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Abstract

The collection of immunoglobulin genes in an individual’s germline, which gives rise to B cell

receptors via recombination, is known to vary significantly across individuals. In humans, for

example, each individual has only a fraction of the several hundred known V alleles. Further-

more, the currently-accepted set of known V alleles is both incomplete (particularly for non-

European samples), and contains a significant number of spurious alleles. The resulting

uncertainty as to which immunoglobulin alleles are present in any given sample results in

inaccurate B cell receptor sequence annotations, and in particular inaccurate inferred naive

ancestors. In this paper we first show that the currently widespread practice of aligning each

sequence to its closest match in the full set of IMGT alleles results in a very large number of

spurious alleles that are not in the sample’s true set of germline V alleles. We then describe

a new method for inferring each individual’s germline gene set from deep sequencing data,

and show that it improves upon existing methods by making a detailed comparison on a vari-

ety of simulated and real data samples. This new method has been integrated into the partis

annotation and clonal family inference package, available at https://github.com/psathyrella/

partis, and is run by default without affecting overall run time.

Author summary

Antibodies are an important component of the adaptive immune system, which itself

determines our response to both pathogens and vaccines. They are produced by B cells

through somatic recombination of germline DNA, which results in a vast diversity of anti-

gen binding affinities across the B cell repertoire. We typically learn about the develop-

ment of this repertoire, and its history of interaction with antigens, by sequencing large

numbers of the DNA sequences from which antibodies are derived. In order to under-

stand such data, it is necessary to determine the combination of germline V, D, and J

genes that was rearranged to form each such B cell receptor sequence. This is difficult,

however, because the immunoglobulin locus exhibits an extraordinary level of diversity

across individuals—encompassing both allelic variation and gene duplication, deletion,

and conversion—and because the locus’s large size and repetitive structure make germline

sequencing very difficult. In this paper we describe a new computational method that
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avoids this difficulty by inferring each individual’s set of immunoglobulin germline genes

directly from expressed B cell receptor sequence data.

Introduction

The heavy and light chain B cell receptor (BCR) loci arise from a random recombination of

germline V, D, and J genes. Repeated across many B cells, this generates the vast diversity of

naive BCRs that is integral to the adaptive immune system. As an additional source of popula-

tion-wide variation, there is significant variation of germline genes between individuals. Data-

bases such as IMGT [1] aim to collect and organize this ensemble of germline genes.

The analysis of BCR sequence data begins with the alignment of each sequence against a set

of germline V, D, and J genes. A variety of methods (e.g. [2–5]) have been developed to accom-

plish the basic task of deciding which V, D, and J genes gave rise to each observed sequence.

There has been less work, however, toward measuring the extent to which the set of germline

genes used for this analysis resembles the germline gene set actually present in the individual

from which the sequence data was derived. Most methods simply use the full set of germline

genes from a database such as IMGT [1] for all samples.

One problem with this approach is that the IMGT set includes genes from all individuals of

a species, while any single individual’s germline contains only a fraction of these (roughly 50

out of 250 V genes, 25 of 35 D, and 6 of 12 J). This is problematic for sequencing studies that

use antigen-experienced B cells that have been through several rounds of somatic hypermuta-

tion (SHM), which obscures the identity of the original germline gene. As we show below, this

leads to large numbers of spurious gene assignments, and an inferred germline gene set with

many more alleles than are in the individual’s true set.

Another problem with this approach is that no database contains a perfect catalog of the

complete immunoglobulin germline diversity of each species. Sequencing continues to

uncover novel human V genes that are not in any previous database [6–13]. Additionally, a sig-

nificant fraction of the sequences in existing databases are likely the result of sequencing error

rather than real biological variation [14–16]. Our knowledge of the immunoglobulin locus is

even less complete for other species [12, 17].

Improving our understanding of the immunoglobulin locus, however, is not simply a mat-

ter of applying standard genome sequencing protocols more broadly. Most genome sequenc-

ing is performed on lymphoblastoid cell lines [18–20], whose prior rearrangement has

destroyed much of the information about the original immunoglobulin locus. The obvious

solution would be to sequence other cell types; however assembly challenges due to the com-

plexity and repetitiveness of the locus [21] mean that even sequencing an intact immunoglobu-

lin locus is not straightforward. The IGHV locus, for instance, consists of about 120 V genes,

roughly two-thirds of which are non-functional pseudogenes, spread over a megabase of chro-

mosome 14 [9]. The immunoglobulin locus is also subject to widespread gene duplication,

deletion, and conversion [7, 8, 22, 23]. Thus although databases such as the 1000 Genomes

project and the Simons Genome Diversity Project can be used to investigate immunoglobulin

diversity [23, 24], this approach is not without pitfalls [25].

Discrepancies between a BCR-sequenced individual’s true set of germline genes and the set

used to analyze their BCR sequences cause a number of practical problems. First, finding asso-

ciations between particular germline genes and an immunological response is difficult if the

gene assignment itself is suspect. This would impact, for example, recent work on the effects of

the presence or absence of individual alleles on broadly neutralizing anti-influenza antibody

Per-sample immunoglobulin germline inference from B cell receptor deep sequencing data

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1007133 July 22, 2019 2 / 30

Simons Foundation (https://www.

simonsfoundation.org/). The funders had no role in

study design, data collection and analysis, decision

to publish, or preparation of the manuscript.

Competing interests: The authors have declared

that no competing interests exist.

https://doi.org/10.1371/journal.pcbi.1007133
https://www.simonsfoundation.org/
https://www.simonsfoundation.org/


development [26]. Second, such misassignment leads to inaccurate inferred naive ancestor

sequences. Efforts to synthesize these inaccurate ancestral sequences in the lab and study their

binding properties may then result in erroneous conclusions, since even single amino acid

changes can have large effects on affinity [27]. And finally, studies of mutation [28, 29] and

selection [30, 31] during affinity maturation depend upon accurate inferred naive sequences in

order to correctly identify somatic mutations.

Our current understanding of the immunoglobulin locus comes largely from a small num-

ber of low-throughput genome and BAC library sequencing studies. The first complete

sequence of the locus [32], which has been included in the first few drafts of the human

genome, was assembled from several different cell lines and is therefore not a haplotype. More

recently, a single complete haplotype of the heavy [9] and light [10] chain loci has been pub-

lished. In addition to these larger efforts, many less-comprehensive studies of the locus have

been cataloged at www.imgt.org.

Advances in sequencing technology, however, have allowed progress to come also from

inference on expressed BCR repertoires. Several initial studies inferred germline sets by com-

bining computational analysis with expert scrutiny, with one paper reporting a high level of

diversity with many novel (non-IMGT) alleles across 12 individuals [7], and a second extend-

ing those results to 18 complete haplotypes [8]. Similar work by a different team used naive

sequences to infer germline sets and haplotype linkage information for two individuals [33].

None of these studies, however, resulted in a generally-applicable software package or included

a broad-scale validation of their methods.

