated with increased pain intensity/sensitivity; Increased FA significantly correlated with greater

analgesic response; Not analyzed. [a] Cortical and subcortical areas of major fiber tracts (specific tracts included); [b] Some areas in the brainstem without specific

definition of tracts. [c] Significant findings are presented based on RD instead of FA which showed a weaker significance. TMD, temporomandibular disorder; HC,

healthy control; CH, cluster headache; MTBI, mild traumatic brain injury; IBS, irritable bowel syndrome; IC/BPS, interstitial cystitis/bladder pain syndrome; CS, cervical

spondylosis with pain; CMP, chronic musculoskeletal pain; LBP, low back pain; CPSP, central post-stroke pain; TBSS, tract-based spatial statistics; SPM, statistical

parametric mapping; CST, corticospinal tract; STT, spinothalamic tract; ATR, anterior thalamic radiation; FPT, frontopontine tract; MFT, medial forebrain tract; PTR,

posterior thalamic radiation; ALIC, anterior limb of internal capsule; PLIC, posterior limb of internal capsule; EC, external capsule; SCP, superior cerebellar peduncle;

DLF, dorsal longitudinal fasciculus; MLF, medial longitudinal fasciculus; MCP, middle cerebellar peduncle; ICP, inferior cerebellar peduncle.

streamlines into clusters on the basis of fiber similarity properties.
(2) The landmark-based strategy aims to provide cortical or
subcortical parcellations (i.e., ROIs) of the two termini of a fiber
tract. Individual tractography can be performed by launching
tractography using a “seed” and target ROIs, or extracting
fiber streamlines only between the pair of the segmented
ROIs from the whole brain tractography. A majority of the
landmark-based strategies use the Freesurfer (http://freesurfer.
net/) package which provides reliable cortical/subcortical-
based-parcellation. However, automated tractography of the
brainstem and deep brain areas is limited, due to the lack

of an atlas with anatomical landmarks or standardized fiber
clusters. Several studies (71–73) provided up to 13 major
motor and sensory brainstem tracts using a high-quality high–
angular resolution diffusion MRI (HARDI) data from the
Human Connectome Project (HCP) via manually-drawn ROI-
based (71, 72), or clustering (73) strategies. Furthermore,
few studies (71, 74) validated the anatomical precision of
brainstem tractographywith postmortem or histological sections.
Two recent studies (75, 76) also presented similar brainstem
tract atlas including motor, sensory, and reticular segments
based on routine DTI-MRI sequences. One study built (77)
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an atlas of the spinal trigeminal tract (SpTV) for studies of
trigeminal neuralgia.

Even though these studies (Table 2) of landmarks or fiber
clusters in the brainstem are promising, the actual use of these
atlases will largely depend on the imaging/IT environment of
the end-user. For example, most brainstem fiber atlases have
been built based on high-quality, high-resolution, long-duration
diffusion scans of healthy young adults, whereas most clinical
DTI data are acquired with lower resolution (>2 mm3) and
a smaller number of directions (≤80) where some thin deep
tracts often cannot be successfully visualized. Conventional DTI
scans also tend to suffer from susceptibility-induced distortions
in the skull-base and the brainstem area, which are difficult
to correct. This may lead to an incorrect fiber anatomy in
some cases. Furthermore, transforming atlas maps of young
healthy brains to groups of individuals with significant changes
in brain morphology due to pathological conditions often
results in spatial inaccuracies such as misregistration which
can ultimately lead to failed or distorted tractographic outputs.
In this context, test-retest studies are needed to validate the
reliability of brainstem tractographic atlases in the clinical
setting. Nonetheless, when performing individual tractography
on clinical data using a brainstem atlas, applying sufficient
distortion correction (78), data-based customized registration
(76), and quality control by neuroanatomical experts in addition
to automated processing could improve reliability.

