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Abstract Porcine Reproductive and Respiratory Syndrome
Virus (PRRSV) is the causative agent of one of the most
important porcine diseases with a high impact on animal
health, welfare, and production economy. PRRSV exhibits a
multitude of immunoevasive strategies that, in combination
with a very highmutation rate, has hampered the development

of safe and broadly protective vaccines. Aiming at a vaccine
inducing an effective cytotoxic T cell response, a bioinformat-
ics approach was taken to identify conserved PRRSV-derived
peptides predicted to react broadly with common swine leu-
kocyte antigen (SLA) class I alleles. Briefly, all possible 9-
and 10-mer peptides were generated from 104 complete
PRRSV type 2 genomes of confirmed high quality, and pep-
tides with high binding affinity to five common SLAs were
identified combining the NetMHCpan and positional scan-
ning combinatorial peptide libraries binding predictions.
Predicted binders were prioritized according to genomic con-
servation and SLA coverage using the PopCover algorithm.
From this, 53 peptides were acquired for further analysis.
Binding affinity and stability of a subset of 101 peptide-SLA
combinations were validated in vitro for 4 of the 5 SLAs.
Eventually, 23% of the predicted peptide-SLA combinations
showed to form complexes with a dissociation half-life
≥30 min. Additionally, combining the two prediction methods
proved to be more robust across alleles than either method
used alone in terms of predicted-to-observed correlations. In
summary, our approach represents a finely tuned epitope pre-
diction pipeline providing a rationally selected ensemble of
peptides for future in vivo experiments with pigs expressing
the included SLAs.

Keywords Swine leukocyte antigen . Cytotoxic T
lymphocytes . Vaccine . Positional scanning combinatorial
peptide library (PSCPL) . NetMHCpan . PopCover

Introduction

Porcine Reproductive and Respiratory Syndrome (PRRS) is
one of the most important porcine diseases in all swine-
producing countries and has a high impact on animal health,
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welfare, and production economy (Nieuwenhuis et al. 2012;
Holtkamp et al. 2013). The causative agent, the PRRS virus
(PRRSV), is a small enveloped virus containing a positive-
sense single-stranded RNA genome of about 15 kb that en-
codes 11 open reading frames (ORFs): ORF1a, TF, ORF1b,
ORF2a, ORF2b, ORF3, ORF4, ORF5, ORF5a, ORF6, and
ORF7 (Fang et al. 2012; Johnson et al. 2011; Meulenberg
et al. 1993; Wu et al. 2001). PRRSV exists in two genotypes
that were recently classified as distinct species: PRRSV-1 and
PRRSV-2. They are both members of the Arteriviridae family
in the only assigned genus, Arterivirus, together with 11 other
species including lactate dehydrogenase elevating virus and
equine arteritis virus, the latter being type species for the ge-
nus. The Arteriviridae family is placed together with
Coronaviridae, Roniviridae, and Mesoniviridae in the order
Nidovirales.

PRRSV infects and replicates within macrophages and
eventually kills them. The first cycle of replication occurs in
the alveolar macrophages, whereupon the virus can spread to
other parts of the body either by means of viremia or inside
migrating macrophages. The clinical symptoms appear early
after infection, and the most common signs include respiratory
symptoms that often leads to fever, lethargy, anorexia, and
pneumonia. PRRSV participates as co-factor in polymicrobial
syndromes, such as Porcine Respiratory Disease Complex and
Porcine Circovirus Associated Disease (Chand et al. 2012).
Studies have shown that infectious PRRSV could be isolated
from lymphoid tissue more than 150 days after infection even
after several months of viral absence in the serum (Wills et al.
1997; Allende et al. 2000). Furthermore, viral replication has
been detected for as long as 250 days after infection (Wills
et al. 2003). For pregnant gilts and sows infected in late ges-
tation, the virus may infect the endometrium and placenta
giving rise to sporadic late-term abortions, early farrowing,
and birth of litters mixed with living, stillborn, and mummi-
fied fetuses (Zimmerman et al. 1997; Rossow 1998;
Karniychuk and Nauwynck 2013). Viremia typically peaks
after 10–15 days post infection and in most cases the level
of virus in serum is below the detection limit 4 weeks after
infection, but the virus may persist in some pigs (Lopez and
Osorio 2004). Although the infection is not persistent per se, it
is often lifelong since the average lifetime of production pigs
is 180 days.