More recently, software packages have been developed that enable fully-automated germ-

line inference, including novel allele discovery. TIgGER [11] uses a detailed per-position fitting

procedure to find new alleles separated by a small number of point mutations from genes in a

known database, and a heuristic prevalence threshold-based procedure to infer germline sets.

The IgDiscover package [12] infers germline sets using Levenshtein distance-based hierarchi-

cal UPGMA clustering on low-SHM IgM samples. This approach allows IgDiscover to find

new alleles separated by an arbitrary number of point mutations and insertion/deletion events,

and frees it from the need for an initial species-specific starting database.

In this paper we present a new method for automated inference of per-sample germline V

gene sets from expressed BCR sequence data. We first compare our method’s accuracy on a

variety of simulated samples both to the common practice of aligning against the full IMGT

set, and to the two existing germline inference methods, TIgGER and IgDiscover. We find that

use of the full IMGT set results in a very large number of spuriously-inferred alleles on typical

samples, as well as inaccurately inferred naive sequences. We further find that while our

method infers a similar fraction of correct and incorrect genes as TIgGER and IgDiscover on

these simulated samples, its inferred genes are more similar to the true genes, and thus our

method’s inferred naive sequences are significantly more accurate. We then use a variety of

real data samples from the literature to compare the germline gene sets inferred by our method

to those from TIgGER and IgDiscover, and find no reason to believe that our simulation does

not accurately mimic real data. Because our method performs well on samples with elevated

levels of SHM, it is more generally applicable than IgDiscover, which is restricted to low-SHM

IgM samples. In addition, our method is run by default in the general-purpose partis package,

which also provides annotation, clonal family inference, and simulation, while TIgGER and

IgDiscover must be run as separate steps. Because the D and J loci vary much less between

individuals than does V (and because D inference would be very challenging) in this paper we

follow these other software packages in limiting ourselves to studies of V diversity.

Because of the high prevalence of both single nucleotide polymorphisms (SNPs) and struc-

tural variants in the immunoglobulin locus, there is no single reference genome to which all
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variants can be mapped, and thus standard SNP nomenclature appears insufficient. In this

paper the usage of “gene” and “allele” is thus largely interchangeable. In addition, we define

the “germline haplotype” as the set of germline genes on a single chromosome, while “germline

gene set” refers to the full set on both the maternal and paternal chromosomes. In cases where

confusion is unlikely, the latter will be shortened to “germline set”.

Results

Simulation methods summary

In order to establish an expectation for how germline inference methods will perform on real

data, we first investigate performance on a number of simulation samples. BCR repertoires dif-

fer significantly in many different variables such as SHM levels, germline set complexity, and

clonal family structure. Although we would in principle like to explore germline inference

accuracy by varying all of these variables simultaneously, this is combinatorially infeasible, and

we thus adopt a two-stage approach to validation. We first vary one variable at a time, while

holding all others constant, using simplified “sparse” repertoires consisting of sequences stem-

ming from only a few genes. We then choose several representative values for each variable,

and simulate full, realistic repertoires at these values. Geometrically, this can be imagined as

investigating performance first along many slices through the parameter space, and then at

several fixed points. This approach is motivated by the fact that, in sequence-similarity space,

realistic repertoires are composed of widely-spaced groups of genes, where each group consists

of a few genes that are much closer to each other than the typical between-group spacing. The

genes within each group are thus easily confused with each other due to SHM, but not with

genes in other groups. The sparse repertoires effectively recreate the dynamics within such a

group, while allowing exploration of a much larger portion of parameter space than if we were

to use full repertoires for all simulations.

In these simulations, the germline set for each sparse repertoire consists of one known

germline gene, and either one or two novel alleles. Each full-repertoire sample, meanwhile, is

generated by choosing a number of V, D, and J genes, and some number of alleles for each of

these genes, based on results from germline sequencing studies (see Methods), which results in

roughly 55 V, 25 D, and 6 J alleles per sample.

Validation results

Variation of individual variables on sparse repertoires. Using partis’s germline set inference

algorithm, we quantified the impact of six repertoire characteristics on sensitivity and specific-

ity. We did so by plotting the fraction of alleles in the true repertoire that are missing from the

inferred repertoire, and the fraction of spuriously-inferred alleles (that are not in the true rep-

ertoire), as a function of sample size for each variable (Figs 1 and 2).

Increasing the rate of SHM makes inference more challenging (Figs 1 and 2, top left, with

the corresponding SHM distributions in S1 Fig). Because allele inference sensitivity is deter-

mined mainly by sequences with a small number of SHMs (specifically, a number comparable

to the number of SNPs separating the new and existing alleles), raising SHM rates effectively

reduces sample size.

Alleles that occur at low prevalence are more difficult to infer: as the fraction of sequences

stemming from the new allele decreases, so does sensitivity (Figs 1 and 2, top right).

The number of SNPs (Nsnp) separating a new allele from its most similar known counter-

part also affects the details of germline inference. We show performance for different Nsnp for

both a single new allele (Figs 1 and 2, middle left) and for several combinations of multiple

new alleles (Figs 1 and 2, middle right). Sensitivity is independent of Nsnp for smaller Nsnp

Per-sample immunoglobulin germline inference from B cell receptor deep sequencing data
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(three or less), and then decreases slightly with increasing Nsnp. The presence of multiple new

alleles, on the other hand, does not appreciably affect sensitivity as long as their SNPs do not

occur at the same positions. Because the occurrence of multiple new alleles with the same SNP

positions is rare in real data, we do not show results for this case. In many cases it is in fact pos-

sible to disentangle such alleles, but this depends on the details of each new allele’s prevalence

and Nsnp.

The shared mutations within a clonal family complicate allele inference because indepen-

dent mutations are required for accurate fitting (see Methods). We find that increasing

Fig 1. Fraction of true alleles missing (left) and alleles spuriously inferred (right) by partis on simplified “sparse” repertoires as

a function of the number of sequences in the sample. Each point represents the mean performance (± standard error) on 50

independent simulation samples of the indicated sample size varying the following variables. Top: SHM levels (the SHM

distributions corresponding to “low”, “typical”, and “high” are shown in S1 Fig). Middle: new-allele prevalence (as a fraction of the

existing allele’s prevalence). Bottom: number of SNPs (Nsnp) separating new and existing alleles.

https://doi.org/10.1371/journal.pcbi.1007133.g001
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clonality effectively decreases sample size (Figs 1 and 2, bottom left), rather than introducing

the spurious alleles that would result from fitting with non-independent mutations. This indi-

cates that our method of selecting a small number of sequences to represent each clonal family

(see Methods) provides a sufficiently accurate method of choosing sequences with indepen-

dent mutations.

We find that variations in phylogenetic tree shape do not greatly affect our method (Figs 1

and 2, bottom right). We change tree shape by using the TreeSimGM package [37] to vary the

shape parameter of a Weibull distribution controlling an age-dependent speciation process.

