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Abstract

Semaphorin 3B (SEMA3B) is a secreted axonal guidance molecule that is expressed during 

development and throughout adulthood. Recently, SEMA3B has emerged as a tumor suppressor in 

non-neuronal cells. Here we show that SEMA3B is a direct target of GATA3 transcriptional 

activity. GATA3 is a key transcription factor that regulates genes involved in mammary luminal 

cell differentiation and tumor suppression. We show that GATA3 relies on SEMA3B for 

suppression of tumor growth. Loss of SEMA3B renders GATA3 inactive and promotes aggressive 

breast cancer development. Overexpression of SEMA3B in cells lacking GATA3 induces a 

GATA3-like phenotype and higher levels of SEMA3B are associated with better cancer patient 

prognosis. Moreover, SEMA3B interferes with activation of LIM kinases (LIMK1 and LIMK2) to 

abrogate breast cancer progression. Our data provide new insights into the role of SEMA3B in 

mammary gland and provides a new branch of GATA3 signaling that is pivotal for inhibition of 

breast cancer progression and metastasis.
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Introduction

Semaphorins function as short-range axonal guidance molecules(1). There are eight classes 

of semaphorins, and class-3 semaphorins are the only secreted group in vertebrates(2). 

Within class-3, there are seven semaphorin members that belong to semaphorin/collapsin 

family and exert their cellular effects through binding to neuropilins and plexin receptor 

family members(2, 3). SEMA3B is a secreted molecule that contains a highly conserved 

Sema domain in the amino terminus. Interaction between semaphorins and their receptors 

leads to changes in cytoskeletal architecture and cellular motility through influencing the 

activation state of various Rho GTPases in a targeted cell(4–9). Semaphorins along with 

other axonal guidance molecules function as environmental cues to allow proper innervation 

of neurons by either permitting or inhibiting their growth, thereby guiding neurites migration 

along a correct path during nervous system development.

While SEMA3B was initially discovered as an inhibitory axonal guidance molecule, recent 

findings suggest that SEMA3B also functions as a tumor suppressor in lung, renal, gastric 

and potentially breast tissues(10–14). In the mammary gland, SEMA3B is present in both 

luminal and basal epithelial cells(3). However, the importance of SEMA3B in maintenance 

of mammary epithelial cell homeostasis remains unclear.

We and others previously showed that GATA3 is essential for driving mammary epithelial 

cell differentiation and maintaining mammary gland homeostasis(15–18). GATA3 belongs to 

GATA family of transcription factors that play fundamental roles as master regulators of 

cellular differentiation and homeostasis in various tissues(15, 19–22). The GATA family is 

comprised of six members that are expressed in a tissue-specific manner(23). All GATA 

family members contain two transactivation domains in the amino terminus and two 

conserved zinc finger domains at the carboxyl terminus. In addition to their structural 

similarities, GATA family members recognize and bind to a consensus DNA sequence (A/

T)GATA(A/G) to regulate downstream target genes(24).

Loss of or mutations in GATA3 results in development of aggressive breast cancer(25–30). 

Indeed, GATA3 is one of the top three mutated genes in breast cancer patients(16), 

emphasizing its importance in tumor development. Therefore identifying new GATA3 

downstream target genes provides valuable information in discovering new cancer 

biomarkers and potential therapeutic strategies for prevention of breast cancer.

In the present study, we establish SEMA3B as a new GATA3 downstream target gene that is 

indispensible for GATA3 tumor suppressive activity. In the absence of GATA3, elevated 

SEMA3B levels independently interfere with aggressive tumor growth and higher SEMA3B 
levels is associated with better breast cancer patient prognosis. We also show that SEMA3B 

interferes with activation of LIM kinases (LIMK1 and LIMK2) that are known Rho GTPases 

downstream targets. Inhibition of LIMK1/2 activation provides a molecular mechanism for 

inhibition of breast cancer progression via SEMA3B. Our findings highlight the importance 

of SEMA3B as a GATA3 downstream target gene and provide a new mechanism for driving 

tumor suppression in mammary epithelial cells.
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Results

In silico Analysis of Breast Cancer Patient Samples Demonstrates a Correlation Between 
Expression of GATA3 and SEMA3B

We initially performed in silico gene expression analysis by utilizing The Cancer Genome 

Atlas (TCGA) and the Molecular Taxonomy of Breast Cancer International Consortium 

(METABRIC) databases to determine the global gene expression alterations that correlate 

with changes in GATA3 levels. Gene expression analysis of 597 breast cancer samples as 

well as RNAseq analysis of 1215 tumor samples from TCGA database indicated a strong 

correlation between loss of GATA3 and downregulation of SEMA3B (Fig. 1a and 

Supplementary Figure 1 and 2). To demonstrate the validity of our analysis, we also 

included the expression analysis of a pro-tumor gene MYC that is upregulated in the absence 

of GATA3 expression (Fig. 1a). TCGA database analysis using Regulome Explorer (http://

www.cancerregulome.org/) indicated that SEMA3B resides in the same protein network as 

GATA3 and several other key proteins such as BCL2, ESR1, CCNB1 and AR (Fig. 1b) and 

suggested a possible link between GATA3 levels and SEMA3B expression during breast 

cancer development.