Many attempts have been made to develop an effective
vaccine against PRRSV. Various virus attenuation or antigen
selection strategies, adjuvants, and delivery systems have
been tested including killed virus, modified live virus
(MLV), recombinant protein based, and DNA vaccines, as
well as their efficacies in terms of viral clearance and relief
of symptoms are diverse (reviewed in Renukaradhya et al.
2015a, b). In broad terms, they all succeed to amend the im-
mune response by raising the levels of virus-specific antibod-
ies and/or increasing the cell-mediated immune response

(CMI). Commercial MLV vaccines provide moderate to
strong protection against a homologous challenge, but none
of them seem to be capable of providing cross-protection
against heterologous challenges with a sustained protective
effect. In addition, the use of MLVs has an immense disad-
vantage that the attenuated vaccine strain may revert to viru-
lence and start promoting rather than preventing viral infec-
tion (Botner et al. 1997; Madsen et al. 1998; Beilage et al.
2009; Jiang et al. 2015). Furthermore, the use of MLV in
pregnant animals in the last trimester increases the risk of
reproductive failure.

Ideally, a vaccine against PRRSV should induce neutraliz-
ing antibodies capable of clearing the virus in its extracellular
phase, while a CMI should eliminate infected cells as fast as
possible to reduce tissue damage and viral transmission. A key
effector cell for this latter task is the cytotoxic T lymphocyte
(CTL), having the ability to identify and induce apoptosis of
PRRSV-infected cells. Studies have shown that CTLs are in-
deed present in high numbers at infected locations in the lungs
of transplacentally infected animals (Tingstedt and Nielsen
2004) and that the influx of CTLs to the lungs increases during
PRRSV infection (Samsom et al. 2000). Although the CTLs
are present, their role in clearing the infection is unclear and
controversial.

On the skeptical side, Lohse et al. (2004) showed that acute
infection appeared to be unaffected by the presence of CTLs
since temporary depletion of CTLs during the onset of infec-
tion with PRRSV-1 virus neither increased disease nor influ-
enced the ability to clear virus. One study attempted to eval-
uate the relationship between viral persistence and the pres-
ence of CTLs in the blood, the tonsils, the spleen, and the
mediastinal lymph nodes in PRRSV-2-infected animals.
Although a significant correlation between viral clearance
and increased CTL counts in the spleen was observed, a de-
layed and impaired CMI together with a low level of CTLs
was found in the tonsils and lymph nodes, allowing viral per-
sistence in these organs (Lamontagne et al. 2003). In a last
example, the cytotoxic activity of peripheral blood mononu-
clear cells (PBMCs) isolated from Lelystad-infected pigs
failed to show PRRSV-specific lysis of infected autologous
alveolar macrophages until very late in the experiment. Even
following successful expansion of CD3+CD8high cells after a
5-day period of restimulation with virus, a PRRSV-specific
cytotoxic response was not observed until day 56 post infec-
tion, suggesting a PRRSV-induced impairment of the cytotox-
ic activity (Costers et al. 2009).

On a more optimistic note the CMI against PRRSV-2 was
first explored by Bautista (1997), who described a PRRSV-
specific lymphocyte proliferation and delayed-type hypersen-
sitivity response, thereby indicating a T cell-specific memory
response. Another study argued that a CMI was responsible
for the protective immunity of a PRRSV-1 challenge upon
vaccination with an MLV vaccine, since a virus-specific
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interferon-gamma (IFN-γ) response was observed, while no
neutralizing antibodies were present (Zuckermann et al.
2007). An in vitro proliferation assay of PBMCs from
PRRSV-1 infected cells showed that PBMCs could be ex-
panded upon restimulation with virus and that the cytotoxic
activity against K-562 cells increased along with this expan-
sion (López Fuertes et al. 1999).

The observations and conclusions put forward in the liter-
ature of CMI responses in relation to PRRSVare thus in many
cases contradictory, and it is obvious that more knowledge is
needed for a better understanding of the importance of CMI
against PRRSV. In this study, a rational approach has been
taken to identify potential major histocompatibility complex
(MHC) class I restricted epitopes that are conserved among
PRRSV-2 strains. Potential epitopes, restricted by five swine
leukocyte antigen (SLA) class I alleles, SLA-1*04:01, SLA-
1*07:02, SLA-2*04:01, SLA-2*05:02 and SLA-3*04:01,
were identified using bioinformatic tools, and subsequently
verified in vitro as SLA-binders by affinity and stability
assays.