Fig 2. Fraction of true alleles missing (left) and alleles spuriously inferred (right) by partis on simplified “sparse” repertoires as

a function of the number of sequences in the sample. Each point represents the mean performance (± standard error) on 50

independent simulation samples of the indicated sample size varying the following variables. Top: Nsnp with multiple new alleles,

where, e.g. “1 + 3” indicates two new alleles, separated by 1 and 3 SNPs from the same existing allele. Middle: mean number of leaves

per clonal family. Bottom: tree balance.

https://doi.org/10.1371/journal.pcbi.1007133.g002

Per-sample immunoglobulin germline inference from B cell receptor deep sequencing data

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1007133 July 22, 2019 6 / 30

https://doi.org/10.1371/journal.pcbi.1007133.g002
https://doi.org/10.1371/journal.pcbi.1007133


These single-variable results show that our method’s sensitivity is high enough to give useful

results with the sample sizes and SHM rates characteristic of typical full-repertoire samples,

and that it models repertoire details well enough that spurious alleles are rare. Note that TIg-

GER and IgDiscover are not shown on these sparse samples because both methods use hard-

coded assumptions tailored to typical full repertoires that cause crashes on these sparse

repertoires.

Full-repertoire samples. In the second validation stage, we show performance on a

smaller number of large, realistic repertoires using partis (v0.14.0), TIgGER (v0.2.11), IgDis-

cover (v0.10), and annotation with the full IMGT set. All software was run with default

parameters.

We split these full-repertoire samples among two difficulty levels: ten samples with more-

uniform allele prevalence and low SHM, and ten samples with less-uniform allele prevalence

and higher, typical SHM (details in Methods). All of these samples contain 50,000 sequences.

Results with IgDiscover are shown only for the low-SHM samples, since IgDiscover is

designed to work only on low-SHM IgM-specific data. We note that the IgDiscover manual

recommends sample sizes of at least 750,000 sequences; it is unclear how this recommenda-

tion is derived, as IgDiscover shows good sensitivity on the smaller samples used here. We

have also run tests on many other sample sizes, including much larger ones (results not

shown), and the IgDiscover sensitivity behaves similarly to that of the other methods, in

that it does not improve substantially. Indeed this is why we chose 50,000 for the full reper-

toire samples on which we report results—it is large enough that sample size does not hugely

limit sensitivity, while still being typical of most real-world samples after error correction.

While having more sequences certainly makes the germline inference problem easier, in this

paper we attempt to quantify behavior on samples that are of a size more typical for most

users.

We measure the influence of germline set accuracy on practical results in two ways: in

terms of the actual genes and alleles inferred, and in terms of the resulting annotation accu-

racy. The former is more relevant to germline databases and studies of gene association,

while the latter is of more concern when inferring and studying the function of ancestral

sequences.

We find that the practice of aligning against the full IMGT set results in a very large number

of spurious gene inferences, even on low-SHM samples (Table 1 and Fig 3). The three explicit

germline inference methods, while all giving much smaller numbers of spurious genes, harbor

significant differences. The partis-inferred missing and spurious alleles are found on relatively

short branches compared to those of the other programs (Figs 4, 5 and 6). This results in par-

tis’s significantly more accurate V naive inference (Fig 7). By considering the distribution of

Table 1. Missing and spurious alleles on full-repertoire simulation for the three germline inference methods plus “full IMGT” annotation.

low SHM high SHM

# missing # spurious # correct # missing # spurious # correct

full IMGT 5.0 ± 0.0 53.2 ± 2.6 50.3 ± 0.7 5.0 ± 0.0 86.2 ± 3.1 51.5 ± 1.0

IgDiscover 3.2 ± 0.5 0.2 ± 0.1 52.1 ± 0.8

TIgGER 2.7 ± 0.3 0.8 ± 0.2 52.6 ± 0.6 7.7 ± 0.3 0.1 ± 0.1 48.8 ± 1.0

partis 1.9 ± 0.3 1.9 ± 0.4 53.4 ± 0.9 8.8 ± 0.5 3.3 ± 0.4 47.7 ± 0.7

Results are the mean (± standard error) of ten independent 50,000-sequence samples for both low-SHM (left) and high-SHM (right). The columns are # missing: mean

number of true alleles missing from the inferred germline set, # spurious: the number inferred that are not in the true germline set, and # correct: the number in

common between the inferred and true germline sets. IgDiscover is shown for only the low-SHM samples, since it is designed only for IgM.

https://doi.org/10.1371/journal.pcbi.1007133.t001
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Fig 3. Full-repertoire germline set accuracy for the currently widespread method of aligning every sequence to its closest match

in the full IMGT V gene set. The phylogenetic tree is constructed with a leaf for each germline gene in either the true or inferred

germline sets (see Methods). Branch lengths connecting different V gene families are set to zero. Leaves are colored according to the

similarity of the true and inferred germline sets, with shared genes in green and unshared in red, the latter broken into missing (light

red) and spurious (dark red). Novel alleles (not in the IMGT database, whether from the true simulated set or spuriously inferred)

are highlighted in gold. Shown on the first three replicates (0-2) of both the low-SHM (left), and high-SHM (right) full-repertoire

simulation samples (see text).

https://doi.org/10.1371/journal.pcbi.1007133.g003
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Hamming distances between true and inferred naive V sequences (Fig 7), we see that the rela-

tive inaccuracy of TIgGER and IgDiscover is driven by rare sequences that are assigned to

genes that are very dissimilar to their true gene. We also note that TIgGER shows reduced sen-

sitivity at typical SHM rates (Fig 5 right), compared to low SHM rates (Fig 5 left), in fact failing

to infer any of the novel (non-IMGT) alleles at typical SHM rates. Additionally, both TIgGER

and IgDiscover infer fewer spurious alleles, while also missing more true alleles, than partis.

Fig 4. Full-repertoire germline set accuracy for IgDiscover(explanation in Fig 3). Shown on the first three replicates (0-2) of the

low-SHM full-repertoire simulation samples. The high-SHM samples are not shown, since IgDiscover is designed only for low-SHM

IgM samples (see text).

https://doi.org/10.1371/journal.pcbi.1007133.g004
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Finally, we note that the full IMGT method does surprisingly well in terms of naive sequence

accuracy. This is because it aligns against a germline set that so densely populates the space of

V genes that while it rarely gets the correct gene, it almost never has a gene that is very far

from the correct one.

Fig 5. Full-repertoire germline set accuracy for TIgGER (explanation in Fig 3).

https://doi.org/10.1371/journal.pcbi.1007133.g005

Fig 6. Full-repertoire germline set accuracy for partis (explanation in Fig 3).

https://doi.org/10.1371/journal.pcbi.1007133.g006
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These simulation samples, together with true and inferred germline sets, are available at

https://doi.org/10.5281/zenodo.1037463.

Results on real data

In order to evaluate performance on real data, it would be natural to deep sequence individuals

for whom we also have accurate results from germline sequencing. Unfortunately, as described

above, the difficulty of germline sequencing means that such samples are not readily available.

We instead use two types of comparison that, while not definitive, provide some insight.

