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Simple Summary: Even today, pancreatic cancer still has a dismal prognosis. It is characterized by a
lack of early symptoms and thus late diagnosis as well as early metastasis. The majority of patients
suffer from pancreatic ductal adenocarcinoma (PDAC). PDACs communicate extensively with
cellular components of their microenvironment, but also with distant metastatic niches to facilitate
tumor progression and dissemination. This crosstalk is substantially enabled by small extracellular
vesicles (sEVs, exosomes) with a size of 30–150 nm that are released from the tumor cells. sEVs carry
bioactive cargos that reprogram target cells to promote tumor growth, migration, metastasis, immune
evasion, or chemotherapy resistance. Interestingly, sEVs also carry novel diagnostic, prognostic and
potentially also predictive biomarkers. Moreover, engineered sEVs may be utilized as therapeutic
agents, improving treatment options. The role of sEVs for PDAC development, progression, diagnosis,
prognosis, and treatment is the focus of this review.

Abstract: Even with all recent advances in cancer therapy, pancreatic cancer still has a dismal 5-year
survival rate of less than 7%. The most prevalent tumor subtype is pancreatic ductal adenocarci-
noma (PDAC). PDACs display an extensive crosstalk with their tumor microenvironment (TME),
e.g., pancreatic stellate cells, but also immune cells to regulate tumor growth, immune evasion, and
metastasis. In addition to crosstalk in the local TME, PDACs were shown to induce the formation of
pre-metastatic niches in different organs. Recent advances have attributed many of these interactions
to intercellular communication by small extracellular vesicles (sEVs, exosomes). These nanovesicles
are derived of endo-lysosomal structures (multivesicular bodies) with a size range of 30–150 nm.
sEVs carry various bioactive cargos, such as proteins, lipids, DNA, mRNA, or miRNAs and act in an
autocrine or paracrine fashion to educate recipient cells. In addition to tumor formation, progression,
and metastasis, sEVs were described as potent biomarker platforms for diagnosis and prognosis of
PDAC. Advances in sEV engineering have further indicated that sEVs might once be used as effective
drug carriers. Thus, extensive sEV-based communication and applications as platform for biomarker
analysis or vehicles for treatment suggest a major impact of sEVs in future PDAC research.

Keywords: pancreatic cancer; small extracellular vesicle; exosomes; sEVs; tumor growth; immune
evasion; metastasis; biomarker; therapeutic sEVs

1. Pancreatic Cancer and Intercellular Crosstalk

Pancreatic cancer is a deadly disease with a 5-year overall survival rate of less than
7% [1]. It is characterized by late diagnosis, due to the lack of early symptoms, a highly
fibrotic tumor microenvironment (TME), and early metastasis [2]. The only potentially
curative treatment to date is surgical resection [1]. The majority of pancreatic cancer cases
(~95%) belong to the pancreatic ductal adenocarcinoma subtype (PDAC) [3]. PDAC was
shown to arise from acinar-to-ductal metaplasia (ADM), induced by pancreatic injury, pan-
creatitis, or genotoxic events. ADMs can further evolve through acquisition of mutations
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into stages of pancreatic intraepithelial neoplasia (PanINs 1–3) [4]. Genetic abnormalities
include early activating mutations in Kirsten rat sarcoma (KRAS) and inactivation of cyclin
dependent kinase inhibitor 2A (p16/CDKN2A). Their frequencies increase with dysplasia.
Mutations in tumor protein 53 (TP53) and SMAD family member 4 (SMAD4) inactivation
are late events observed in PanIN3 lesions, which in the end develop into full-blown PDAC
with a highly fibrotic and complex TME [4–6]. The TME comprises cancer-associated
fibroblasts (CAFs), pancreatic stellate cells (PSCs), and immune-inhibitory cells, such as
immunosuppressive tumor-associated M2-polarized macrophages (M2-TAMs), regulatory
T-cells (Tregs), or myeloid-derived suppressor cells (MDSCs) [7,8]. Within the TME, tumor
cells were shown to communicate with the surrounding stromal cell compartment through
the release of secreted factors, but also via extracellular vesicles [9]. In the recent years, in
particular small extracellular vesicles (sEVs, exosomes) were described as major mediators
of intercellular communication during cancer initiation and progression [10]. In fact, tumor
cells do not only communicate with cells in the primary TME, but there is also long-distance
communication via circulating sEVs, e.g., during the establishment of pre-metastatic niches
(PMNs) [11]. Thus, research into sEV biogenesis and function has evolved as a promising
new research field that helps to define novel mechanisms of tumor evolution.

2. Overview: Small Extracellular Vesicles and Its Predominant Subgroup Exosomes

The term sEVs specifies a particular subgroup of extracellular vesicles with a diameter
of 30–150 nm, which is predominantly made up by the exosome subgroup, although a sub-
population of microvesicles has also been described in the respective size range [12]. This re-
view mainly focuses on the role of exosomes in PDAC. For the sake of easy communication
with the reader, we have however attributed biological effects to the broader specification
“sEVs”, which is often used instead of the term “exosomes” in the literature [13]. sEVs are
formed as intraluminal vesicles (ILVs) in endosomal-derived multivesicular bodies (MVBs).
Upon transport and fusion of MVBs with the plasma membrane, the intraluminal sEVs
are released into the extracellular space [14]. Initially, sEVs were thought to be vehicles
for cellular waste removal. However, further research revealed that a major function of
sEVs is intercellular communication [15]. sEVs are present in almost all body fluids, i.e.,
blood, saliva, urine, liquor and many more. In electron microscopy, sEVs mainly present as
spherical cup-shaped nanoparticles, engulfed by a phospholipid bilayer [16]. They typically
contain numerous bioactive molecules, including proteins, various nucleic acids and lipids
as well as inorganic substances, which are locally and systemically transferred to recipient
cells [17]. sEVs are generated by different cell types under physiological and pathophysio-
logical conditions that critically shape the respective cargo profile [18]. sEVs share similar
structural proteins, such as Rab-GTPases, class 1 and 2 major histocompatibility complexes
(MHC I/II), annexins, ALG-2 interacting protein X (ALIX), tumor susceptibility gene 101
protein (TSG101), flotillin (FLOT1), integrins, and in particular tetraspanins (Tspans), which
are major surface markers enriched in sEVs [19,20]. Tspans belong to a 4-transmembrane
protein family, comprising CD9, CD63, CD81, CD82, CD53, and CD37, which are up to a
100-fold more enriched in sEVs compared to their parental cells [21,22]. Tspans can form
homo-and heterodimers, as well as complex secondary and tertiary interactions known as
the tetraspanin web. They couple to lipids (e.g., cholesterol) and form tetraspanin-enriched
microdomains (TEMs), which help to recycle Tspan binding partners, such as specific inte-
grins or proteases from the cell surface into MVBs and eventually sEVs [23,24]. In addition
to TEMs, sEVs also contain caveolae lipid raft microdomains. Both structures help to
transduce important signals, such as apoptosis and cell cycle arrest, via lipid molecules or
resident proteins [25–27]. Several lipids, such as cholesterol, sphingomyelin, gangliosides,
ceramide, phosphatidylserine, and phosphatidylethanolamine, make up the composition
of sEV membranes, which can also have important signaling properties dependent on the
respective cellular context [28,29]. sEV cargo also contains a broad spectrum of nucleic
acids, including messenger (m)RNA and noncoding (nc)RNAs, such as micro (mi)RNA, ri-
bosomal (r)RNA, transfer (t)RNA, long non-coding (lnc)RNA, long intervening non-coding
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(linc)RNA, small nuclear (sn)RNA, small nucleolar (sno)RNA, circular (circ)RNA as well as
cell-free cellular (cf)DNA or mitochondrial (mt)DNA [30]. In cancer, sEVs were shown to be
highly enriched in miRNAs [31,32]. The sEV proteome comprises signal intermediates, heat
shock proteins, such as HSP70/90, as well as epithelial cell adhesion molecules (EpCAM),
cell membrane receptors, e.g., EGFR and other human epidermal receptor (HER) family
members, immunomodulatory proteins, cytokines, cytoskeletal molecules, and cytosolic
components [20,33].