Materials and methods

Sequences

Verification of genomic data

All available full genome sequences (access date: September
24, 2014) of PRRSV-2 were evaluated and excluded if they
failed the criteria of (1) being a wild-type strain, (2) being
published, (3) having methionine begin all protein products,
and (4) being without non-sense stop codons.

Phylogenetic tree

A phylogenetic tree was created in order to illustrate the di-
versity of the strains used for the prediction. Briefly, for each
strain, all naturally occurring protein products (nsp1a, nsp1b,
nsp2, nsp2TF, nsp3–6, nsp7a, nsp7b, nsp8–12, ORF2a,
ORF2b, ORF3, ORF4, ORF5a, ORF5, ORF6, and ORF7)
were concatenated and aligned in CLC (workbench v7.0).
The tree was subsequently generated in CLC using the inte-
grated neighbor-joining algorithm with a bootstrap of 1000
replicates.

Peptide generation

For each verified strain, all possible 9- and 10-mer peptides
were generated in silico from all naturally occurring protein
products, excluding peptides spanning post-translational
cleavage sites.

Swine leukocyte antigen

Five SLA class I alleles were used: SLA-1*04:01, SLA-
1*07:02, SLA-2*04:01, SLA-2*05:02 and SLA-3*04:01.
Most of these alleles have been shown to be common in
Danish pigs (Pedersen et al. 2014) and were readily accessi-
ble for in vitro analysis as recombinant biotinylated heavy
chains as previously described (Pedersen et al. 2011).

Epitope bioinformatics

NetMHCpan

NetMHCpan (Hoof et al. 2009) version 2.8 was used to
predict the binding affinity of the peptides against the
five SLA alleles. Version 2.8 has been trained on more
than 150,000 quantitative binding data covering more
than 150 different MHC-I molecules. The output, being
a measure of the binding affinity of a given peptide to a
given SLA allele, was converted to a percentile rank
score, using SLA-specific standard curves based on the
prediction of 200,000 random natural peptides, e.g., a
percentile rank score of 2% indicated that the given
peptide was among the top 2% best binders to the given
SLA out of the 200,000 random natural peptides used
for the standard curve.

Positional scanning combinatorial peptide library

The positional scanning combinatorial peptide library
(PSCPL) method was first described in details by Stryhn
et al. (1996) and has since been applied to porcine immu-
nology by Pedersen et al. (2011). Briefly, an SLA-specific
scoring matrix providing the average contribution on bind-
ing of any amino acid at each position in a 9-mer peptide
is used to calculate the overall binding score of a given
peptide. The PSCPL experiments providing the scoring
matrices for the five SLAs have been performed previous-
ly (SLA-1*04:01—Pedersen et al. 2011, SLA-2*04:01—
Pedersen et al. 2012, SLA-3*04:01—Pedersen et al. 2014,
SLA-1*07:02 and SLA-2*05:02—Lasse Eggers Pedersen,
personal communication, April 2014). The matrices for
SLA-1*04:01, SLA-2*04:01 and SLA-3*04:01 were
based on affinity measurements, while the matrices
for SLA-1*07:02 and SLA-2*05:02 were based on
stability measurements (shown to give very similar
outcomes by Rasmussen et al. (2014)). Since the matrices
are based on the binding of 9-mers only, an extrapolation
was performed to obtain estimates of 10-mers as described
by Lundegaard et al. (2008). The output was converted to
a percentile rank score, similar to the above.
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Combining the methods

Due to the limited amount of porcine MHC-binding data
available for training of NetMHCpan, the two methods,
NetMHCpan and PSCPL, were combined as this has been
shown previously to provide more exact predictions than ei-
ther method alone (Pandya et al. 2015; Pedersen et al. 2016).
A combined rank score was determined for each individual
peptide-SLA (pSLA) pair by calculating the harmonic mean
of the two method-specific percentile rank scores. Only pep-
tides with a combined rank score ≤2% for at least one of the
five SLAs were selected as epitope candidates.

Prioritizing the epitope candidates

The PopCover algorithm was used to rank the epitope candi-
dates by iteratively prioritizing the peptides with the broadest
SLA allele and strain coverage, while covering the gaps left by
previously chosen peptides (Lundegaard and Perez 2010;
Buggert et al. 2012).