We first compare results from the different inference methods when run on the same sam-

ple, and find agreement on 70-90% of the total genes (Figs 8, 9 and 10, S2 and S3 Figs). While

this is reassuring, some caution is advised, as the methods are far from uncorrelated (see Sup-

plement). IgDiscover is shown only for IgM samples (Fig 10, and non-IgM samples with very

low SHM rates (Fig 8, S2 and S3 Figs). Also of note is the large cluster of closely-related novel

alleles inferred only by TIgGER in the IgM data from subject lp23810 [36] (Figs 10 and 12).

Careful examination of these results shows instances in which the different methods disagree,

for instance as to the heterozygosity of the IGHV1-46 gene in S2 and S9 Figs, where TIgGER

and IgDiscover infer both alleles but partis infers just one. It is possible that some of these dif-

ferences stem from the different ways in which the methods treat allelic variation at different

positions within the gene.

We next compare the results of each inference method on several different samples from

the same individual. We find a similar overall level of agreement both when comparing sam-

ples from different time points (Fig 11), and of different isotypes (Fig 12). These comparisons

give some idea of each method’s uncertainty because, while the physical germline genes are in

each case identical, the SHM rates, gene expression levels, and clonal family structure vary sig-

nificantly with both time and isotype.

Fig 7. Full-repertoire V naive accuracy (Hamming distance between true and inferred V naive sequences) for the three

germline inference methods plus “full IMGT” annotation. Results are the sum (figures, top) or mean (table, ± standard error) of

ten independent 50,000-sequence samples for both low-SHM (left) and high-SHM (right). IgDiscover is shown for only the low-

SHM samples, since it is designed only for IgM.

https://doi.org/10.1371/journal.pcbi.1007133.g007
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We also use the partis-inferred germline sets to make an estimate of the number of genes

that are expressed at levels too low for us to detect. Previous work has reported a range of val-

ues for the total number of functional V genes per individual. One study [9] reported 43 full-

length functional V genes (plus 1 truncated) for a single haplotype, while another [38] reported

a range of 38-46 per haplotype. In order to convert these per-haplotype totals to per-diplotype

totals, we calculate the mean fraction of alleles shared between the inferred germline sets from

two unrelated individuals. For the sequencing data in this paper, this mean overlap is 67%

(range 50-85%). This suggests that to go from per-haplotype to per-diplotype totals we multi-

ply by 1 + (1 − 0.67), which yields per-diplotype estimates of 57 for [9] and 51-61 for [38].

These values, both for total genes and for the fraction of genes shared between unrelated

parental haplotypes, roughly agree with two other studies that found 35-46 per haplotype and

39-55 per diplotype [8], and 45-60 per diplotype with a mean alleles per gene of 1.2 [7]. The

mean total number of partis-inferred V genes observed in individuals in this paper, mean-

while, is 47 (range 38-62). This suggests that the sample sizes, clonal family structures, muta-

tion rates, and expression levels, together with our method’s sensitivity, result in a failure to

detect about 0 to 10 genes per individual. We have not accounted for spuriously-inferred

Fig 8. Comparison of all three inference methods on the healthy donor samples from [34] (other subjects shown in S2 and S3

Figs). The phylogenetic tree is constructed with a leaf for each germline gene that was inferred by any of the methods. Branch lengths

connecting different V gene families are set to zero. Leaves are colored according to how many methods inferred the corresponding

gene: one (green, red, blue), two (grey), or all three (white). The same trees, but with leaves labeled with gene names, are shown in S4

Fig.

https://doi.org/10.1371/journal.pcbi.1007133.g008
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Fig 9. Comparison of germline sets inferred by partis and TIgGER for subjects FV, GMC, and IB from [35], with all ten time

points merged for each subject. The phylogenetic tree is constructed with a leaf for each germline gene that was inferred by either of

the two methods. Branch lengths connecting different V gene families are set to zero. Leaves are colored according to how many

methods inferred the corresponding gene: either one (red, blue) or both (white). Since this data is not IgM specific, IgDiscover is not

shown. Includes the three time points in Fig 11, plus seven more, for each subject. The same trees, but with leaves labeled with gene

names, are shown in S5 Fig.

https://doi.org/10.1371/journal.pcbi.1007133.g009
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Fig 10. Comparison of the three methods on IgM data from subjects lp08248 (left) and lp23810 (right) from [36]. The

phylogenetic tree is constructed with a leaf for each germline gene that was inferred by any of the methods. Branch lengths

connecting different V gene families are set to zero. Leaves are colored according to how many methods inferred the corresponding

gene: one (green, red, blue), two (grey), or all three (white). See Fig 12 for other results for these subjects. The same trees, but with

leaves labeled with gene names, are shown in S6 Fig.

https://doi.org/10.1371/journal.pcbi.1007133.g010
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Fig 11. Comparison of inferred germline sets for samples taken at different time points for subjects FV, GMC,

and IB from [35]. Shown for three (of ten total) time points surrounding influenza vaccination: two days before, three

days after, and seven days after; for partis (top) and TIgGER (bottom). The phylogenetic tree is constructed with a leaf

for each germline gene that was inferred at any of the three time points. Branch lengths connecting different V gene

families are set to zero. Leaves are colored according to the number of time points at which the corresponding gene
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alleles in this calculation because our validation results suggest that when partis does infer spu-

rious alleles, each simply replaces a very similar true allele, and thus does not have an apprecia-

ble net effect.

A summary of the data samples used is shown in S1 Table, and of the number of sequences

in each sample in S2 Table. We obtained all of these samples in a preprocessed state, i.e. error

correction, pair merging, etc. had been performed by the authors of the original studies, as

described in the source papers. The FASTA files for each inferred germline set, together with

the various output files for each method, are available at https://doi.org/10.5281/zenodo.

1037463. For partis, these files include numbers of sequences assigned to each gene and fit

quality plots. We have made the command-line script used to make phylogenetic comparison

plots available for general application at https://git.io/vFo2B.

was inferred: one (dark grey), two (light grey), or all three (white). Since this data is not IgM specific, IgDiscover is not

shown. See Fig 9 for other results for these subjects. The same trees, but with leaves labeled with gene names, are shown

in S7 Fig.

https://doi.org/10.1371/journal.pcbi.1007133.g011

Fig 12. Comparison of inferred germline sets for IgM vs IgG data from subjects lp08248 and lp23810 from [36] for partis (left)

and TIgGER (right). The phylogenetic tree is constructed with a leaf for each germline gene that was inferred for either of the two

isotypes. Branch lengths connecting different V gene families are set to zero. Leaves are colored according to the number of isotype-

specific samples for which the corresponding gene was inferred: either one (grey) or both (white). See Fig 10 for other results for

these subjects. The same trees, but with leaves labeled with gene names, are shown in S8 Fig.

https://doi.org/10.1371/journal.pcbi.1007133.g012
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Discussion

We have developed a practical new tool for inferring per-sample immunoglobulin germline

gene sets, and performed extensive validation and comparison against existing tools. Our tool

is implemented in the existing partis annotation and clonal family inference package. We have

shown that in simulation the currently widespread practice of aligning expressed BCR samples

against the full IMGT germline set results in both large numbers of spurious alleles and inaccu-

rately inferred naive ancestors. We next showed that on simulation our method infers signifi-

cantly more accurate germline sets than the existing TIgGER and IgDiscover methods in

terms of both inferred gene similarity and naive ancestor inference, but of similar accuracy in

terms of raw number of genes. We then compared germline sets inferred by the three methods

on a variety of real data samples, which showed generally similar features (e.g. germline set

structure and level of disagreement between methods) to those in simulation. Together, these

results comprise the first comparison of any germline inference methods, and thus provide

users with a valuable baseline for expected accuracy, while also demonstrating the inaccuracy

of the widespread method of aligning against the entire IMGT set.