2.1. sEV-Biogenesis

sEV-biogenesis starts at the endosomal compartment by maturing early endosomes
into late endosomes or MVBs, where membranes invaginate to generate ILVs. The forma-
tion of ILVs is facilitated by two major pathways: The endosomal sorting complex required
for transport (ESCRT)-dependent and ESCRT-independent pathway. The ESCRT machin-
ery is a large multi-protein complex consisting of four subcomplexes: ESCRT-0, -I, -II, -III
as well as the associated AAA-ATPase Vps4, which initiate biogenesis in a coordinated
fashion [34]. ESCRT-0 is thought to initiate the pathway by binding to phosphatidylinositol-
3-phosphate (PI3P) and clustering tagged, ubiquitinated membrane EV cargo proteins.
Then ESCRT-I is recruited by ESCRT-0, which also binds to the ubiquitinated cargo, fol-
lowed by ESCRT-II [35,36]. The ESCRT-II subunit Vps25 subsequently serves as a nucleation
hub for the stepwise assembly of a filamentous ESCRT-III complex, which in turn facilitates
cargo sequestration and inward budding of the ILV. Afterwards, ESCRT-III also termi-
nates the assembly of the filaments on the endosome surface [37,38]. Then, AAA-ATPase
Vps4 is recruited and catalyzes the disassembly of the ESCRT-III filaments in an ATP-
driven reaction to terminate MVB-biogenesis, followed by the release of the cargo-laden
ILV [39]. MVB-biogenesis can also progress without ESCRTs. Tspans and ceramide are
involved in ESCRT-independent sEV-biogenesis and -release. Inhibition of neutral sphin-
gomyelinase 2 (nSMase2), an enzyme that generates ceramide from sphingomyelin, by the
small molecule GW4869 [18,40–42] has been shown to reduce sEV-release [18,40]. ESCRT-
dependent and ESCRT-independent mechanisms might also not be entirely separated. Both
pathways could work synergistically, and different subpopulations of sEVs may use differ-
ent machineries. Additionally, cell type or cellular state are important factors determining
the type of vesicle biogenesis [43]. Once ILV-biogenesis is complete, MVBs have to be
transported along microtubules to the plasma membrane (PM), where ILVs are released
upon fusion [44]. This process is controlled by soluble N-ethylmaleimide-sensitive factor at-
tachment protein receptors (SNAREs) and small Rab-GTPases, such as Rab27a/b or Rab11,
which regulate different aspects of ESCRT-dependent and -independent sEV release [21].
Moreover, efficient fusion and sEV release from cells requires the presence of branched
actin filaments at the PM. Branched actin is stabilized or debranched by the antagonistic
action of the actin-regulatory proteins Cortactin and Coronin-1, respectively [45]. Cortactin
is also involved in the Arp2/3-complex-dependent synergistic nucleation of branched
actin filaments at the PM together with the nucleation promoting factor WAVE2 [46,47].
In PDAC cells, knockdown of WAVE2 and Cortactin critically impaired sEV release. An
additional layer of control is added by a posttranslational modification of Cortactin that
only contributes to actin-mediated sEV-release when a regulatory phosphorylation by
Protein Kinase D (PKD) is abrogated [47,48]. Under more specialized conditions, such as
when cancer cells form invadopodia, N-WASP, a different nucleation promoting factor, is
required for synergistic nucleation and sEV secretion [45]. Thus, sEV-biogenesis is a highly
regulated and coordinated process and secretion as well as final release of different sEV
subpopulations can be dependent on different biogenesis pathways.

2.2. sEV-Uptake and Reprogramming of Recipient Cells

Upon delivery of sEVs to recipient cells, e.g., by blood flow, sEVs interact with the
respective cells in different ways. They can directly bind via surface ligands to membrane-
integrated receptors and thus activate specific signaling pathways. Alternatively, sEVs are
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internalized to release their transported cargos, which is facilitated by various mechanisms,
including direct membrane fusion, clathrin- or lipid raft (Caveolae/caveolin-1)-mediated
endocytosis, micropinocytosis, or phagocytosis. Upon entering a cell, e.g., by endocytosis,
late endosomes containing sEVs either fuse with lysosomes to recycle sEVs and their cargos,
or release their content into the cytoplasm to trigger signaling pathways or transcriptional
changes [21]. There is ample evidence that sEVs have vital functions in carcinogenesis
and evolution of PDAC as well as in the pathogenesis of precancerous conditions of the
pancreas, including pancreatitis or pancreatic fibrosis [49,50]. Indeed, sEVs were shown
to promote the transformation of precancerous lesions, such as PanINs to PDAC. They
extensively contribute to intercellular communication between tumor cells and associated
cells in the primary TME, facilitate cell migration, epithelial-to-mesenchymal transition
(EMT) as well as apoptosis and chemoresistance. In later stages they also impact on PDAC
metastasis by inducing the establishment of organ-specific PMNs [50]. Here we focus on
the functions and underlying molecular mechanisms that are involved in sEV-mediated
PDAC carcinogenesis, tumor progression, and metastasis.

3. Modulators of sEV-Biogenesis

PDACs are often associated with elevated sEV secretion, as plasma samples acquired
from PDAC patients show enhanced concentrations of circulating sEVs, which are further
increased with metastatic burden [51]. Different cellular and molecular stress conditions,
such as hypoxia and low pH can foster formation of sEVs and cause quantitative, but also
qualitative changes in the sEV cargo content. sEVs were therefore described as promising
analytes to evaluate the presence of diagnostic and prognostic markers [52,53]. Indeed,
hypoxia is also an important characteristic of the PDAC TME and was shown to trigger the
release of sEVs with smaller size, which help the tumor to adapt to challenging conditions
and enable survival of tumor cells [54]. Moreover, oncogenes facilitate sEV-biogenesis in
different cancer entities, altering sEV concentration, size, and cargo [55–60]. They also
maintain biomass homeostasis and foster accelerated cell division as well as tumor growth
by enhanced sEV-biogenesis. Moreover, oncogenes, such as Harvey rat sarcoma (HRAS),
aurora kinase B (AURKB), and MYC were shown to promote aberrant sEV secretion by
triggering hyperactivation of ESCRT-pathways, the ceramide metabolism, or by reducing
lysosome-associated gene expression, which also shifts the protein and miRNA content of
sEVs [55]. In cancer, sEVs are highly enriched in miRNAs [31,32]. There is evidence, that
miRNAs influence oncogenic processes by either suppressing or promoting the expression
of oncogenes (tumor suppressor miRs or oncomiRs) [61]. The KRAS oncogene drives PDAC
carcinogenesis and not only promotes sEV-release, but also alters their cargo composition
compared to wild-type KRAS tumors. The mutant KRAS-derived sEVs are characterized
by tumor-promoting proteins, including mutant KRAS and p53 as well as an altered
miRNA content, enabling oncogenic transfer and metabolic reprogramming in recipient
cells [58–60]. Thus, oncogenes modulate sEVs and are horizontally transferred via sEVs
to surrounding cells [51,55,62]. So far in PDAC, no oncogenes were directly described to
boost sEV-biogenesis. Since mutations in KRAS are found in >90% of PDACs and mutated
KRAS facilitates changes in sEV cargo content in colorectal cancer, similar functions are
however very likely [55,59,63].