To investigate a potential role for SEMA3B in breast cancer development, we performed 

analysis using a public microarray dataset (GSE9014). The data suggest that SEMA3B is 

significantly downregulated in the samples from patients with invasive breast carcinoma 

(Fig. 1c). Similarly, comparison of SEMA3B expression in normal versus triple negative 

breast cancer samples using the TCGA database also indicated significant SEMA3B 
downregulation in triple negative breast cancer patients (Fig. 1d). We also examined 

SEMA3B levels across PAM50 breast cancer subtypes using METABRIC database (Fig. 1e) 

showing that SEMA3B levels remain high in luminal cancers. However, SEMA3B levels 

decreases significantly in basal subtypes (Fig. 1e). This analysis in PAM50 subtypes 

reinforces the importance of SEMA3B and suggests a correlation between the loss of 

GATA3 and SEMA3B levels during aggressive breast cancer formation. Moreover, there was 

a correlation between SEMA3B and breast cancer progression, with decreasing expression 

levels of SEMA3B as the tumors progress from stage I to stage IV (Suppl. Fig. 3). We 

observed a similar trend in downregulation of SEMA3B expression when we compared low-

grade tumors to higher-grade tumors in the affected patients (Suppl. Fig. 4). Finally, analysis 

of the van’t Veer breast cancer database for breast cancer survival outcome(31) indicated a 

poorer prognosis for patients with lowered SEMA3B expression (Fig. 1f). Collectively, the 

in silico analysis of breast cancer patient samples provides clues to a potential role for 

SEMA3B during breast cancer development and suggests an interplay between GATA3 and 

SEMA3B.

GATA3 Directly Controls SEMA3B Expression

To decipher whether GATA3 directly or indirectly controls SEMA3B levels, we performed 

in silico analysis using the ENCODE ChIP-Seq database. We searched for potential 

promoter sequences that contain a GATA3 binding site and found that the SEMA3B 
promoter is a potential target of GATA3 (Suppl. Fig. 5). We then performed chromatin 

immunoprecipitation analysis (ChIP) in three different transiently transfected mammary cell 
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lines, EpH4.9, T47D and MDA-MB-231 to examine whether GATA3 directly targets 

SEMA3B promoter. We found that in all these cell lines, GATA3 binds to the SEMA3B 
promoter (Fig. 2a). Next, we overexpressed GATA3 in MDA-MB-231 cells and monitored 

alterations in SEMA3B expression levels. The control MDA-MB-231 cells exhibited 

minimal GATA3 and SEMA3B expression. However, overexpression of GATA3 resulted in 

significant upregulation of SEMA3B in the MDA-MB-231 cells (Fig. 2b and 2c). 

Additionally, immunostaining analysis demonstrated higher SEMA3B levels in cells 

overexpressing GATA3 when compared to control cells (Fig. 2d).

To study the GATA3 signaling pathway, we examined the relationship between GATA3 and 

SEMA3B in NMuMG cells that exhibit high levels of endogenous GATA3 expression. 

Knockdown of endogenous GATA3 levels using a specific siRNA resulted in lowering 

SEMA3B expression levels, suggesting a correlation between GATA3 and SEMA3B levels 

in mammary cells (Fig. 2e). Taken together, these data indicate that in mammary epithelial 

cells, GATA3 directly binds to SEMA3B promoter and positively regulates SEMA3B 
expression.

GATA3 Relies on Intact SEMA3B Expression to Inhibit Cellular Migration and Proliferation

To investigate the interplay between GATA3 and SEMA3B, we generated multiple MDA-

MB-231 stable cell lines that either expressed the control shRNA MDA-MB-GATA3-PLKO 

(MDA-GATA3) or shRNA targeting SEMA3B (MDA-GATA3-SEMA3BKD). In 2D culture, 

cells overexpressing GATA3 lost their spindle-like morphology and became more cuboidal 

(luminal epithelial-like) (Fig. 3a), as we described previously(32). Moreover, the MDA-

GATA3 cells formed tight colonies as opposed to the more dispersed colonies of control 

cells (Fig. 3a). Intriguingly, in the absence of SEMA3B, the GATA3 overexpressing cells 

reverted back to spindle-like morphology and resembled MDA-MB-231 (control) colonies 

that lacked GATA3 expression (Fig. 3a).