BRAINSTEM CIRCUITRY AND PAIN
MODULATION

Many experimental and preclinical studies have investigated
brainstem small nuclei and circuits that are involved in pain
(79), including the periaqueductal gray matter (PAG), rostral
ventromedial medulla (RVM), locus coeruleus (LC), dorsal horn
(DH) of the spinal cord, and a PAG-RVM-DH circuitry/axis
that interconnects them. The PAG sends direct and indirect
projection to RVM and DH (80). Part of PAG is involved in
an endogenous analgesia, as direct stimulation of the PAG can
suppress pain intensity in individuals with various chronic pain
conditions (81–83). Numerous studies have suggested a potential
mechanism of descending pain inhibition and its pathways
through the PAG-RVM-DH axis (84–88). In contrast to the role
of reducing pain, some experimental studies have suggested that
excitation of the PAG-RVM-DH system can lead to a facilitating
effect through the DH (89, 90), SpV (91), and RVM (92) resulting
in hyperalgesia.

To extend our understanding of the PAG-RVM-DH pathways
gained through experimental studies in animals, human brain
functional MRI (fMRI) studies have been promoted to investigate
brainstem functional activation patterns associated with pain
sensitivity and pain modulation. An extensive number of fMRI
studies have reported the brainstem being involved in descending
analgesic responses in various pain conditions. For example,
a resting state-fMRI study (93) reported patients with chronic
orofacial pain show increased functional connectivity between
the RVM, LC and PAG, as well as supratentorial regions

(e.g., hippocampus, nucleus accumbens, and anterior cingulate
cortex), possibly reflecting “top–down” engagement of the
circuitry alongside altered reward processing in pain conditions.
Other studies found that higher functional connectivity between
PAG and RVM (or LC) is associated with higher pain scores
in fibromyalgia (94), as well as in chronic neuropathic orofacial
pain (93) and diabetic polyneuropathy-induced pain (95). Several
studies (96, 97) investigated healthy volunteers during heat
stimulation and distraction (e.g., participants were asked to
perform a color-word Stroop distractor task while receiving
thermal stimuli) and found that distraction was associated with
a significant reduction of pain intensity with increased functional
activation of the cingulate, hippocampus, thalamus, PAG, and
brainstem regions, exerting a “top-down” influence on pain
modulation during distraction. In addition to the PAG-RVM-
DH pathways, several fMRI studies also revealed that greater
functional connectivity of the medial prefrontal cortices to the
amygdala and nucleus accumbens are associated with severer
acute (98) and chronic pain (99–101).

BRAINSTEM TRACTOGRAPHY AND
RELEVANCE TO PAIN

The neuroanatomical and neuropsychological studies of pain
(102) suggest a complex network comprised of ascending and
descending pathways in the brain. The descending pathway,
also known as the “top down” pathway via the PAG-RVM-
DH axis, has been demonstrated to be an endogenous analgesic
system that is activated in response to pain stimuli. The
ascending pathways transmit nociceptive signals from peripheral
nerves to the sensory cortex via the dorsal horn of the
spinal cord, brainstem, and thalamus (103). While these
complex neurotransmitter pathways can be represented through
tractography, our understanding of the anatomical connectivity
and its implication in pain processing or pain control is still an
emerging field of exploration.

Recent improvements in diffusion tensor tractography allow
presentation of major brainstem pathways in humans. Given
its role in pain modulation several studies performed diffusion
tractography of the PAG manually (104) or a PAG site used in
deep brain stimulation (DBS) (105–107) for treatment of chronic
pain to identify fiber tracts that might be associated with pain.
Tracts that are consistently presented in these studies include: (1)
PAG to the thalamus, which overlaps with the superior cerebellar
peduncle (SCP) and the spinothalamic tract (STT); (2) PAG
to the medial prefrontal cortex through ventral tegmental area
(VTA) and nucleus accumbens, which overlaps with the medial
forebrain tract (MFT); (3) PAG to the hypothalamus and RVM,
which overlaps with the dorsal longitudinal fasciculus (DLF)
and partially the medial longitudinal fasciculus (MLF). Further
anatomical connections with the PAG beyond the brainstem
area include amygdala, anterior cingulate cortex, ventromedial
prefrontal cortex (which overlaps with MFT), ventral posterior
thalamus and primary somatosensory cortex (which overlaps
with STT). A schematic map of the tracts that possibly relate to
pain displayed in Figure 2.
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TABLE 2 | Summary of studies of brainstem atlas building.