4. sEVs in Pancreatic Cancer Initiation

Pancreatitis is considered a risk factor for the development of PDAC. In addition,
tobacco smoking, diabetes, obesity, physical inactivity, infections, genetic alterations, and
alcohol consumption can contribute to PDAC carcinogenesis [64]. Pancreatitis is classified
into acute (AP) or chronic (CP), as well as autoimmune (AIP) pancreatitis, whereby the
latter is a type of CP with very distinct histological and clinical features [65]. In particular
CP carries an increased risk for the development of PDAC [66,67]. Pathology of CP includes
exocrine and endocrine pancreatic insufficiency, inflammation as well as high levels of
pancreatic fibrosis [68]. There has been increasing evidence that sEVs are also involved
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in inflammatory signaling during pancreatitis or carcinogenesis of PDAC [69]. During
AP, the concentration of circulating sEVs is significantly increased. The respective sEVs
originate from liver and immune cells and mediate molecular changes associated with irre-
versible interstitial fibrosis as well as parenchymal pancreatic calcification. Moreover, the
respective sEVs pass through the endothelial barrier in lungs and induce M1-polarization
of macrophages promoting acute lung injury (ALI) [70]. Interestingly, circulating AP-sEVs
also contain proinflammatory miRNAs such as miR-21/122/155 [71]. CP also causes sub-
stantial pancreatic tissue destruction as well as exocrine and endocrine insufficiency. It
results in the activation of PSCs, inducing their proliferative capacity [72]. PSCs in turn
communicate with pre-cancerous PanINs to promote their progression [73,74]. This is
mediated by connective tissue growth factor 2 (CCN2/CTGF2). Clinical studies have also
demonstrated that CCN2 is highly expressed in PSCs from (alcoholic) CP patients [75].
CCN2 expression is controlled by miR-21 and both CCN2 as well as miR-21 were detected
in PSC-derived sEVs. Using an alcoholic pancreatitis mouse model it has been shown that
miR-21- and CCN2-positive sEVs educate other PSCs in a paracrine fashion to potentiate
proliferation and collagen deposition [76].

5. sEV-Mediated Crosstalk of PDAC and Associated Cells in the TME

Upon progression through PanIN stages, carcinogenesis is concluded with the devel-
opment of full PDAC tumors, which shape their surrounding TME by interacting with
stromal extracellular matrix (ECM) components and cells, such as stromal fibroblasts or
cells of the innate and adaptive immune system [77]. A major hallmark of PDAC is the
desmoplastic tumor stroma, which emerges from abundant ECM deposition that can
constitute up to 90% of the tumor mass [2,78]. The TME comprises various cell types,
e.g., fibroblasts, mesenchymal cells (MSCs), and immune cells [79]. The non-cellular com-
ponents include ECM proteins, such as collagen, fibronectin, hyaluronic acid, laminin
as well as metabolites, cytokines, and growth factors [80,81]. Autocrine and paracrine
interactions between the different cell types and the tumor cells extensively contribute
to PDAC tumorigenesis, angiogenesis, metabolic reprogramming, impaired antitumor
immune responses, drug resistance, and metastasis [82–84]. Over the last years, sEVs were
shown to critically contribute to PDAC carcinogenesis and progression, enabling intercellu-
lar crosstalk between the tumor and surrounding cells in the TME, e.g., by triggering the
transformation of non-malignant to malignant cells [82,85]. A comprehensive overview of
the respective sEV cargos involved in PDAC crosstalk with the TME is available in Table 1.

5.1. PDAC-sEVs and CAFs

The TME consists of matrix-associated cell types, which utilize sEVs to interact with
PDAC tumor cells and vice versa tumor cells were shown to reprogram associated stromal
cells, e.g., fibroblasts [9,50]. During early tumor initiation, tumor-derived sEVs repro-
gram PSCs to direct their differentiation into CAFs via TGFβ/Smad signaling [85,86].
Moreover, CAFs can also be generated from normal fibroblasts [87] and represent one
of the most prominent and heterogenous components of the TME. They mediate pro-
and antitumorigenic functions but are mainly responsible for the extensive desmoplasia
associated with PDAC. Aberrant ECM deposition and remodeling associated with massive
desmoplasia further causes hypoxia and blood vessel depletion, triggering alterations in
blood supply and thus metabolic adaptation of tumors, which eventually foster PDAC
aggressiveness [80,85,88,89]. Moreover, oxygen deprivation was demonstrated to promote
sEV-biogenesis, as PDAC cells release increased amounts of sEVs with smaller size to
ensure survival under such conditions [54]. In addition, hypoxia is associated with changes
in sEV cargo content, e.g., by facilitating the secretion of miR-301a-3p-loaded sEVs from
PDAC cells. Paracrine transfer of these sEVs to other PDAC cells enhanced tumor cell
invasiveness and uptake by macrophages mediated conversion to immunosuppressive M2-
subtypes [90]. Additionally, PDAC cells were reported to benefit from CAF-derived sEVs
under nutrient-stress conditions. Here, CAF-sEVs enhanced the Warburg effect in PDAC
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cells by reprogramming the energy metabolism through direct delivery of de novo metabo-
lites to support the entire carbon metabolism and PDAC survival [91]. Metabolite transfer
by sEVs was also shown using 13C metabolic flux analysis to track dynamic changes in
cargo release from CAFs and internalization of sEVs by cancer cells over time [92]. Other
consequences of hypoxia are reduced sensitivity towards radio- and chemotherapy as well
as immunosuppression [89].

5.2. sEV-Based Crosstalk of PDAC and PSCs

PSCs mediate vital functions during pancreatic fibrosis [93]. Their interaction with
tumor cells and stromal cell components enhances cell growth and distant metastasis [94].
PSCs usually exist in a quiescent state and maintain normal stromal composition (ECM
turnover). Their activation in the TME is achieved by stimuli, such as environmental
stresses or secretory proteins, e.g., growth factors and cytokines, which induce mitogen-
activated (ERK) and Jun kinase (JNK) signaling. Upon activation, PSCs are transformed
into different CAF subtypes that are major regulators of tumor-stromal crosstalk [95,96].
Once activated, PSCs further secrete factors, which promote activation of quiescent PSCs
in a feed-forward loop, and this is facilitated in part through paracrine transfer of sEVs
containing CD9, CCN2 and miR-21 cargo, driving fibrosis [76,97,98]. In addition, PDAC
cells induce proliferation and migration of PSCs by transfer of sEVs containing miR-1246
and miR-1290 to upregulate α-smooth muscle actin (α-SMA/ACTA2) as well as procollagen
type I C-peptide (PIP) via ERK and Akt signaling [99]. On the other hand, PSC-derived
sEVs were reported to influence PDAC cells by stimulating chemokine expression (C-C
chemokine ligand 20, CCL20; C-X-C chemokine ligand 1 and 2, CXCL1/2), fostering tumor
cell proliferation and migration [98,100]. PDAC proliferation was also promoted through
the sEV-based transfer of miR-5703, which targets CKLF-like MARVEL transmembrane
domain containing 4 (CMTM4), resulting in the activation of the PI3K/Akt pathway by
p21-activated kinase (PAK4) [101]. Thus, PSCs and PDAC cells are engaged in an extensive
crosstalk utilizing sEVs to enable tumor progression.