We also examined the effect of SEMA3B overexpression independent of GATA3 signaling 

in MDA-MB-231 cells. Since SEMA3B is downstream of GATA3, we were interested to 

determine whether SEMA3B could mimic GATA3 activity. Therefore, we generated MDA-

MB-231 cells that either contained the control plasmid, MDA-MB-231-pEIZ (Control) or 

overexpressed SEMA3B, MDA-MB-231-SEMA3B (MDA-SEMA3B). Upon overexpression 

SEMA3B alone, MDA-MB-231 cells mimicked GATA3 overexpressing cells and formed 

tight cuboidal colonies (Fig. 3a). In three-dimensional (3D) Matrigel cultures, MDA-

MB-231 (control) cells formed invasive colonies rich in invadopodia. However, upon 

overexpression of GATA3, the cells formed dense spherical colonies with minimal 

invadopodia (Fig. 3b). Upon overexpression of SEMA3B alone, MDA-MB-231 cells formed 

less invasive GATA3-like colonies, recapitulating the GATA3 phenotype (Fig. 3b). 

Interestingly, knockdown of SEMA3B even in the presence of GATA3 expression rescued 

the invasive phenotype and the colonies resembled the parental MDA-MB-231 cells (Fig. 

3b). To show that these observations are not exclusive to MDA-MB-231 cells, we examined 

the effect of SEMA3B knockdown in EpH4.9 mammary epithelial cells. EpH4.9 cells have 

detectable endogenous GATA3 and SEMA3B levels and in 3D Matrigel cultures form dense 

colonies that exhibit minimal invadopodia. Again, knockdown of SEMA3B in EpH4.9 cells 
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resulted in formation of aggressively invasive colonies when compared to control (Suppl. 

Fig. 6). These observations indicate that SEMA3B plays a significant role in disrupting 

cellular invasiveness in mammary epithelial cell. Furthermore, GATA3 signaling requires 

intact SEMA3B to disrupt the invasive phenotype observed in MDA-MB-231 cells.

Next we examined the effect of SEMA3B on expression levels of epithelial to mesenchymal 

transition (EMT)-associated genes. Since SEMA3B inhibits cellular invasiveness and 

reduction in SEMA3B levels forms invasive colonies it is possible the SEMA3B could 

modulate EMT-associated genes. qPCR analysis in control and MDA-SEMA3B cells 

indicated that SEMA3B expression leads to reduction of the EMT genes Vimentin, 

Fibronectin, Snail and N-Cadherin expression levels (Fig. 3c), while, SEMA3B increasing 

E-cadherin expression (Fig. 3c). These results suggest that SEMA3B increases cell-cell 

interaction by lowering EMT genes and increasing E-cadherin levels.

To examine the effect of GATA3/SEMA3B signaling on MDA-MB-231 cell motility, we 

performed a scratch assay. MDA-MB-231 (control) cells were able to close the generated 

gap within 24 hours (Fig. 3d). However, MDA-MB-231 cells expressing either GATA3 or 

SEMA3B failed to fill the gap within the same time span (Fig. 3d). The observation suggests 

that GATA3 and SEMA3B interfere with cellular migration in MDA-MB-231 cells. 

Interestingly, MDA-GATA3-SEMA3BKD cells closed the generated gap, similar to MDA-

MB-231 parental cells, within 24 hours (Fig. 3d). These data suggest that GATA3 signaling 

relies on the presence of SEMA3B to inhibit cellular migration.

Next, we examined the effect of GATA3 and SEMA3B interplay in cellular proliferation 

using a colony formation assay in 2D cultures. Overexpression of SEMA3B resulted in 

formation of fewer colonies when compared to control (Fig. 3e). Inhibition of cellular 

proliferation and colony formation in cells expressing SEMA3B mirrored MDA-GATA3 

cells. However, removal of SEMA3B in cells with intact GATA3 signaling restored cellular 

proliferation and colony formation (Fig. 3e; Suppl. Fig. 7). We observed similar behavior in 

mammary MCF7 tumor cells. Expression of SEMA3B significantly inhibited colony 

formation when compared to control. However, knockdown of SEMA3B even in presence of 

GATA3, rescued proliferative phenotype in MCF7 tumor cells (Suppl. Fig. 8).