In vitro verification of predicted SLA-binders

Based on the bioinformatics described above, 53 peptides
(purity >85%, GenScript) were acquired for in vitro verifica-
tion. Stability and affinity assays were performed on each
pSLA with a predicted combined rank score ≤2% using re-
combinant biotinylated heavy chains of the five SLAs.

Stability assays

The stability of the pSLA complexes was determined in vitro
using a scintillation proximity assay (SPA) employing the
principle of 125I-radiolabeled β2m dissociation as a measure
of pSLA complex stability (Harndahl et al. 2011; Parker et al.
1992b). Briefly, denatured biotinylated recombinant SLA
heavy chains were diluted in PBS/0.1% Lutrol F68 to
50 nM and refolded overnight at 18 °C with 2–10 nM 125I-
radiolabeled β2m and ≈50 μM of the peptide to be tested in
streptavidin-coated scintillation 384-well FlashPlate PLUS
microplates (SMP410A001PK, PerkinElmer). In case of a
binding peptide, a scintillation signal was observed and the
off-rate was subsequently determined by increasing the tem-
perature to 37 °C and the addition of an excess of unlabeled
β2m (final concentration 200 nM) while continuously moni-
toring the scintillation signal in a liquid microplate scintilla-
tion plate reader (Topcount NXT, PerkinElmer) for 24 h at
37 °C. The off-rate is equivalent to the peptide-specific disso-
ciation rate and serves as a good measure for pSLA complex
stability. The stability values reported are the averages of du-
plicates in half-life (t½) decimal hours.

Affinity assays

Binding affinity of pSLA complexes was determined in vitro
using a modified enzyme-linked immunosorbent assay
(ELISA) (Sylvester-Hvid et al. 2002; Pedersen et al. 2011).
Briefly, 1–2 nM denatured biotinylated recombinant SLA heavy
chains were refolded with 15 nM human β2m (hβ2m) and eight
fivefold incremental concentrations of the peptide to be tested
spanning from 0 to 13 μM. Following obtained equilibrium after
two nights of incubation at RT, the samples were transferred to a
streptavidin coated 96-well capture plate (436014, Thermo
Scientific) for 1½ h of incubation. Mouse-anti-hβ2m, BBM1,
and horseradish peroxidase-conjugated goat-anti-mouse IgG
(A9917, Sigma-Aldrich) were used as primary and secondary
detection antibodies, respectively.Washing steps were performed
with 0.05% Tween 20 in PBS. The color reaction of TMB Plus2
(4395A, Kem-En-Tec Diagnostics) was stopped with equivalent
amounts of H2SO4 (0.5 M, cat 30144.294, VWR International),
and the plates were read at 450–650 nm using a Multiskan EX
ELISA reader (Thermo). OD values were converted to measures
of affinity (equilibrium dissociation constant, KD) using the
prefolded biotinylated FLPSDYFPSV/HLA-A*02:01 as stan-
dard (Kast et al. 1994), and were again converted to percentile
rank scores by the same SLA-specific standard curves that are
integrated in NetMHCpan. A minimum of two reliable measure-
ments were aspired for each pSLA combination, and in most
cases this was obtained. The results are presented as the range
between the minimum and maximum measurements converted
to rank scores.

Results and discussion

Sequence selection and epitope bioinformatics

Initially, 334 PRRSV-2 full genome (~15.1 kb) sequences were
included. Of these, 104 sequences were accepted in accordance
with the described verification criteria. Figure 1 illustrates their
evolutionary relatedness, while Table 1 shows the year and coun-
try of isolation. Out of the 104 accepted strains, 90,939 unique 9-
or 10-mer peptides were generated in silico. Binding of each
peptide to each of the five SLAs was predicted using the two
methods, NetMHCpan and PSCPL. By excluding peptides with
a combined rank score >2% with all of the SLAs, the number of
unique peptides was reduced to 6140 that were subsequently
prioritized using PopCover. Among the top-50 on the
PopCover output, four 9-mer peptides nested within top-50 10-