Combining the results presented here into a rough rule of thumb, our method can be

expected to infer germline sets to roughly 80-90% accuracy (including both missing and spuri-

ous alleles) on samples with typical repertoire properties (such as SHM levels and clonal family

structure) of at least tens of thousands of reads.

All results shown in this paper are for heavy chain sequences; however we can also recom-

mend partis for light chain use by considering the following differences inherent to light chain

sequences. Light chain germline sets differ primarily in having a significantly different total

number of genes, and a much longer section of V gene to 3’ of the conserved cysteine. Our

method’s studiously agnostic approach to prior information on germline set structure is well

suited to the former, and our algorithm for excluding frequently-deleted bases deals gracefully

with the latter. Additionally, light chain repertoires have much lower diversity. This means

that for a given total sample size, the number of independent rearrangements, and thus the

effective sample size for the purposes of germline inference, will be smaller. Light chain sam-

ples also typically have lower SHM rates, which increases the effective sample size, somewhat

ameliorating the previous effect. In a number of simulation studies, and in running on many

real light chain samples (neither result shown here), these relatively minor differences appear

to be well modeled such that the method behaves very similarly on heavy and light chain

repertoires.

While our method has reached a level of maturity such that it is now run by default in the

partis annotation and clonal family inference procedures, it has a number of weaknesses. First,

as with the rest of partis, it assumes that all corrections for sequencing error have been per-

formed before input. Second, our piecewise-linear model for the mutation accumulation plots

(see Methods) is only an approximation of the real behavior. Thus, while we have designed

our method with the aim of maximizing robustness against atypical repertoires, a more com-

plex model that more closely modeled the repertoire’s nonlinearities would provide better

performance.

We also do not currently apply a prior or constraints on the structure of each sample’s

germline set. This is because only a small number of individuals have currently been the sub-

ject of germline sequencing, so any such priors would be only marginally informative com-

pared to the per-subject inference. One result of this is that our method underestimates the

number of germline V genes on smaller samples (less than roughly a few thousand sequences).

Another consequence is that our method can infer very unlikely numbers of alleles per gene.

In general one would expect one or two alleles per gene in real germlines, however current
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data is insufficient to accurately quantify how much this distribution is broadened by the dele-

tion and duplication common in the Ig locus. This means that the missing and spurious alleles

that our method infers occur without regard to the number of alleles per gene, such that in

rare cases the method infers unrealistically small or large numbers. With more information on

the variation of germline sets across populations, we will be able to more intelligently restrict

these numbers.

Another source for improved performance would be the incorporation of per-base muta-

tion information, i.e. splitting apart the mutation accumulation plots by A, C, G, and T. Also,

we have thus far only applied our method to V region genes, although the extension to D and J

should be conceptually straightforward. We also at this point only report the most likely germ-

line set, with no probabilistic guidance as to the likelihood of other possible germline sets

(although some idea of uncertainty can be gleaned from the fits and goodness of fit metrics).

This is an unfortunate consequence of the intricacies of the optimizations necessary to make

the method usefully fast, together with the lack of good information about the variation of the

Ig locus between individuals. Finally, taking advantage of the fact that rearrangement occurs

only between genes on the same chromosome, as in [8, 33], would likely provide additional

improvement.

A further limitation of our method is that it looks only for new alleles separated by SNPs

from existing alleles, and not for those separated by insertion/deletion events. While this is not

a significant limitation on human samples, the IMGT germline sets for other species are

incomplete enough that, in those species, this could cause novel alleles to be misinterpreted as

SHM indels. This is one respect in which the clustering-based approach taken by IgDiscover

offers a significant advantage (see Supplement). For this reason we have also implemented a

non-default clustering-based method which can be run in addition to the purely mutation

accumulation plot-based method described here (see Manual). While we thus recommend this

clustering-based method for non-human samples, its robustness, like IgDiscover’s, can suffer

on some highly-mutated samples, so we have left it as a non-default option pending future

improvements.

Methods

Overview

The task of inferring germline genes consists largely of learning to distinguish between posi-

tions that are highly mutated as a result of SHM, and those whose highly-mutated appearance

stems from the occurrence of previously unknown alleles. A few key observations allow us to

extract enough information to make this distinction. First, in the absence of unknown alleles,

the probability of a mutation at each position in an observed sequence is roughly proportional

to the total number of mutations in that sequence (at least at the low SHM levels relevant for

new-allele inference). In other words, while mutation rates differ dramatically from position to

position according to, for instance, hot and cold spot motifs, each position is more likely to be

mutated in sequences that have been subject to higher levels of SHM. Almost all of the power

to infer new germline sequences comes from the low-SHM sequences in the sample, and for

those sequences the hotness or coldness of most positions will not change upon introduction

of the first few mutations. In the presence of unknown alleles, on the other hand, sequences

stemming from these unknown alleles will be mistakenly assigned to the most similar known

allele, causing this approximate proportionality to be violated. If there are, say, Nsnp SNPs sepa-

rating a known and unknown allele, then there will be very few sequences from this unknown

allele that appear to have fewer than Nsnp mutations. The Nsnp positions at which they differ,

on the other hand, will almost always appear to be mutated in sequences that appear to contain
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Nsnp or more total mutations. This differing apparent mutational behavior between sequences

with fewer than, as compared to more than, Nsnp mutations provides the basis for our method.

A convenient way to visualize these observations is with a type of plot introduced in [11],

which we call a “mutation accumulation” plot. To make a set of these plots for one germline

gene, we first collect every sequence in the sample that aligns most closely to this single known

gene. We then use these sequences to make one plot for each nucleotide position as follows.

The sequences are binned along the x-axis according to their total number of apparent V

mutations. The y-coordinate of each bin, meanwhile, is the frequency with which that plot’s

nucleotide position appears to mutate among the sequences in the bin. For the full repertoire,

we first group sequences based on their closest known germline gene, and then follow the pro-

cedure above for each such group. We first show example plots for three simple, hypothetical

repertoires (Fig 13). While these simple repertoires, by themselves, are gross simplifications of

the biological complexity in a real BCR repertoire, they contain the essential elements from

which we can construct a method that performs well on real data sets.