5.3. sEVs in Angiogenesis

Abundant ECM deposition and extensive fibrosis in the TME can implement a me-
chanical barrier. This prevents tumor cells from acquiring sufficient oxygen and nutrients,
thereby limiting tumor growth. The hypoxic conditions also trigger the release of pro-
angiogenic molecules, such as vascular endothelial growth factor (VEGF) from tumor cells
to facilitate angiogenesis. Angiogenesis is a multistep process to generate new blood vessels
from preexisting ones [102], thus enabling survival, growth, and metastatic spread of tu-
mors. Pancreatic cancer is characterized by high microvascular density and concomitantly
impaired microvessel integrity. These blood vessels are poorly perfused and display a
heterogenous distribution in different subtypes [103,104]. The combination of both param-
eters has been associated with early recurrence, metastasis, and short survival after tumor
resection [105]. PDAC-derived sEVs contain several cargos that support angiogenesis by
activating surrounding stromal cells to induce ECM remodeling as well as neovasculariza-
tion [106]. In a rat PDAC model, incubation of endothelial cells (ECs) with PDAC-derived
sEVs, harboring Tspan8, CD106, or CD49d (Integrin α4) triggered the expression of pro-
angiogenic factors, including von Willebrand factor (VWF), TSPAN8, CXCL5, migration
inhibitory factor (MIF), C-C chemokine receptor type 1 (CCR1), VEGF, and VEGFR2. This
reprogramming induced EC proliferation, migration, sprouting, progenitor maturation and
thus neovascularization, independently of VEGF-driven angiogenesis [107]. In addition,
PDAC cells were shown to release VEGF-C containing sEVs upon downregulation of the
dual-specificity phosphatase-2 (DUSP-2), promoting lymphovascular invasion [108]. Of
note, VEGF-C was also associated with vasculogenic mimicry by tumor cells, which is
a formation of blood vessel-like structures independent of angiogenesis by endothelial
cells. A similar phenotype was reported for Ephrin Type-A Receptor 2 (EphA2) signaling,
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a sEV-resident biomarker in PDAC [109,110]. More sEV cargos involved in the regulation
of angiogenesis are summarized in Table 1.

5.4. Immune Cells in the TME

A major feature of the PDAC TME is the immunosuppressive cellular environment
that is able to inhibit innate and adaptive immune responses [111]. Antitumor immunity is
triggered by the release of tumor-associated antigens (TAAs) and activation of immune
effector cells, such as natural killer (NKs) and CD8+ Teffectors [112]. The PDAC TME harbors
a large amount of immunosuppressive cell types, such as Tregs, M2-TAMs, and immature
myeloid-derived suppressor cells (iMDSCs), which inhibit proper CD8+ T-cell responses,
functional antigen presentation/lymphocyte activation by dendritic cells (DCs), or the
anti-tumor response by M1 macrophages (M1-TAMs) [113]. A vital part of the immunosup-
pressive signaling in the TME is mediated by sEVs, e.g., by facilitating the transformation of
immune cells into immunosuppressive and pro-tumorigenic phenotypes [111]. This helps
tumors to bypass immune surveillance by facilitating functional losses in lymphocytes or
inhibiting lymphocyte activation and survival [114]. sEVs are involved in the suppression
of both innate and adaptive immune responses [115].

5.4.1. Innate Immunosuppression and Tumor Associated Macrophages

TAMs are critical components of the TME [116]. Macrophages are involved in nu-
merous biological processes including tissue homeostasis, defense against pathogens and
wound healing [117,118]. They originate from circulating monocytes and are transformed
at sites of inflammation into activated M1 or M2 phenotypes. M1-polarized TAMs are
characterized by the expression of pro-inflammatory and anti-tumorigenic cytokines and
chemokines, whereas M2-macrophages suppress antitumor immunity, contributing to
PDAC progression [119,120]. Tumor cells can utilize sEVs to induce the differentiation
of M1-TAMs towards a M2-immunosuppressive phenotype [121]. These M2-TAMs not
only orchestrate immunosuppression, but also promote radiation- and chemoresistance,
angiogenesis, migration, invasion as well as metastasis [122]. M2-polarization was re-
ported upon uptake of PDAC-derived sEVs loaded with intercellular adhesion molecule-1
(ICAM-1) and arachidonic acid (AA), triggering the secretion of pro-angiogenic and pro-
metastatic factors. To this end, ICAM-1 on sEVs interacted with CD11c on macrophages,
which facilitated the secretion of pro-tumorigenic molecules and uptake of the respective
sEVs was further enhanced by AA [123]. Patient-tumor-sEVs enriched in Ezrin (EZR) also
directed M2-polarization in vivo, enhancing liver metastasis [124].

Vice versa, sEVs from M2-macrophages interacted with PDAC tumor cells as well as
the extended TME, e.g., M2-derived sEVs with miR-501-3p inhibited transforming growth
factor beta receptor 3 (TGFBR3), enabling TGF-β signaling, tumor growth, and metastasis
of xenografted PDAC in nude mice. Interestingly, miR-501-3p is also highly expressed
in PDAC patient tissue [125]. Moreover, sEVs derived from M2-macrophages containing
miR-155-5p and miR-221-5p further promoted angiogenesis in vitro by targeting the E2F
transcription factor 2 (E2F2). Uptake of the respective sEVs in mice additionally enhanced
vascular density and growth of subcutaneous tumors [126]. Transfer of M2-macrophage-
sEVs with miR-365 reduced sensitivity of PDAC cells to gemcitabine in vitro and in vivo,
enhancing migration and invasion of PDAC cells by targeting B-cell translocation gene
2 (BTG2) and activating FAK/AKT signaling [127]. Thus, sEV-based crosstalk between
PDAC tumor cells and TAMs has a major function in shaping an immunosuppressive,
tumor supporting TME.

5.4.2. Immunosuppression by Myeloid-Derived Suppressor Cells

MDSCs are important innate regulators of the immune response. They are a heteroge-
nous group of immature myeloid cells with potent immunosuppressive activity [128,129].
In PDAC patients, MDSC frequency in the peripheral blood is associated with metastatic
disease and poor clinical outcome [130]. According to their origin from either monocytic or
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granulocytic myeloid cell lineages, MDSCs are classified in two main subgroups: mono-
cytic (M-MDSCs) or granulocytic/polymorphonuclear MDSCs (G/PMN-MDSCs) [129,131].
Upon persistent exposure to inflammatory signals and myeloid growth factors, MDSCs are
activated and regulate a variety of immunological and non-immunological pro-tumorigenic
functions, including immune evasion, angiogenesis, EMT, and PMN-formation [129,132].
There is even evidence that hypoxic conditions can stimulate the differentiation of MDSCs
into M2-TAMs and that MDSCs in general may enhance their pro-tumorigenic activ-
ity [131,133,134]. Interestingly, MDSCs can be activated by PDAC-sEVs. PDAC cells
lacking expression of the tumor suppressor SMAD4 were shown to release sEVs contain-
ing miR-1260a and miR-494-3p, which changed the balance between DCs and MDSCs
towards a higher number of M- and G-MDSCs, thereby promoting proliferation, glycolysis,
and immunosuppression. The expression of SMAD4 is lost in around 55% of PDACs
and associated with a poor prognosis [135]. Thus, loss of the SMAD4 tumor suppres-
sor in PDAC is associated with altering sEV secretion and cargo content to generate an
immunosuppressive TME.