�Fig. 1 Phylogenetic tree of the 104 strains based on their full proteome.
Isolation data (country and year) and accession number are indicated in the
legend for each strain, country as a two-letter ISO country code, and year as
the last two digits.NA no information about isolation year available. Scale bar
indicates the number of amino acid substitutions per site
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mer peptides were excluded, and three peptides further down the
list (top-70) were included to give a more even distribution along
the genome. In addition, six peptides were included as they have
previously been described in the literature in various restimula-
tion studies of PBMCs from pigs immunized with live or atten-
uated PRRSV-2 virus: Four 17-mers containing the peptides
ID43 (TTMPSGFELY), ID50 (NSFLDEAAY), ID53
(MPNYHWWVEH), and ID54 (EVALSAQII), respectively,
were found to induce both T cell proliferation and IFN-γ secre-
tion in a screening study of NSP9 and NSP10 (Parida et al.
2012); 15-mers containing peptide ID51 (RGRLLGLLHL) and
ID52 (LYRWRSPVI) were found to induce spots in IFN-γ
ELISPOT assays when screening GP5 (Vashisht et al. 2008)
and the M protein (Wang et al. 2011), respectively.
Furthermore, the same ID52 containing 15-mers as above was
included in a peptide-based vaccine with the N-terminal part of
the heat chock protein Gp96 as adjuvant. Restimulation with this
peptide of PBMCs from the immunized animals was shown to
induce lymphocyte proliferation with a Th1-type cytokine bias,
and the immunized piglets exhibited milder clinical symptoms,
lower viremia, and less pathogenic lesions than non-immunized
piglets upon challenge with a highly pathogenic PRRSV strain
(Chen et al. 2013).

Unfortunately, none of these studies had a clear phenotypic
description of the responding cells, nor had their test animals
been SLA genotyped.

In total, 54 peptides were ordered fromGenscript, but only 53
were received as peptide ID14 could not be synthesized
(Table 2).

Due to internal errors, the NetMHCpan prediction was per-
formed on SLA-2*05:01 instead of the correct SLA-2*05:02.
Even though the two alleles are genetically very similar, their
peptide binding specificities are only partly overlapping.
Unfortunately, the mistake was not discovered before the pep-
tides were purchased and as a consequence, only 9 out of the
53 peptides were predicted as binders to SLA-2*05:02 while
this number was formerly believed to be 24. For obvious

reasons, this insight would have resulted in a different
PopCover output and hence a different choice of peptides
for purchase.

Experimental verification of predicted pSLA complexes

For each of the 53 peptides, each pSLA combination that was
predicted to have a combined rank score ≤2%was tested in vitro
for their individual binding characteristics in terms of affinity and
stability. The results are presented in Table 2. Note that only
SLA-1*04:01, SLA-1*07:02, SLA-2*04:01, and SLA-2*05:02
were included in this experimental validation, as no functional
assay could be generated for SLA-3*04:01.

While the affinity represents the strength of a peptide-MHC
(pMHC) interaction, the stability represents the longevity of
this interaction once established. The two properties are mech-
anistically interrelated but are not mutually redundant, mean-
ing that a peptide having a strong affinity will not necessarily
form a highly stable complex, and vice versa. Obviously, the
probability of a pMHC complex on the surface of a given cell
to encounter and be recognized by an extremely rare circulat-
ing CTL with a cognate receptor is proportionate to how long
this peptide is being displayed on the cell surface—the stabil-
ity. Likewise, this probability is also proportionate to the num-
ber of successfully formed pMHC molecules in the first
place—the affinity. Factors other than affinity and stability
may also play a role, such as the level of protein being
expressed in the cytosol from which the peptide is derived,
and the rate at which the MHC molecule is internalized after
peptide presentation on the cell surface.

In the earliest works of characterizing the pMHC interac-
tion, both affinity and stability was given considerable focus
(Buus et al. 1987; Parker et al. 1992a, b). Regardless, the vast
majority of available pMHC binding data is in the form of
affinity data since the acquisition of stability data has previ-
ously been cumbersome and laborious. Recently, the SPA
method used in this study, being a high-throughput one-step

Table 1 Distribution of the 104 strains according to isolation year and country

Country of isolation NA 1992 1994 1995 1996 1997 2001 2002 2003 2004 2006 2007 2008 2009 2010 2011 2012 Percent

Canada CA 1 1

China CN 8 1 1 2 1 6 8 1 3 23 7 1 60

Denmark DK 1 1 2 1 5 2 1 13

Japan JP 1 1

Laos LA 7 6.7

South Korea KR 1 1 3 4.8

Thailand TH 1 1

USA US 1 1 1 2 2 1 2 1 11

Vietnam VN 2 1 2.9

% 7.7 1.8 1 1 1.9 4.8 1 4.8 1 2.9 6.7 13 3.8 2.9 36 8.7 1.9 100

NA not available
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method for measuring pMHC stability was developed by
Harndahl et al. (2011), and shortly after, Harndahl et al.
(2012) showed that immunogenic peptides tend to be more
stably bound to MHC-I molecules than non-immunogenic
peptides, suggesting to focus on stability rather than affinity
as a determinant for peptide immunogenicity. In the wake of
this, the NetMHCstab and NetMHCstabpan servers were re-
cently established (Jørgensen et al. 2014; Rasmussen et al.
2016). Unfortunately, these servers have so far only been
trained with human data, and could therefore not be imple-
mented in this study.