Models and fitting

In the context of mutation accumulation plots (Fig 13), the presence of new alleles is signaled

by a departure from what would be expected if all sequences had been assigned to the correct

Fig 13. Mutation accumulation plots showing the relationship between the mutation probability at position 55 across all

sequences aligning closest to IGHV4-39�06 (y-axis), and the number of mutations in the entire observed V sequence (x-axis) for

three simple, hypothetical BCR repertoires. In the top row are two repertoires that consist of a single allele: where this allele is

known (left), and where it is unknown, but separated by seven SNPs from a known allele (right). In a more typical case, given the

relative completeness of the standard germline sets, we would observe a mixture of sequences from the known and unknown alleles

(bottom). This is equivalent to the (shifted) superposition of the two plots in the top row.

https://doi.org/10.1371/journal.pcbi.1007133.g013
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true gene. Namely, to the extent that mutations at each site accumulate in proportion to the

total number of mutations in the sequence, correct assignment would result in simple linearity.

For incorrect assignment, this linearity is replaced with differing behavior between the regions

below and above Nsnp. Our task, then, amounts to distinguishing between plots that can be

adequately described by a one-piece linear model, and those that require a model consisting of

two pieces separated by a discontinuity.

In order to distinguish these two hypotheses, we construct a model for each. The one-piece

model is simply a linear fit constrained to pass through the origin. The two-piece model,

meanwhile, consists of two separate linear fits, which we call the “lower” (below Nsnp) and

“upper” (above Nsnp) fits. The lower fit is constrained to pass through the origin, while the

upper fit’s y-intercept must be near the average of the upper-region mutation frequencies

(within 1.5 standard deviations of their mean). The junction between the two pieces must har-

bor a significant discontinuity in either bin value (mutation frequency) or bin total (number of

sequences per bin), where significance is defined as a difference of more than 2.5 times the

larger uncertainty. This two-piece model describes the presence of a new allele separated by

Nsnp SNPs from the original known gene. To give a general idea of the implementation, several

examples are shown in Fig 14.

Fig 14. Example one-piece (green) and two-piece (red) fits for positions without (top row) and with (bottom row) evidence for

new alleles. The left and right plots in the top row show the difference between positions with low and high mutability (cold and hot

spots). The bottom row shows a position with evidence for a new allele with Nsnp equal to two (left) and a similar plot for Nsnp equals

five (right). Note that both one-piece and two-piece models fit well in the top row, whereas in the bottom row only the two-piece

model provides an adequate fit.

https://doi.org/10.1371/journal.pcbi.1007133.g014
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We use a ratio of error descriptors to determine whether a plot is adequately described by

the one-piece fit. Define � to be the sum of squared residuals divided by degrees of freedom,

which in regression analysis is sometimes called the mean squared error. Good fits are charac-

terized by values of � around one, while values much greater than one indicate poor fits. Values

significantly less than one generally indicate poorly-estimated uncertainties. For our purposes,

then, we are interested in positions (which we call “candidate positions”) for which � is large

for the one-piece fit (greater than 4.5) but around one (less than 1.95) for the two-piece fit.

For each Nsnp, we construct the most plausible potential new allele by finding the Nsnp posi-

tions that have the worst one-piece, but best two-piece, fits. We quantify this using the ratio of

the two �,

r ¼
�1‐piece

�2‐piece
: ð1Þ

Because cases that would be better described by more complex models will have larger

residuals (poor fits) for both one-piece and two-piece models, which cancel out in the ratio,

this formulation provides robustness to deviations from linearity. The model for the best

potential new allele consists of the Nsnp positions that have the largest values of r.
In order to strike an appropriate balance between focusing the fit’s attention on the area of

the discontinuity, while taking advantage of the largest possible sample size from many sur-

rounding bins, we perform all fits in a window of width 10 bins. This window begins at zero

for small Nsnp, while for larger Nsnp it is symmetric around Nsnp.

We apply several additional criteria to ensure that the candidate fits make a compelling case

for a new allele. The slope at the discontinuity, i.e. the slope defined by the two points on either

side, must be much larger than both the upper and lower fitted slopes (a fractional difference

of more than 2.5 times). For larger Nsnp (five or more), the slopes before and after the disconti-

nuity must also either be consistent, or the lower slope must be the smaller of the two.

The unfortunate profusion of constant values in the preceding paragraphs deserves some

examination. In general, for the sake of simplicity and interpretability, we have wherever possi-

ble minimized the number of such constants. However, practical constraints make it difficult

to reduce their number further. In theory, it would be possible to construct a more compli-

cated model that faithfully recreated all the details of the real system, which would enable a col-

lection of simple likelihood ratio tests. However, in practice this approach is unlikely to be

computationally feasible, and would likely require a much lengthier development process.

Instead, we have adopted the approach of comprehensively validating a simpler model which,

nevertheless, provides an adequate description of the system’s real biological complexity.

Comparing multiple hypotheses

The previous section outlines a procedure for identifying a single potential new allele for each

individual Nsnp. In realistic samples, however, we must treat the general case where there may

be several new alleles, either with the same Nsnp, or spread among several Nsnp.

To do this, we first sort every candidate position within each Nsnp by decreasing r. In order

to better adjudicate between ties in the first sort, we then sort again either by decreasing y-

intercept (if Nsnp less than three) or decreasing two-piece fit �. The first Nsnp elements of this

sorted list of candidate positions are then taken as a candidate allele, the next Nsnp positions

are taken as a second candidate allele, and so on, until fewer than Nsnp remain. The second

sorting step serves to group together positions with similar fit properties, and that are thus

most likely to come from the same new allele. These fit properties are affected by several

aspects of the new alleles, most notably their prevalence. In cases with two new alleles with the
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same prevalence, for example, this is not an effective means of determining which positions go

with which allele; however, in real data such cases are very rare.

For each of these candidate alleles, both the smallest r among their positions, and the mean,

must be greater than 2.75. The discontinuities for every pair of positions must also be compati-

ble, defined as the difference in bin totals (number of sequences) on either side of Nsnp, which

must be closer than three times the maximum of their two uncertainties.

This procedure is repeated for each Nsnp, resulting in a list of candidate alleles from each;

these lists are then merged into a final list that is sorted by decreasing Nsnp. We then go

through this list and discard alleles that share any positions with an allele earlier in the list.

This last sorting is due to the fact that it is easier for a high-Nsnp allele to mimic a low-Nsnp

allele than the reverse.

Approximations and pre-filters

The procedure described above would work well in principle, but would require a computa-

tionally prohibitive number of fits. As a rough estimate, taking 50 initial, known alleles in a

sample, each with 300 positions, looking up through Nsnp equals eight, and with both the one-

piece and two-piece fits, we would need 360,000 individual linear fits. To be useful, however, it

must run as part of the overall partis annotation, which takes only minutes on samples with

tens of thousands of sequences. Luckily, the overwhelming majority of these fits can be avoided

by ignoring uninteresting positions using a number of approximation procedures. The cumu-

lative effect of the following approximations and filters is that a typical run requires of order

100 fits, with no appreciable decrease in precision or sensitivity. This results in a method that

does not add significant run time to an existing partis run.