5.4.3. Adaptive Immune Suppression-Targeting T-Cell Activation by DCs and Tregs

In addition to the innate immune response, PDAC can also bypass the adaptive im-
munosurveillance utilizing sEVs. In the PDAC TME, DCs are scarce and more frequently
detected at the edge of tumors. In patients, more circulating DCs were associated with im-
proved survival [136]. DCs are a diverse population of antigen-presenting cells, which are
key modulators of the adaptive immune response that promote antigen-specific immunity
and tolerance [137]. DCs facilitate activation of CD8+ Teffector cells by presenting antigens
and releasing immunomodulatory cytokines, such as interleukin-12 (IL-12) and type I inter-
ferons to drive antitumor immunity. Additional conditioning of the TME with chemokines,
such as CXCL9 and CXCL10 further promotes T-cell attraction and recruitment. DCs also
support CD4+ T-cell differentiation towards a Thelper type 1(Th1)-phenotype with antitumor
functions [138]. Thus, reprogramming of DCs by tumor-sEVs is a key step in perturbing
adaptive, but also innate anti-tumor responses, impairing T-cell efficiency, the expression of
Toll-like receptors (TLRs) or interleukins (ILs) [138–140]. For example, uptake of miR-203
in PDAC-derived sEVs by DCs was reported to inhibit the expression of TLR4, tumor
necrosis factor-α (TNF-α), and IL-12 and mediate DC dysfunction [140]. Moreover, transfer
of PDAC-sEVs to DCs with mir-212-3p, inhibited the expression of the transcription-factor-
regulatory-factor-x-associated protein (RFXAP) and mediated downregulation of MHC II
receptors as well as failure of CD4+ T-cell activation [141].

In vivo studies further indicated that PDAC-derived sEVs inhibit IL-2-mediated sig-
naling to lymphocytes upon uptake by DCs and macrophages, promoting lymphocyte
apoptosis [142]. In line, direct uptake of PDAC-sEVs by leukocytes caused inhibition of
proliferation and impaired anti-apoptotic signaling, as well as IL-12-induced Th-cell prolif-
eration. Moreover, the respective PDAC-sEVs interfered with chemotaxis of leukocytes
towards the tumor [142]. The TME of PDACs is also characterized by a high number of
inhibitory Tregs. Tregs are classified as a subset of CD4+ T-lymphocytes, which express the
transcriptional regulator Forkhead-box-protein P3 (FOXP3). They are crucial modulators of
the immune system, which help to maintain tolerance against self-antigens, and suppress
Teffector cell activation as well as clonal expansion [143,144]. Tregs are already detected in,
or near early PanINs. Their numbers expand with PDAC progression and elevated levels
were associated with bad prognosis for patients [7,145]. A recent study showed that the
increased number of Tregs is partly caused by PDAC-sEVs that foster Treg expansion by
enhanced expression of FOXP3 [146].

In summary, PDAC-sEVs are vitally implicated in shaping the PDAC TME and evad-
ing anti-tumor immune surveillance by the innate and adaptive immune system. However,
sEVs can also enter the circulation to mediate effects over longer distances, such as facil-
iating organotropic metastasis. Circulating sEVs can even be utilized as a platform for
biomarkers associated with diagnosis and prognosis of PDAC.
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6. sEVs in PDAC Metastasis

Ample evidence has demonstrated that PDAC-derived sEVs not only act as extracel-
lular signaling hubs for TME remodeling, but also help to shape and establish PMNs in
distinct organs.

6.1. PDAC-Derived sEVs and Formation of Distant PMNs

PDACs are characterized by a high propensity to metastasize, as the majority of
PDAC patients present with metastases at the time of diagnosis [2,82]. The main sites for
PDAC metastasis are the liver and lungs, but also the peritoneal cavity [82]. The formation
of tumor metastases in distinct organs is dependent on the establishment of suitable
PMNs. PMNs facilitate cancer dissemination by supporting survival and spread of cancer
initiating cells (CIC) [147]. Recently, sEVs which express specific integrin combinations,
such as integrin avβ5, were reported to drive organ-specific metastasis, i.e., in the liver
by facilitating the respective PMN formation with the help of resident cell populations.
Integrins are important signaling mediators during metastasis, which mediate cell-ECM
adhesion, mechano-signaling, and cell migration by acting as transmembrane receptors
for various physiological extracellular ligands. The integrin expression pattern on the
cells surface is therefore a key factor in determining the behavior of cells in response
to microenvironmental cues. Once dysregulated, altered integrin expression has been
linked to various steps during cancer progression, including priming of metastatic niches,
extravasation, homing of CICs to distant sites, as well as metastatic colonization [148,149].
Interestingly, integrins are also vital sEV cargos and can be recycled from the cell surface
via endocytosis into MVBs and eventually sEVs [150,151]. In many instances recycling and
packaging of integrins into MVBs is dependent on their interaction with Tspans that are a
major sEV cargo class [24,47,152]. During PDAC progression, sEVs with specific integrin
expression patterns were shown to mediate PMN formation in liver and lungs [153,154].
Costa-Silva et al. reported, that PDAC-sEVs crucially contribute to liver metastasis by
transferring migration inhibitory factor (MIF) to Kupffer cells (KCs) in the liver. This
resulted in increased TGF-β expression by KCs, which in turn activated hepatic stellate
cells (HSCs) to secret fibronectin and induce the expression of proinflammatory mediators
to facilitate formation of a suitable liver niche. This was corroborated in PDAC patients
with liver metastases, which presented with elevated levels of MIF-positive plasma sEVs as
compared to healthy control subjects, or patients with 5-year progression-free PDAC [153].
As described above, PDAC-sEVs positive for integrin αvβ5 were shown to facilitate the
establishment of pre-metastatic liver niches, whereas integrins α6β4- or α6β1 directed niche
formation and metastases in the lung [154]. In line, our group has recently demonstrated
that Protein kinase D1 (PRKD1) expression was significantly downregulated in many
PDACs, compared with non-tumor tissue. Loss or inhibition of PRKD1 strongly enhanced
sEV release from different PDAC cells and changed the expression of integrins in cells
as well as secreted sEVs to high levels of integrins α6β4, while impairing expression of
integrin β5. Thus, injection of PRKD1KO-sEVs effectively enhanced lung metastasis of Panc-
1 cells in xenografted mice. We have also demonstrated that the enhanced expression of
integrins α6β4 in PRKD1KO-sEVs was facilitated by transcriptional upregulation in cells, as
well as increased endosomal recycling and packaging of integrin α6β4 from the cell surface
into sEVs in a Tspan CD82-dependent manner. Moreover, autochthonous Prkd1 knockout
mice in a KrasG12D background showed predominant lung and no visible liver metastasis.
This may be attributed to the abrogated formation of integrin αvβ5 dimers due to low
levels of integrin β5 in PRKD1KO-cells and -sEVs. The PMN in the lung was ultimately
established upon uptake and reprogramming of PRKD1KO-sEVs by lung fibroblasts, which
induced expression of proinflammatory regulators S100A6, A13, and A16. To this end,
transfer of respective s100a mRNAs by sEVs was also suggested [47]. In summary, these
data indicate that PDAC do not only utilize their sEVs to communicate in the local TME,
but also over long distances via the blood flow to establish PMNs and facilitate subsequent
PDAC dissemination.
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6.2. sEVs in PDAC Tumor Proliferation, EMT, Invasion, and Metastasis

Once PMNs at distant organs have been established, PDAC cells need to acquire a
motile, invasive phenotype, e.g., undergoing EMT to subsequently enter the circulation
and metastasize. During EMT, tumor cells loose epithelial features, such as E-cadherin
expression and acquire a mesenchymal phenotype by expressing vimentin, fibronectin
and N-cadherin as well as MMPs [155,156]. EMT is controlled by zinc-finger transcrip-
tion factors, such as SNAIL, SLUG, and TWIST downstream of growth factor signaling,
e.g., EGF, TGFβ, or Wnt/β-catenin pathways [157–160]. PDAC-sEVs affect these processes
in an auto- and paracrine manner. PDAC-derived sEVs containing Tenascin-c (TNC) were
described to drive PDAC migration, invasion, and EMT by mediating Wnt/β-catenin
signaling. TNC-containing PDAC-sEVs also increased PDAC proliferation by activating
NF-κB [161]. PDAC metastasis is further regulated by signaling through miRNAs. The
RNA-binding protein LIN28B was shown to promote PDAC growth and metastasis by
inhibiting the biogenesis of let-7 family miRs [162]. In PDAC tumor-bearing xenografted
mice, injection of LIN28B-positive sEVs activated LIN28B/let-7/high-mobility group AT-
hook 2 (HMGA2)/platelet derived growth factor subunit B (PDGFB) signaling to facilitate
PDAC liver metastasis [162].