In the light of the indicated proportionality between immu-
nogenicity and stability, it has become convenient to define a
threshold separating binders from non-binders. While the
NetMHCstab server defines the thresholds for weakly and
strongly stable pMHC complexes to be a t½ ≥ 2 h and
t½ ≥ 6 h, respectively, other studies have been less strict and
included pMHCs with t½ ≥ 30 min. Out of the 101 pMHC
complexes tested in this study, 23 of these exhibited a
t½ ≥ 30 min (5/30 pSLA-1*04:01, 10/26 pSLA-1*07:02, 7/
36 pSLA-2*04:01, and 1/9 pSLA-2*05:02). Ten of these had
a t½ ≥ 2 h, and four had a t½ ≥ 6 h. Interestingly, peptide ID54
(EVALSAQII), which was included due to its previous men-
tion in the literature, was measured to bind very stably to SLA-
2*05:02 (t½ = 18.3 h), hinting that the responsive animals
used by Parida et al. (2012) could have expressed this partic-
ular allele.

Correlations between predicted and measured values

To quantify the performance of the three prediction strategies
employed for peptide selection, a correlation analysis between
the predicted rank score and the measured binding affinity and
binding stability values was performed. The analysis was lim-
ited to the molecules SLA-1*04:01, SLA-1*07:02, SLA-
2*04:01, and SLA-2*05:02, and the results are displayed in
Fig. 2. From this analysis, it is apparent that none of the two
methods , NetMHCpan and PSCPL, consis tent ly
outperformed the other. The PSCPL method achieved the
highest performance of the two methods for 50% of the SLA
alleles on the binding affinity data and for 75% of the alleles in
the stability data. Each method performed very poorly with
close to zero or negative correlations in at least one case each.
In contrast to this, the performance of the combined method
was consistently high across all four SLA alleles, thus achiev-
ing the highest performance of the three methods on both the
affinity and stability data when evaluated on the data set com-
bined of all SLA measurements. This finding thereby con-
firmed the earlier finding that combining prediction of
NetMHCpan and PSCPL leads to a superior performance for
identifying peptide binders to MHC molecules characterized
by limited or no binding data (Rasmussen et al. 2014; Hansen
et al. 2014).

We next extended this analysis to include an evaluation of
the sensitivity (true positive rate) and specificity (true negative
rate) of the respective methods. Due to the inconsistencies
between the SLA allele used to selected peptides and the allele
actually used in the study for the SLA-2*05:01/:02, the SLA-
2*05:01 allele was excluded from this analysis, which was
hence limited to SLA-1*04:01, SLA-1*07:02, and SLA-
2*04:01. The results are given in Fig. 3, depicting the sensi-
tivity and specificity as a function of the prediction rank
threshold for the three respective methods for the three differ-
ent SLA molecules. Due to the fact that different MHC mol-
ecules display very different binding potential when it comes
to both affinity (Paul et al. 2013; Nielsen and Andreatta 2016)
and stability (Rasmussen et al. 2016), an allele-specific affin-
ity threshold was defined to distinguish between observed
binders and non-binders. This threshold was defined from
the 1% percentile affinity score obtained by predicting binding
to 200,000 random natural peptides using NetMHCpan (ver-
sion 2.9). We are aware that using this approach might intro-
duce a bias in favor of the NetMHCpan prediction.
Nevertheless, we regarded this as a better estimate and repre-
sentative of the individual alleles than the hitherto general
definition of a uniform threshold at 500 nM that does not
account for any allele-specific variation (Yewdell and
Bennink 1999). As expected, the obtained allele-specific

Fig. 2 Correlation analysis between measured binding affinity/stability
and predicted rank values for the three methods NetMHCpan, PSCPL,
and combined prediction. Correlations were quantified in terms of
Spearman rank correlation. ALL gives the correlation values for the com-
bined data set of the four SLA molecules
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affinity thresholds demonstrated substantial variations with
values spanning from 546 nM (SLA-1*04:01) over
1193 nM (SLA-1*07:02) to 3415 nM (SLA-2*04:01).