The first step is to ignore positions for which there would not be enough statistical power to

have any sensitivity to new alleles. We thus skip positions with fewer than 150 total observed

sequences, summed over bins. Positions with fewer than 30 observed mutations, also summed

over bins, are similarly skipped.

For each Nsnp, we also ignore positions that do not have at least eight observed mutations in

the Nsnp
th bin. This bin is of primary importance, because it is the means by which we deter-

mine that this Nsnp is the correct one, rather than those slightly larger or smaller. If this bin is

truly signaling a new allele, then it must contain a significant number of mutated sequences.

For several of the subsequent steps, we use an approximate fitting procedure to arrive at a

slope, intercept, and associated uncertainties. While less accurate, and more heuristic, than

the least-squares fits that are used elsewhere, it is also much faster. We begin by calculating

the two-point slope between each pair of adjacent points. If there are only two points in

total, this is supplemented by a “synthetic” slope between the first point shifted up, and the

second shifted down, by their respective uncertainties. The approximate slope is then calcu-

lated as the mean of these pairwise slopes, with its uncertainty the associated standard error.

We arrive at the approximate y-intercept with a similar procedure, except that the pairwise

slope is replaced by the pairwise y-intercept, which uses the previously-calculated pairwise

slope.

For smaller Nsnp (three or less), we also require that the approximate upper-region y-inter-

cept fit bounds do not include zero. If they do include zero, there will not be a significant dif-

ference between the one- and two-piece fits. As an additional, and more stringent, test that the

upper-region y-intercept for these smaller Nsnp is well above zero, we require that the approxi-

mate fit’s y-intercept is also greater than zero.

For Nsnp equals two, we also require that the bin immediately before the Nsnp
th bin be out-

side of the upper-region y-intercept fit bounds.
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And finally, for larger Nsnp (five or greater), the approximate lower fit’s slope must be less

than that of the approximate upper fit, in cases in which they are inconsistent.

Initial germline database

To construct the initial germline database, we begin by taking the functional V, D, and J genes

from the IMGT database. We then also remove non-full length V sequences.

Excluded bases on 5’ and 3’ ends

We are typically analyzing only partial V sequences, which leads to additional complications.

On the 5’ end, the method must account for samples in which the read does not extend

through the entire V gene. On the 3’ end, meanwhile, VDJ rearrangement itself deletes some

number of bases. The presence of incomplete V sequences clearly reduces our sensitivity to

new alleles simply by reducing the sample size for positions at each end. A more serious

problem, however, is that differing lengths cause sequences to be assigned to incorrect bins,

since their apparent number of mutations is different than their true number. In order to

avoid this problem, we ensure that all analyzed sequences begin and end at the same aligned

germline bases. To accomplish this, for each end (5’ and 3’), we find the deletion length

such that only a small fraction (f, by default 0.01) of sequences have a longer deletion

length. We then exclude the fraction f of sequences that have longer deletions. Among the

remaining sequences, we then exclude from the analysis the positions that fall within these

deletion lengths. For example, if 99% of sequences have 3’ deletions of four or fewer bases,

then we would discard sequences with more than four 3’-deleted bases, and would not use

that gene’s four most-3’ positions in the fitting procedure. Note that on the 3’ side of V,

this exclusion procedure is especially important because the final few germline-aligned posi-

tions next to any non-templated insertion always have very poorly-measured mutation

frequencies.

Collapsing clones

Our method requires that we consider only independent mutation events, excluding any

mutations that share a common ancestry. In order to satisfy this requirement we attempt to

select from each clone the largest possible set of sequences without shared mutations. In doing

this, we give preference to relatively unmutated sequences, since most new alleles are separated

by only a few SNPs from known alleles. Specifically, we sort the sequences from each clonal

family in order of increasing apparent V mutation. We then traverse this list, selecting each

sequence that does not share any mutations with a previously-selected sequence. As shown in

[39] it would be straightforward to use the full partis method to separate the sequences into

clonal families. However, for the purposes of ensuring independent mutations, there is little

benefit to having precisely accurate clusters, since a slightly inaccurate clustering only results

in slightly inaccurate uncertainties in the fits, and uncertainties on uncertainties are in practice

never large enough to impact the analysis. For the sake of speed, then, we simply cluster using

inferred naive sequences, i.e. every sequence that is inferred to have the same naive sequence is

clustered together. This has the additional benefit of becoming more conservative as the sam-

ple size becomes large—in other words it tends to over-cluster more as the space of potential

naive rearrangements fills up, and nearby rearrangement events have very similar naive

sequences. This has the effect of sacrificing some sensitivity in order to ensure that mutations

are actually independent.
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Initial removal of less-likely alleles

Some care is necessary when constructing each sample’s initial set of known genes. We find

the performance of our new-allele inference to be robust enough that the best approach is to

first choose a minimal number of genes whose presence in the sample is supported by very

strong evidence. We then apply the new-allele inference framework in order to reinstate alleles

for which the evidence was less overwhelming, along with any novel alleles.

In order to construct each sample’s minimal initial gene set, we first partition the complete

set of IMGT [1] genes into groups within which SHM can easily cause confusion, and then

retain only the most common gene in each group. Note that this partitioning cannot be

accomplished using only the IMGT names—there are many cases of allelic variants that differ

by so many SNPs that confusion is very unlikely, as well as alleles of separate genes that differ

by only a single SNP. We construct these groups by single-linkage clustering such that genes

with the same conserved cysteine position, and separated by fewer than eight SNPs, are

grouped together. In order to ensure that we can re-infer all of the genes within each group,

this number corresponds to the maximum number of SNPs for new-allele inference.

We also discard alleles that appear to occur at extremely low frequencies, by default less

than one part in 2000.

Template allele removal

The procedure outlined thus far can yield a confident judgment on whether there exists a pre-

viously-unknown allele separated from some known, “template” allele. We must also, however,

distinguish between cases where this template allele is also present in the sample, and cases

where it is not (and was simply the closest known allele). In order to do this we observe that in

the plots in Fig 14 the y-intercept of the upper (post-Nsnp) fit is determined largely by the prev-

alence of the new allele. For Nsnp near one, the y-value is very close to the actual allele preva-

lence, while for larger Nsnp the relationship is more complex. When the new allele’s prevalence

is 1, i.e. the template allele is not present in the sample, however, the fitted post-Nsnp y-value is

also very close to 1. The only deviation is a slight decreasing slope from reversion to germline

at higher mutation levels. We thus remove template genes from the germline set when the

upper fits for each position have y-intercept 1.1 ± 0.12 and slope −0.01 ± 0.015.

Adding a new allele

Once we have decided that there is sufficient evidence for a new allele separated by Nsnp SNPs

from an existing allele, there remain several additional considerations.

First, we must determine its original germline sequence. We begin by restricting ourselves

to sequences assigned to the Nsnp
th bin, i.e. which contain Nsnp apparent mutations. This

restriction is important, because unmutated sequences stemming from the new allele are

assigned to this bin. It thus minimizes the confusion caused by mutated sequences derived

from the existing allele, as well as from any additional new alleles. For each of the Nsnp posi-

tions where this allele differs from the template allele, we then choose as the new allele’s germ-

line nucleotide the most commonly-observed non-template nucleotide at that position.