Moreover, blood vessels are attracted to tumors, by inducing neoangiogenesis to secure
oxygen/nutrient supply and foster metastatic dissemination. As detailed in Section 5.3,
angiogenesis of blood and lymphatic vessels is facilitated by sEVs, yet this process is not
only limited to the TME but also supports tumor growth at metastatic sites [163]. Once
metastases are established at distant organs, prognosis for patients is exceedingly bad. This
is even further aggravated when PDAC tumors have acquired additional resistance against
radio- and chemotherapies [5,164].

7. sEVs in Chemoresistance

Resistance towards chemotherapy is a major limiting factor for curative treatment of
PDAC patients. Chemoresistance is multifactorial, and depends on parameters, such as
tumor burden, tumor heterogeneity, physical barriers due to fibrosis, the immune system as
well as undruggable cancer drivers [165]. Gemcitabine (GEM) chemotherapy is one of the
agents used as standard of care for PDAC treatment and resistance towards GEM is a severe
problem, reducing the efficacy of the response in advanced or metastatic disease [166].
Tumor cells have adopted different resistance mechanisms to evade chemotherapy, in-
cluding sEVs. For example, paracrine transfer of miRNAs to surrounding PDAC cells by
PDAC-derived sEVs facilitates chemoresistance. GEM-resistant PDAC cells were shown to
transduce drug resistance to non-resistant cells by sEV-based transfer of miR-210, which
activated the mTOR pathway in vitro and in vivo, and treatment of non-resistant cells with
the respective sEVs also stimulated their proliferative and anti-apoptotic capacities [167].
Moreover, miR-155-loaded PDAC-sEVs from drug resistant cells transduced drug resis-
tance by downregulation of deoxycytidine kinase (DCK), a GEM-metabolizing enzyme.
PDAC patients with high levels of miR-155 in PDAC tissue were further reported to have a
poor prognosis [168]. In addition, transfer of transcripts for ROS-detoxifying superoxide
dismutase 2 (SOD2) and catalase (CAT) by GEM-resistant-PDAC-sEVs caused increased
expression of the respective mRNAs, impairing GEM-mediated ROS production [169].
Thus, sEVs are potent regulators of chemoresistance in PDAC.

Table 1 represents a summary of sEV cargos and their respective functions in PDAC.
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Table 1. sEV cargos and their respective functions in PDAC.

Biological Process Donor Cell Recipient Cell sEV Cargo Function in PDAC Reference

Precancerous
diseases (PD) PSCs PSCs miR-21-5p

miR-21-5p regulates CCN2
expression, facilitating proliferation

and collagen deposition
[76]

MSCs PACs Klotho
Attenuates caerulein- induced

activation of NF-κB, stimulating
growth and apoptosis resistance

[170]

hPDAC cells DCs miR-212-3p

Inhibition of RFXAP, causing MHC II
downregulation and CD4+ T-cell
activation (also relevant in IS and

MET)

[141]

hPDAC cells DCs miR-203
Inhibition of DC function by

suppressing TLR4, TNF-α, and IL-12
expression (also relevant in IS)

[140]

hPDAC cells MDSCs miR-1260a

Reprogramming of g/mMDSCs,
bolstering proliferation and

glycolysis, thus establishing a
immunosuppressive TME (also

relevant in IS)

[135]

rPDAC cells rPDAC cells CD151 Induction of EMT and migration [171]

rPDACCIC rPDAC cells Cld7
Reprogramming of non-metastatic
cells to increase their invasiveness

(also relevant in AG and MET)
[172]

Immunosuppression
(IS) hPDAC cells Macrophages ICAM-1/AA

ICAM-1 interacts with
surface-exposed CD11c on

macrophages promoting M2
polarization, triggering angiogenesis

and metastasis. AA facilitates
sEV-uptake by macrophages.

[123]

hPDAC cells Macrophages miR-301a-3p (also relevant in MET) [90]

hPDAC cells Macrophages EZR M2 polarization of macrophages,
promoting liver metastasis [124]

hPDAC cells DCs miR-212-3p (also relevant in PD and MET) [141]

hPDAC cells DCs miR-203 (also relevant in PD) [140]

hPDAC cells DCs miR-1260a (also relevant in PD) [135]

Patient plasma
sEVs BCs TAA

Trapping of anti-TAA-antibodies and
complement-mediated cytotoxicity,

preventing B-lymphocytes from
properly engaging tumors

[173]

hPDAC cells T lymphocytes FOXP3

Enhanced sEV-induced FOXP3
expression and Treg expansion
mediated by the ATM-AMPK-

SIRT1/2/6-FOXO1A/FOXO3A axis,
resulting in impaired anti-tumor

immunity of T lymphocytes against
PDAC cells

[146]

Angiogenesis (AG) rPDAC cells EC Tspan8/106/49d

VEGF-independent regulation of
angiogenesis-related genes,
triggering EC proliferation,

maturation of EC progenitors,
migration and sprouting

[107]
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Table 1. Cont.

Biological Process Donor Cell Recipient Cell sEV Cargo Function in PDAC Reference

hPDAC cells HMVEC miR-27a
Suppression of BTG2, inducing

proliferation, migration and
angiogenesis

[174]

hPDAC cells EC Circ-IARS

Increase of endothelial cell
permeability and angiogenesis,

promoting invasiveness.
Downregulation of miR-122 and ZO-1

as well as upregulation of active
RhoA-GTP and F-Actin, contributing

to PDAC invasion (also relevant in
MET)

[175]

M2
macrophages EC miR-155-5p

miR-221-5p
Targeting of E2F2 enhances vascular

density and tumor growth [126]

hPDAC cells EC VEGF-C
Downregulation of DUSP-2 facilitates
release of VEGF-C-containing sEVs,

resulting in lymphovascular invasion
[108]

rPaCIC rPDAC cells Cld7 (also relevant in PD and MET) [172]

Proliferation hPDAC PSCs miR-1246
miR-1290

Upregulation of α-SMA, production
of PIP and activation of ERK, Akt

signaling, inducing proliferation and
migration

[99]

hPDAC cells PHFF mRNA-hTERT
Transformation of non-malignant

pancreatic fibroblasts, delaying aging
and stimulating proliferation

[176]

hPDACSCs hPDAC cells miR-210
Activation of mTOR pathway,
stimulating proliferation and

apoptosis resistance
[167]

PSCs PSCs miR-21-5p (also relevant in PD) [76]

PSCs hPDAC cells miR-5703
Targeting of CMTM4, promoting
proliferation due the activation of

PI3K/Akt pathway by PAK4
[101]

CAFs hPDAC cells de novo
metabolites

Reprogramming the energy
metabolism of PDAC cells, enhancing

the Warburg effect, promoting
growth and survival

[91]

Metastasis (MET) hPDAC cells hPDAC cells CD44v6

Activation of Wnt/β-catenin
signaling, increasing expression of

PAI-1, MMPs and TIMP-1, enhancing
cell migration and metastasis.

Promotes motility and invasion by
interacting with integrins and

proteases

[177]

rPDAC cells rPDAC cells CD151/Tspan8

Increase in expression of
proinflammatory regulators and

EMT-associated transcripts as well as
promotion of ECM remodeling,

fostering angiogenesis and metastasis

[171]

rPaCIC rPDAC cells Cld7 (also relevant in PD and AG) [172]
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Table 1. Cont.