In general, a high-performancemethod should have a point on
the graphswith high sensitivity and specificity values. Given this,
the value corresponding to the cross-point of the sensitivity and
specificity curves can be taken as a measure of predictive perfor-
mance of a given method. Using this performance measure,
NetMHCpan demonstrates a general very high performance,
with cross-point values for the three SLAmolecules in the range
0.64–0.75, meaning that on average 70% of the binding peptides
are captured at a false positive rate of 30% (Fig. 3). For the
PSCPL method, these values are substantially lower and in two
of the three cases, no cross-point is identified in the rank score
range included in the analysis, suggesting a low sensitivity of this
approach. However, even in this situation, the combination of the
two approaches leads to an overall improved performance, with a
substantially improved cross-point (0.86 compared to 0.68) value
for SLA-1*07:02. These findings thus consolidate the earlier
conclusion that integrating PSCPL and NetMHCpan predictions
leads to overall superior performance compared to any of the
individual methods alone.

Perspectives of an epitope based vaccine strategy

The central concept of vaccinology is defined by the proper
presentation of antigen to the immune system. For a vaccine to
induce a CMI, more specifically, the antigen is presented on a

MHC-I molecule as an 8–10-mer epitope for subsequent rec-
ognition by a cognate cytotoxic T cell. Applying this to a real-
life vaccine trial, this concept splits up into three cardinal
points that should be considered during the development of
an epitope-based vaccine: (1) Pathogen diversity. While it
would be very unlikely to identify a single immunogenic epi-
tope expressed by all circulating strains of the target pathogen,
the epitopes included in the vaccine should reflect the diver-
sity of the circulating target pathogen. Choosing conserved
epitopes must be regarded as the only rational approach, as
this would not only ensure the highest degree of pathogen
coverage attained by the lowest number of epitopes but would
also exclude epitopes that are dispensable for the pathogen. It
is likely, however, that a higher selection pressure on con-
served epitopes may lead to the employment of mechanisms
to prevent these epitopes from being immunogenic. Such
mechanisms could result in a level of surface display suffi-
ciently low to avoid CTL priming and activation. If this is the
case, one could speculate that an artificially raised level of
display in terms of a vaccine could activate cognate CTLs to
such an extent that they would recognize and kill cells
displaying an otherwise negligible level of epitopes, i.e., cells
infected with wild-type virus. (2) Herd diversity. Currently,
216 SLA class I alleles are known, including 62 SLA-1, 61
SLA-2, and 32 SLA-3 alleles. The majority of the SLA alleles
are published in the Immune Polymorphism Database (http://
www.ebi.ac.uk/ipd/mhc/sla/). This number is relatively small
compared to the known human MHC-I diversity counting

Fig. 3 Analysis of sensitivity and specificity of the three methods
(NetMHCpan, PSCPL and combined prediction) with relation to the
three alleles (SLA-1*04:01, SLA-1*07:02, and SLA-2*04:01). Values of
sensitivity and specificity were calculated based on four different values
of predicted rank: 0.5, 0.8, 1 and 1.5 (observed binders and non-binders

were classified as described in the text). Sensitivity indicates the percent-
age of observed binders identified below or equal to the four predicted
rank values. Specificity indicates the percentage of observed non-binders
identified above the four predicted rank value
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several thousand proteins and is likely to be a consequence of
scientific focus and limited genetic diversity within the swine
industry. Although their peptide specificities overlap to some
extent, the limited number of epitopes included in a vaccine
should be selected to match the allelic diversity of a target
population. (3) Epitope immunogenicity. While the notion of
being immunogenic is not synonymous with providing pro-
tection, it is definitely a prerequisite. Beyond epitope abun-
dance, the underlyingmechanisms of epitope immunogenicity
involve six steps: (i) cleavage of a cytosolic protein into small-
er fragments by the immuno- or conventional proteasome; (ii)
transportation of these fragments into the endoplasmic reticu-
lum by TAP; (iii) N-terminal trimming of the fragments by
aminopeptidases (Serwold et al. 2002); (iv) association of the
peptide to the MHC-I molecule; (v) vesicular transportation of
the pMHC complex to the cell surface; and (vi) recognition of
the pMHC by a CTL with a cognate T cell receptor. The steps
i-iii relate to the preprocessing of the peptides, and even
though information can be gained from the specificities of
the involved enzymes and transporters, this information has
no impact on the NetMHCpan predictions used in this study
(Peters et al. 2003; Nielsen et al. 2005). Consequently, it was
decided not to take this into account. The steps iv and vi,
however, represent the most selective steps in the MHC-I pre-
sentation pathway and recognition by circulating T cells,
respectively.