Reference Sample size DTI parameters Tracking

algorithm

Tracking

approach

Brainstem

distortion

control

Parcel lation

strategy

Brainstem tract atlas

Meola et al. (71) 488 healthy young

adults from HCP

3T, b = 1, 2, 3 k

s/mm2, 270 directions,

1.25mm isotropic

DSI Studio Deterministic

tractography

No Formalin-fixed

surgical landmarks

of 5 brains

SCP, MCP, ICP, FPT,

POTPT, CST, STT, ML, LL,

RST, CTT, MLF, DLF

Tang et al. (72) 20 selected healthy

young adults from the

488 healthy young

adults (HCP)

3T, b = 1, 2, 3 k, 270

directions, 1.25mm

isotropic

FOD-based

tractography in

MRTrix

Probabilistic

tractography

Visual exclusion Landmarks FPT, POTPT, ML, STT, LL,

SCPCT, SCPCR, SCPSC,

MCP, ICPMCT, IVPVCT

Mate et al. (75) 20 healthy subjects 1.5T, b = 1k, 60

directions 2.4mm

isotropic

FMRIB Software

Library

Probabilistic

tractography

No Landmarks Frontopontine, Motor,

Sensory, Reticular segments

Yeh et al. (73) 842 healthy young

adults from HCP

3T, b = 1, 2, 3 k, 270

directions, 1.25mm

isotropic

DSI Studio Deterministic

tractography

Yes Clustering CTT, DLF, LL, ML, MLF,

RST, STT

Zhang et al. (76) 62* mid-adult veterans

with medical conditions

3T, b = 1 k, 60

directions, 1 x 1 x 2.5

mm3

TrackVis Deterministic

tractography

Yes Landmarks DLF, MLF, SCP, NST, MFT,

CST, STT, FPT, POTPT

Burkett et al.

(77)

20 trigeminal patients 3T, b = 1 k, 64

directions 2.0mm

isotropic

StealthViz Deterministic

tractography

Visual exclusion Landmarks SpTV

Adil et al. (74) Postmortem brainstem

of a 65-year-old male

within 24hr of death

7T, b = 4 k, 120

directions, isotropic

resolution of 200 µm3

DSI Studio Deterministic

tractography

Not Applicable Landmarks AC, CST, DRTSCP, ICP, ML,

Facial Nerve, Optic Tracts,

PC, TN & SpTV

HCP, human connectome project; FOD, connectome modeling techniques including fiber orientation distribution; FACT, fiber assignment by continuous tracking; SCP, superior cerebellar

peduncle; MCP, middle cerebellar peduncle; ICP, inferior cerebellar peduncle; FPT, frontopontine tract; POTPT, parieto-occipitotemporopontine tracts; CST, corticospinal tract; STT,

spinothalamic tract; ML, medial lemniscus; LL, lateral lemniscus; RST, rubrospinal tract; CTT, central tegmental tract; MLF, medial longitudinal fasciculus; DLF, dorsal longitudinal

fasciculus; SCPCT, cerebellothalamic tract of SCP; SCPCR, cerebellorubral tract of SCP; SCPSC, spinocerebellar tract of SCP; ICPMCT, ICP from medulla oblongata to the cerebellum;

IVPVCT, ICP from the vestibulocerebellar tract; NST, nigrostriatal tract; MFT, medial forebrain tract; SpTV, spinal trigeminal tract; AC, anterior commissure; DRTSCP, dentatorubrothalamic

tracts as a subset of SCP; TN & SpTV, trigeminal nerve roots and SpTV. *,Our most recent atlas has been updated with an averaged tract map from 62 veterans, from the 17 samples

in this publication.

On the basis of existing automated brainstem DTI
tractographic atlases, Figure 3 presents an illustration of
the fiber tracts that are highly relevant to pain and their
relationship with key brainstem nuclei (e.g., PAG, LC and RVM).
The anatomy of these brainstem tracts can be confirmed with
known neuroanatomical books (108–111).