If the newly-identified allele was present in the original, full germline set, then we add it

with its original name; otherwise we add it with a provisional name derived from the template

gene. Because of the unavoidable ambiguity created by 3’ exonuclease deletion (and short

reads), in order to be considered equivalent we require only that two alleles are identical after

applying the 5’ and 3’ exclusions described above. If, for instance, we infer a new allele that dif-

fers by several SNPs from some template gene, and there is an existing allele in the original set

that is identical to this new allele except for an extra base to the 3’ of the cysteine, we assume
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that the newly-inferred and existing alleles are in fact the same. More generally, we note that

any new-allele inference framework that uses expressed data will suffer from a large uncer-

tainty as to the precise number and identity of a V gene’s most-3’ few germline bases. In order

to resolve this uncertainty we must perform germline sequencing.

Simulation details

The simulated samples used for validation were made with the same basic framework

described in [4]. In addition to the details described there, we have added options to control

various aspects of a sample’s germline set. All simulation options are described in detail in the

manual (https://git.io/fAZ28 and https://git.io/fAZ2E).

Most basically, we have added the ability to insert into a germline set new alleles that are

separated from existing alleles by both point and insertion/deletion mutations. The number of

each type of mutation, and their properties, are specified with command line options. Each

mutation occurs either at a specified position in the allele’s sequence, or at a random position

within specified bounds (for instance, within vs outside of the CDR3). These options allowed

the creation of the simplified sparse gene repertoire samples in the Results.

These sparse repertoires are built around a single known germline gene. We then add either

one or two novel alleles, separated by SNPs at uniformly-selected random positions, from this

existing germline gene.

In order to generate a germline set for the full repertoire samples, for each region we first

choose some number of genes from the IMGT set, and then some number of alleles for each

of these genes. The mean number of alleles per gene is specified on the command line, then

for each gene we choose a number of alleles from {1, 2} with weights such as to (on average)

arrive at the specified mean over all genes. For both the “low-SHM” and “high-SHM” full-

repertoire samples, this procedure was followed with 42, 22, and 6 genes (V, D, and J

regions), with a mean alleles per gene of 1.33, 1.1, and 1 (V, D, and J). This is concordant

with the references in Results above, in particular [7], which reported a mean over 12 individ-

uals of 40.2 homozygous, 8.6 two-allele heterozygous, and 1.1 three-allele heterozygous V

genes, for an overall mean alleles per gene of 1.2. Six novel alleles were then added, separated

by 1, 1, 2, 3, 5, and 6 point mutations (at uniformly-selected random positions) from an exist-

ing allele.

We choose each gene’s relative prevalence counts from a uniform random distribution with

bounds [1, 1/fmin], where fmin is the minimum desired prevalence ratio between any pair of

genes in the repertoire. This ensures that the prevalence ratio for every pair of genes in the

repertoire is in [fmin, 1], where fmin equals 0.15 (“low-SHM” samples) or 0.05 (“high-SHM”

samples). While this is roughly compatible with the variation in expression levels typically

reported in real data, we emphasize that most previous studies (including our own [4]) have

aligned against the full IMGT set, and as such their reported expression levels for less-common

genes are probably meaningless (Table 1, Fig 3).

The SHM distributions in the full-repertoire samples were chosen to be representative of

typical IgM-specific data (“low-SHM”, mean value 0.02) or typical unsorted samples (“high-

SHM”, mean value 0.06) (compare to mean values in S1 Fig).

Finally, we must decide on the clonal family structure of each sample. Real repertoires vary

widely in both their clonality and lineage structure. However, we have shown in Figs 1 and 2

that our clonal family collapse is an effective-enough approximation that changes in clonality

and lineage structure are equivalent to changes in sample size, and thus only affect sensitivity.

In order to maximize the variety of interesting variables over which we can perform validation,

we thus simulate the full repertoire samples with singleton clonal families.
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All samples in both the low- and high-SHM groups have 50,000 sequences. This number is

chosen such as to be large enough that sample size is not the principal limiter of sensitivity,

while also being typical of real-world samples after error correction. We do not vary this total

number of sequences because varying the constituent parameters described above is equiva-

lent, while providing more clarity to the underlying processes.

Phylogenetic comparison plots

In order to make the phylogenetic gene set comparison plots (Figs 3, 4, 5, 6, 8, 9, 10, 11 and 12,

S2 and S3 Figs) we begin by aligning all the genes that we want to compare using MUSCLE

[40] (v3.8.31 with default parameters). We then use RAxML [41] (v8.2.10, with the GTR

model) to create a tree for these genes. In order to allow easy visual comparison of the entire

germline gene set in one plot, while also allowing comparison within each gene family (IMGT

definition, e.g. IGHV3), we then collapse to length zero each branch that joins two different

gene families. If the reader would like to compare combinations of germline sets that are not

shown in this paper, all true and inferred germline sets, for simulation and data, are available

at https://doi.org/10.5281/zenodo.1037463, and the command line script used to make these

plots is available at https://git.io/vFo2B.

Comparison between methods

While a comprehensive comparison of the details of all three methods (TIgGER, IgDiscover,

and partis) is beyond the scope of this paper, we highlight some instructive details. First, the

default partis method and TIgGER are more similar to each other than either is to IgDiscover.

Both use a fitting procedure on mutation accumulation plots to look for new alleles. However,

as described above, our approach to extracting information from these plots is very different,

using hypothesis comparison rather than sharp cutoffs, for instance on the y-intercept.

IgDiscover, on the other hand, takes a quite different approach, clustering together

sequences by distance and taking the consensus sequence of each cluster to be a germline gene.

The main advantage of this approach is that it enables detection of new genes which are sepa-

rated by either point mutations or insertions/deletions from existing alleles. The purely muta-

tion accumulation plot-based approaches employed by TIgGER and default partis, in contrast,

can only detect new alleles separated by point mutations. The tradeoff is that the fitting-based

methods are able to use more detailed position-based information which allows them to func-

tion well in repertoires with higher SHM. As noted by the IgDiscover authors, distance-based

clustering methods, in general, suffer from the fact that once SHM is high enough that clusters

from distinct V genes start bleed together, the heuristic thresholds used to separate clusters

create significant inaccuracies.

On human repertoires, since the IMGT set is already fairly complete, the ability to detect

new alleles separated by insertion/deletion mutations is not particularly important. The germ-

lines of most other species, however, are much less well characterized. It is thus quite common

in these species to encounter novel alleles that are not simply allelic variants of well-known

genes.

The obvious course of action, then, is to combine the mutation accumulation plot-based

and clustering-based methods in order to allow accurate inference on non-naive repertoires of

all species. We have, in fact, implemented this approach in partis: it is the default for non-

human samples, and can be turned on for human samples. However, after extensive validation

of this combined method, we believe that a somewhat modified clustering approach will be

required to achieve better performance on highly mutated samples from all species, and thus

leave its description to a future paper.
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