In this study, we have defined and characterized an ensem-
ble of potential CTL epitopes conserved among PRRSV-2
strains for the future development of an epitope-based vac-
cine. The abovementioned three cardinal points have been
met by (1) deriving all 9–10-mer peptides from a database of
104 wild-type strains; (2) designing an ensemble of 53 epitope
candidates predicted for an optimal representation of antigen
to a fictive target population expressing the five SLAs in ques-
tion. This was done by the use of bioinformatic tools for epi-
tope prediction (NetMHCpan and PSCPL) and subsequent
ranking of epitope candidates (PopCover); and 3) verification
of MHC binding of the 53 selected epitope candidates to the
five SLAs using in vitro pMHC stability and affinity assays. In
addition to this, the correlation between predicted and ob-
served binding data was analyzed for NetMHCpan, PSCPL,
and the combination of the two. In accordance with earlier
studies, none of the individual methods consistently
outperformed the other, and the combination of the two per-
formed a robust prediction across all SLAs with a relatively
high correlation.

Concluding remarks

In order to obtain an ensemble of epitopes that can provide
protection to a population of diverse haplotypes, the ensemble
must consist of epitopes that collectively will bind to the

majority of haplotypes present in the population. The
PopCover algorithm was employed in this study to prioritize
between the peptides based on both their degree of conserva-
tion and their Bpromiscuity^ with regard to SLA binding.
While these two factors are central in the definition of a pep-
tide ensemble, weight coefficients could be adjusted in rela-
tion to the individual strains, peptides, and SLA alleles, in
order to fine-tune the definition of the ensemble. Weight co-
efficients related to the individual strains should be set to
compensate for a bias induced by an overrepresentation of
similar strains in cases where this would reflect an intensely
sequenced incidence of disease rather than reflecting the actu-
al diversity of the strains. As an example, this study includes
seven viruses isolated in Laos in 2010. As seen in Fig. 1, these
strains are very closely related and do most likely represent
seven variants of the same strain rather than seven different
strains. Consequently, the weight coefficients of these should
be adjusted to make them have a collective impact corre-
sponding to a single strain. For the individual peptides, weight
coefficients should be given to reflect their relative levels of
expression. In case of PRRSV, the expression levels differ
substantially between loci, which are strongly influenced by
the programmed ribosomal frameshifting sites. According to
Fang et al. (2012), only about 15% of the translation initiated
at the beginning of ORF1awill proceed to ORF1b. As a result,
peptides derived from ORF1b will be much less abundant
compared to peptides derived from ORF1a, and should be
reflected accordingly by their weight coefficients. Also, for
the MHC alleles, a weight coefficient could be implemented
to reflect their relative levels of expression. On that node, we
have observed that the average level of complementary DNA
(cDNA) derived from SLA-3 mRNAwas less than 10% of the
overall SLA cDNA. The remaining 90% were more or less
evenly distributed between SLA-1 and SLA-2 derived cDNA
(unpublished data). This may, however, stand in contrast to the
abundance of a givenMHC allele in the herd in general, which
in case of SLA-3 was indeed found to be quite abundant in
some populations (Pedersen et al. 2014). Thus, two weight
coefficients could be given for the MHCs, reflecting both
the relative levels of expression in the individuals and the
levels of abundance in the population.

It is obvious that the definition of an optimal epitope ensemble
for the induction of an immune response against a pathogen on
the population level is not straightforward. In the current study,
none of the abovementioned weight coefficients have been used
to balance the epitope candidates. Because of this, and because of
confusion regarding SLA-2*05:01 and SLA2*05:02, the pre-
sented ensemble of 53 peptides is most probably different from
how it would be composed otherwise. Nonetheless, 53 con-
served peptides have been analyzed in vitro for their binding
capacities to five different SLAs. The biological significance of
these results are yet to be tested, and may ultimately aid in the
development of a CTL-activating vaccine against PRRSV.
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