Biological Process Donor Cell Recipient Cell sEV Cargo Function in PDAC Reference

hPDAC cells hPDAC
cells/PSCs Lin28B

Inhibition of let-7 family
miR-biogenesis, promoting growth

and liver metastasis.
Promotion of PSC recruitment by

upregulating PDGFB resulting in the
activation of the

Lin28B/let7/HMGA2/PDGFB
signaling pathway

[178]

m/hPDAC
cells

KCs
HSCs MIF

Stimulation of TGF-β by KCs,
triggering fibronectin production of
HSCs, fostering pre-metastatic niche

formation in the liver

[153]

hPDAC cells hPDAC cells Plectin Promotion of proliferation, migration,
and invasion [179]

hPDAC cells hPDAC cells ZIP4 Promotion of proliferation, migration,
and invasion [180]

CM/serum hPDAC cells miR-222

Impaired expression,
phosphorylation and nuclear exit of
p27 via PPP2R2A/Akt, promoting

proliferation and invasiveness

[181]

hPDAC cells Macrophages miR-301a-3p

M2 polarization of macrophages and
HIF1α/2α-promoted activation of
PI3K-signaling, fostering survival,
proliferation, and metastasis (also

relevant in IS)

[90]

mPDAC cells mPDAC cells miR-339-5p Downregulation of ZNF689,
inhibiting migration and invasion [182]

Macrophages hPDAC cells miR-501-3p
Inhibition of TGFBR3 and activation
of TGF-β signaling, inducing growth,

and metastasis
[125]

hPDAC cells EC/HUVEC Circ-IARS (also relevant in AG) [175]

hPDAC serum hPDAC cells Circ-PDE8A
Counteracting of miR-338 activates
MACC/MET/ERK/Akt signaling,

inducing invasive growth
[183]

hPDAC cells Lung
fibroblasts

Integrin α6β4
Integrin α6β1

Lungtropic metastasis
Packaging of α6β4 into sEVs in a
CD82-dependent manner in cells

with loss of PRKD1

[47,154]

hPDAC cells Macrophages EZR M2 polarization of macrophages,
triggering metastasis [124]

hPDAC cells KC Integrin αvβ5 Livertropic metastasis [153]

hPDAC cells hPDAC cells miR-23b-3p Promotion of proliferation, migration
and invasion [184]

hPDAC cells DCs miR-212-3p (also relevant in PD and IS) [141]

hPDAC cells hPDAC cells VEGF-C (also relevant in AG) [108]

hPDAC cells hPDAC cells miR-125b-5p
Inhibition of STARD13, enhancing

EMT as well as migration and
invasion

[185]
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Table 1. Cont.

Biological Process Donor Cell Recipient Cell sEV Cargo Function in PDAC Reference

hPDAC cells hPDAC cells lnc-Sox2ot

Competitive binding to miR-200
family upregulates Sox2 expression,

inducing EMT and stem cell-like
properties of PDAC cells, thus
contributing to invasion and

metastasis

[186]

CAFs hPDAC cells ANXA6/
LRP1/TSP1

Increased PDAC aggressiveness and
metastasis [187]

Chemoresistance
(CR) CAFs hPDAC cells Snail

miR-146a
Promotion of survival, proliferation

and drug resistance [188]

CAFs hPDAC cells miR-106b
Downregulation of TP53INP1,

promoting proliferation and drug
resistance

[189]

hPDAC cells hPDAC cells miR-155

Downregulation of DCK or
upregulation of ROS-detoxifying
genes SOD2 and CAT, promoting

drug resistance

[169]

M2
macrophages hPDAC cells miR-365

Upregulation of
triphospho-nucleotide pool in PDAC
cells, induction of cytidine deaminase

activation or targeting of BTG2 to
stimulate FAK/AKT pathway,

triggering drug resistance

[127]

hPDAC cells hPDAC cells EphA2 Promotion of drug resistance [190]

8. sEVs as Biomarkers for Prognosis and Prediction

Besides a prominent role of circulating PDAC-sEVs in facilitating the formation of
PMNs and systemic chemoresistance, the respective sEVs have also been proposed as
effective biomarker platforms, accessible by blood liquid biopsy. It is thus tempting
to utilize sEVs and their cargos for early detection of PDAC and their differentiation
from more benign pancreatic diseases, such as pancreatitis. In this context, sEV-resident
glypican-1 (GPC-1) is one of the most studied PDAC markers to date. It was originally
discovered by Melo et al. using animal and human cell lines and presented with a
sensitivity/specificity of 100%, upon detection by transmission electron microscopy on
sEVs. ELISA detection reduced the sensitivity and specificity to 82.14% and 75%, re-
spectively [191]. Further validation of these findings using alternative sEV purification
techniques after sampling sEVs from peripheral or portal vein blood has demonstrated a
sensitivity of 64%, whereas the specificity was 90%. This was still more sensitive than fine
needle biopsy and the current gold-standard maker carbohydrate antigen 19-9 (CA19-9).
In their hands, the best diagnostic accuracy was obtained when all three methods were
combined or by using GPC-1-sEVs together with serum CA19-9 [192]. However, it has to be
noted that a validation attempt for GPC-1, as part of another study using ELISAs to detect
sEVs, identified no significant difference for PDAC patient samples in respect to benign
pancreatic conditions. Thus, further validation and standardization of sEV purification as
well as detection methods are required to achieve reproducible results for broad clinical
diagnostic use [193]. A challenge to identify viable biomarkers is the reliable differentiation
of early-stage cancer from benign pancreatic processes. To this end, EphA2 has been tested
as possible biomarker in sEVs, which achieved a sensitivity and specificity of 91% and
85%, respectively, for identifying stage I and II PDAC compared with healthy controls.
Moreover, it was also possible to utilize EphA2 to differentiate stage I and II PDAC from
pancreatitis with a sensitivity/specificity of 86%/85%, respectively [110]. Others used
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multiple biomarkers to increase specificity for the detection of PDAC. To this end, a PDAC-
sEV marker panel with EGFR, EpCAM, HER2, mucin-1 (MUC1), GPC-1, and Wnt family
member 2 (WNT2) was described that reached a sensitivity of 95%, specificity of 81%,
and accuracy of 88% in a prospective cohort of 43 subjects [194]. In addition to proteins
also sEV-resident miRNAs were investigated as a potential diagnostic tool for the early
detection of PDAC. Serum-derived sEVs from PDAC patients were reported to contain
elevated levels of miR-192-5p, miR-19a-3p, and miR-19b-3p, when compared to healthy
controls [195,196]. Additional studies described significantly more miR-10b, miR-17-5p
and miR-21 in PDAC patient samples [197–200]. Interestingly, miR-21 was also increased
in different solid tumors, suggesting a common mechanism involved in carcinogenesis, yet
this also limits its use as a PDAC-specific biomarker [201].

sEVs are not only proposed for diagnostic use, but also to identify markers with
prognostic value. It has been shown that increased levels of ANXA6-positive sEVs correlate
with poor prognosis [187]. Furthermore, programmed death-ligand 1 (PD-L1) on sEVs was
used as a prognostic marker, associating high levels with significant shorter average post-
resection survival times [202]. The sEV cargo EpCAM was also investigated as a prognostic
marker. Analysis of sEVs from patients with metastatic or non-resectable locally advanced
PDAC indicated higher levels of EpCAM correlated with shorter progression-free and
overall survival [203].