The DLF connects hypothalamus, PAG and spinal cord via
the ventral side of the aqueduct and fourth ventricle. The DLF
anatomy is consistent with the inferomedial branch of the medial
forebrain bundle that has been described in several DBS studies
(112), which consists of fiber that connects through upper pons,
retrorubral area, PAG, VTA in the midbrain and ends in the
lateral hypothalamus. Using atlas-based automated brainstem
tractography (76), our recent study reported that FA decrease and
MD/RD/AD increase in the DLF are associated with increased
pain intensity in a group of patients with fibromyalgia-like,
chronic pain (13). TheDLF appears to have the largest anatomical
overlap with the described descending analgesic pathway which
in turn suggests that damage of the DLF may result in impaired
endogenous pain regulation.

The SCP connects the dentate nucleus with the thalamus,
red nucleus, vestibular nuclei, and the reticular formation. It
functions mainly as a network for motor coordination and
postural control. The SCP at the midbrain level includes

non-decussated and decussated branches that partly overlap
with PAG and VTA (113). One study (12) using an automated
atlas-based approach, reported FA decrease and MD increase
of the SCP to be significantly associated with greater sensation
of low back pain in response to ankle muscle vibration in
healthy volunteers.

The MFT connects between deep cerebellar nuclei and
anterior frontal regions. It traverses partially through the VTA,
PAG, inferomedial thalamus, also passes through the anterior
limb of internal capsule (ALIC) along with anterior thalamic
radiation (ATR). SimilarMFT connection, which is described as a
superolateral branch of the medial forebrain bundle in a previous
review article, is considered to be a seeking/pleasure pathway
(112). DBS treatment on this pathway showed anti-depressive
effects and modified the emotional pain state, suggesting that
the MFT may have therapeutical implication for affective pain.
Two studies investigated MFT (or fibers with similar anatomy)
changes in response to pain in healthy subjects. One using a semi-
automated approach (which manually delineates tractographic
landmarks from the FreeSurfer parcellation atlas), reported that
FA reduction and RD increase in the MFT are associated
with higher pain sensitivity after heating stimuli (14). Another
study, using a voxel-wise statistical approach with a FA-based
tract skeleton, showed reduced FA in several tracts (connecting
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FIGURE 2 | Possible PAG connections based on DTI from Linnman et al. (84) and Zhang et al. (76). ACC, anterior cingulate cortex; Cerebell, cerebellum; dmPFC,

dorsomedial prefrontal cortex; vmPFC, ventromedial prefrontal cortex; vlPFC, ventrolateral prefrontal cortex; WM, white matter; VTA, ventral tegmental area; SN,

substantia nigra; RN, red nucleus; PAG, periaqueductal gray matter; LC, locus coeruleus; ML, medial lemniscus; Dent. Nc., dentate nucleus; STT, spinothalamic tract;

NST, nigrostriatal tract; MFT, medial forebrain tract; DLF, dorsal longitudinal fasciculus; SCP, superior cerebellar peduncle; MLF, medial longitudinal fasciculus.

dorsolateral prefrontal cortex, rostral anterior cingulate cortex
with the PAG) was associated with better placebo analgesic
responses (11), which supports the notion that lower FA in the
MFT is associated with decreased sensitivity to painful stimuli.

The STT is known as a major sensory pathway that is highly
trackable and reproducible by either manual or automated
approaches. The STT consists of a spinothalamocortical
pathway (pain and temperature sensation) and a medial
lemniscothalamocortical pathway (conscious proprioception)
(114). Both pathways are considered the main ascending sensory
pathways of the body that travel rostrally in close proximity
within the brainstem to the thalamus and to the somatosensory
cortex (115). Several papers showed central post-stroke pain
(those without signs of peripheral neuropathy) was related to
injury of the STT detected by loss of the STT volume (116),
thickness (117), or damaged microstructural integrity including
FA decrease and MD increase (15).