A major prognostic factor for PDAC is metastasis. PDAC-derived sEVs were described
to induce profibrogenic activities to facilitate the formation of PMNs. This has been demon-
strated by Costa-Silva et al., whereby sEVs with MIF helped to establish PMNs in the liver,
as described in Section 6.1 [153]. Moreover, the amount of GPC-1 in sEVs was positively
correlated with distant metastasis [191]. Thus, sEV-based biomarker analysis has the poten-
tial to develop into a potent tool for clinical use. Advantages of sEVs include protection of
protein cargos from proteolytic cleavage as well as preventing the degradation of nucleic
acids [30]. Moreover strategies have been developed to enrich tumor-specific sEVs by im-
mune purification to increase specificity and sensitivity of sEV analyses [204]. Castillo et al.
have identified a set of sEV surface markers: Claudin 4 (CLDN4), EPCAM, CD151, Galectin
3 Binding Protein (LGALS3BP), and Histone H2B type 2-E and F (HIST2H2BE, HIST2H2BF)
to enrich PDAC-specific sEVs after liquid biopsy, thus enabling a more sensitive detection
of mutated KRAS [205]. We therefore suggest that similar strategies may be employed to
improve the analysis of other diagnostic or prognostic cargos. A comprehensive summary
of diagnostic and prognostic sEV biomarkers for PDAC is presented in Table 2.

Table 2. sEV biomarkers for diagnosis and prognosis of PDAC.

Source sEV Cargo Diagnostic/Prognostic Function Reference

Plasma
Serum

miR-16
miR-196a
CA19-9

(Early) diagnosis [206]

Serum

miR-20a
miR-21
miR-24
miR-25

miR-99a
miR-185
miR-191

Diagnosis and prognosis [207]

Serum miR-1290 (Early) diagnosis [208]

Serum miR-17-5p Diagnosis [198]

Serum
miR-21

Diagnosis [198]
Portal vein blood Recurrence and prognosis [199]
Pancreatic juice Diagnosis [200]
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Table 2. Cont.

Source sEV Cargo Diagnostic/Prognostic Function Reference

Plasma miR-10b Diagnosis [209]

Plasma

High miR-10b
miR-21
miR-30c

miR-181a
Low miR-let7a

Diagnosis [197]

Plasma miR-196a Diagnosis [210]

Plasma

miR-122-5p
miR-125b-5p
miR-192-5p

miR-193b-3p
miR-221-3p
miR-27b-3p

Diagnosis and prognosis [211]

Portal vein blood miR-451a Recurrence and prognosis [199]

Pancreatic juice miR-155 Diagnosis [200]

Serum mir-1226 Diagnosis and prognosis [212]

Serum

miR-1246
miR-4644
miR-3976
miR-4306
CD44v6
Tspan8
EpCAM

MET
CD104

Diagnosis [213]

Plasma MIF Prognosis [153]

Serum GPC1 Diagnosis and prognosis [191]

Plasma

EGFR
EpCAM
MUC1
GPC1
WNT2

Diagnosis [194]

Plasma EphA2 Diagnosis [110]

Plasma EGFR
CA19-9

Proposed to have diagnostic
potential [214]

Serum CKAP4 Diagnosis and monitoring [215]

Serum c-MET Prognosis [202]

Serum PD-L1 Prognosis [202]

Plasma

CLDN4
EpCAM
CD151

LGALS3BP
HIST2H2BE
HIST2H2BF

Surface marker for
enrichment of PDAC-sEVs [205]

Plasma EpCAM Prognosis [203]

Circulating sEVs CD44v6 Prognosis [216]

Circulating sEVs C1QBP Prognosis [216]

Serum ANXA6 Potential biomarker [187]

Plasma lnc-Sox2ot Prognosis [186]
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9. Therapeutic sEVs

The use of sEVs as therapeutic vehicles is still in its early development. A promising
study by Kamerkar et al. in 2017 modified sEVs from fibroblast-like mesenchymal cells
with siRNAs or shRNAs against mutated and wildtype KRASG12D (iExosomes). Subse-
quent sEV-treatment of mice with PDAC tumors in a KrasG12D background for 30 days
demonstrated a significant reduction in tumor size in respect to the untreated control mice.
A comparison to liposomes loaded with the same cargo further indicated superior size
reduction in the iExosome treatment group. Interestingly, these effects were even evident
after 200 days of treatment and survival of mice was significantly increased. This concept
is currently also evaluated in a Phase I clinical trial in PDAC patients with a KRASG12D mu-
tation (NCT03608631) [217]. In another study, paclitaxel-containing sEVs from MSCs were
shown to reduce PDAC cell proliferation [218]. Recently, sEVs derived from bone marrow
mesenchymal stem cells (BM-MSCs) were loaded with a combination of siRNA against
galectin-9 and engineered to carry oxaliplatin (OXA) prodrug on their surface (iEXO-OXA).
Galectin-9 was used to block Galectin9/dectin-1 signaling to overt immunosuppression by
M2 macrophages, whereas the chemotherapeutic agent OXA-prodrug was introduced to
trigger immunogenic PDAC cell death (ICD). In vivo-treatment of established Panc-02 tu-
mors using these iEXO-OXA nanoparticles thus effectively stimulated innate and adaptive
anti-tumor immune responses, enhanced ICD and infiltration by cytotoxic T-lymphocytes
as well as promoted DC maturation [219].

However, there are still many improvements required concerning targeting of engi-
neered sEVs to specific cell populations by utilizing either natural tropism of sEVs or in
promoting the development of sEV modification strategies, yet initial research is promising
and may help to offer novel treatment avenues for PDAC.

10. Conclusions and Perspectives

In this review, we have discussed the roles of sEVs (exosomes) in PDAC initiation,
tumor growth, progression, angiogenesis, immune evasion, and metastasis. Extensive
research in the last years has indicated that PDACs are characterized by an extensive
crosstalk via secretion of sEVs with the cellular components of their TME. There is ample
evidence that sEV-based interactions between PDAC cells and CAFs or PSCs, TAMs, T-cells
as well as other immune cells (Section 5) regulate tumor growth, chemoresistance, immune
evasion, and invasiveness (Sections 5–7, Figure 1). Interestingly, these interactions are not
only limited to short-range communication in the TME, but also complemented by a vital
role of sEVs in the establishment of distant PMNs by the distribution of sEVs through the
blood circulation (Section 6.1). Thus, sEVs function as vital signaling hubs during PDAC
progression and metastasis. Different sEV cargo classes facilitate the reprogramming of
target cells, which include lipids, proteins, miRNAs, mRNAs, but also long non-coding
or circular RNAs. The respective cargos and their roles in PDAC evolution are summa-
rized in Table 1. Additionally, there is increasing evidence that circulating sEVs may be
utilized as effective biomarker platforms for diagnosis or prognosis. To this end, different
combinations of markers and cargo classes have been evaluated to classify disease states or
treatment responses (Table 2). However, there is still extensive research needed to establish
minimal classifiers that are sensitive and specific enough for adoption in routine clinical
use. One major problem of liquid biopsies is the diverse origin of sEVs present in the
circulation. Although tumor cells are known to secrete a large amount of sEVs [86], other
cells significantly contribute sEVs and cargos to the sampled biopsies. Thus, it would be
advantageous to purify or enrich tumor-specific sEVs from the circulation. First steps have
been taken in this direction utilizing immuno-enrichment of sEVs [204,205] (Section 8),
however sensitivity and specificity still need to be optimized for routine clinical use. There
are also studies that have used sEVs as therapeutic vehicles [217,218] (Section 9). This is an
exciting and promising use-case. To exploit a therapeutic function for sEVs, the nanovesi-
cles need to be extensively modified during biogenesis or post-release. Moreover, specific
targeting will be required [220,221] and the cargo composition of sEVs will need to be
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specifically adapted. There are already studies on the way to optimize the methodology for
these modifications, which even include the generation of artificial engineered sEVs [222].
Yet considering the challenges, extensive research will be needed before such applications
will be ready for routine clinical use. Nevertheless, sEV research over the last years has
greatly contributed to a better understanding of the complex mechanisms that drive PDAC
initiation, progression, and metastatic dissemination and will hopefully soon translate into
practical therapeutic options.
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