Taken together, these studies applying diffusion tensor
tractography in pain research demonstrated that some dorsal
brainstem fibers may be involved in pain processing and
modulation on the basis of these fiber tracts connecting the
cerebral cortices through the PAG to the dorsal spinal cord.
These studies consistently observed a significant correlation
between a reduced microstructural integrity of the brainstem
tracts connecting to PAG and increased pain intensity/sensitivity.
These findings suggest a structural connectivity-related
endogenous pain regulation. Specifically, substantial impairment
(e.g., impaired axon or myeline membrane) of the brainstem
fiber connection results in a dysfunction of the descending
inhibition or modulation. Although the clinical application of
diffusion tensor tractography in pain is still infrequent, the above

evidence suggests that its inclusion in future studies may hold a
lot of promise.

LIMITATIONS

Current pain research applying brainstem diffusion tensor
tractography has been limited in several ways: (1) Most of
the brainstem tractography atlases have been built based on
healthy young adults with sophisticated diffusion protocols that
would last longer than 50min. A super-high resolution (e.g.,
200Mm isotropic voxel) using higher magnetic field strengths
such as 7T scanner could further improve tractographic atlas
building and analyses in microstructural level but 7T scanners
are typically not available in hospitals as they provide limited
clinical relevance. This is further complicated by the fact that
atlases build on 7T data will not directly translate into lower field
scans like the commonly used 3T clinical scanners. Conversely,
clinical DTI protocols routinely tend to be no longer than 10min
with lower resolution (≤2 mm3) and fewer diffusion directions
(≤80). Therefore, in clinical practice, small pathways may not
be identifiable and mis-registration may often occur in patients
with conditions affecting brain morphology including elderly
patients. Further technical developments should be focused on
improvement of quality and feasibility of clinical scans, as well as
correcting errors due to low resolution, noise, artifacts, distortion
and crossing-fibers during post-processing. (2) Although a
number of existing diffusion tensor tractographic studies have
consistently attributed a role to the structural connectivity of
brainstem tracts in descending analgesic pathways, less is known
whether these tracts might also be associated with ascending
pain facilitation effects. It is technically even difficult because
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FIGURE 3 | Illustration of ROI where the volumes of the brainstem nuclei and diffusion metrics were measured. Upper panel, Illustration of ROIs of the PAG, LC and

RVM, which were delineated based on literature (108). The hot color scale represents probability of gray matter density (brighter color refers to higher gray matter

density) within the ROIs. Middle panel, example of brainstem tracts of interests, including MLF (orange), DLF (cyan), SCP (green), NST (dark pink), MFT (yellow), CST

(dark green), STT (blue), and the three brainstem nuclei (red). Lower panel, the anatomical relationships between brainstem tracts (non-red) and nuclei (red) on 4

brainstem axial slices. PAG, periaqueductal gray; LC, locus coeruleus; RVM, rostral ventromedial medulla; MLF, medial longitudinal fasciculus; DLF, dorsal longitudinal

fasciculus; SCP, superior cerebellar peduncle; NST, nigrostriatal tract; MFT, medial forebrain tract; CST, corticospinal tract; STT, spinothalamic tract.

the diffusion tensor tractography expresses a bidirectional
structure that cannot separate the afferent or efferent fiber
inputs, thus cannot distinguish the ascending or descending
pathways, respectively. (3) Generally, alterations of quantitative
DTI variables explain non-specific biological features and
therefore only permit indirect interpretations of the underlying
pathophysiology. The important role of brainstem fibers was
discussed here together with supporting evidence. Additional
pathophysiologic validation is needed to further understand the
role of brainstem fibers in pain and other conditions.

CONCLUSION

As a non-invasive, clinically feasible MRI sequence, DTI
is a sensitive imaging method in detecting problems of
structural integrity of human brain neural pathways. Recent
developments in diffusion tensor tractography offer visualization
and quantitative analysis of the status of small brainstem fiber
tracts, in which several known pain-related neural pathways are
included. A better understanding of the relationship between

brainstem structural connection and chronic pain and/or pain
modulation will be helpful for revealing the neurobiological basis
and regulation mechanisms underlying pain.
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