Taken together, our in vitro data suggest that the presence of SEMA3B is pivotal for 

effective GATA3 signaling and intact GATA3/SEMA3B signaling axis is essential for 

inhibition of abnormal cellular migration and proliferation.

Tumor Suppressive Activity Exerted by GATA3 Requires Intact SEMA3B Expression

To determine the necessity of SEMA3B in GATA3 tumor suppressive activity, we 

orthotopically transplanted the MDA-MB-231 stable cell lines via intra-mammary gland 

injection into 8-week-old female nude mice. To examine the role of SEMA3B independent 

of GATA3 signaling in tumor growth, we compared control (SEMA3B-low) to MDA-

SEMA3B (SEMA3B-high) cell transplants. Overexpression of SEMA3B reduced tumor 

growth and resulted in the formation of significantly smaller tumors when compared to 

control (Fig. 4a). To further elaborate on the importance of SEMA3B as a signal transducer 

molecule downstream of GATA3, we also transplanted tumor cells expressing GATA3 with 
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or without the intact SEMA3B molecule. Tumor cells overexpressing GATA3 demonstrated 

slower tumor growth and smaller tumor size(17, 25, 26, 29, 31, 32). In our transplant 

experiments, analysis of tumor sizes indicated that MDA-GATA3-SEMA3BKD cells give 

rise to significantly larger tumors when compared to tumors from MDA-GATA3 cells. These 

results suggest the need for presence of SEMA3B for proper GATA3 tumor suppressive 

activity (Fig. 4b). Thus, in vivo SEMA3B mimics GATA3 activity in hindering tumor 

growth. We also performed Ki67 staining to assess the cellular proliferation status of the 

tumor cells in our samples. Cells in control tumors stained strongly for Ki67, while MDA-

GATA3 or MDA-SEMA3B tumors had many fewer Ki67 positive cells (Fig. 4c). Sections 

from MDA-GATA3-Sema3BKD tumors had more intense Ki67 staining than MDA-GATA3 

or MDA-SEMA3B tumor sections. Knockdown of SEMA3B in tumor cells expressing 

GATA3 restored the proliferative ability of tumor cells and support the observations that 

GATA3 relies on SEMA3B to transduce its tumor suppressive activity (Fig. 4c).

SEMA3B Decreases Tumor Metastasis

The most significant factor in breast cancer aggressiveness is its propensity to metastasize. 

Therefore, we asked whether SEMA3B regulated metastasis of MBA-MB-231 tumors. We 

investigated tumor cell metastasis to inguinal lymph nodes in the orthotopically transplanted 

mice. Mice with control MDA-MB-231 or MDA-SEMA3BKD tumors had significantly 

larger lymph nodes, larger lymph node metastatic colonies and higher number of metastatic 

cells in the lymph nodes than the mice with tumors expressing GATA3 or SEMA3B (Fig 4d, 

e). Thus our data suggest that SEMA3B can interfere with tumor metastasis.

Previous studies have indicated that semaphorins can regulate cell migration through Rho 

family of small GTPases (4–9). Recent reports indicate that LIM kinases (LIMK1 and 

LIMK2) that are downstream targets of Rho GTPases, play a role in enhancing breast cancer 

progression and metastasis(33–37). Since SEMA3B interferes with breast cancer 

progression, we asked whether SEMA3B influences LIMK1 and LIMK2 activity. Functional 

activation of LIM kinases requires phosphorylation at LIMK1 (threonine 508) and LIMK2 

(threonine 505) (38, 39). We analyzed phospho-LIMK1/2 in control MDA-MB-231 and 

MDA-SEMA3B cells. Western blot analysis indicated that SEMA3B reduces phospho-

LIMK1/2 levels when compared to control (Fig. 4f). Reduction of phopho-LIMK1/2 

suggests one potential mechanism whereby SEMA3B could inhibit breast cancer 

progression and metastasis.

Collectively, our experiments support the importance of SEMA3B as a component of 

GATA3 signaling axis in mammary cells and provide evidence that SEMA3B can inhibit 

tumor growth as well as tumor metastasis downstream of GATA3 signaling.

Discussion

SEMA3B was originally identified as a neurite guidance molecule during nervous system 

development. However, recently, alternative roles for SEMA3B in non-neuronal adult cells 

have been described, highlighting the diverse functionality of developmental genes in an 

adult organism. In this study we have shown that SEMA3B is a direct target of he 

transcription factor GATA3 and that loss of SEMA3B correlates with aggressive mammary 
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tumor development and progression. GATA3 plays a fundamental role in maintaining 

mammary gland homeostasis by promoting luminal epithelial cell differentiation and also 

acts as a tumor suppressor by transcriptional regulation to influence the expression of a 

plethora of genes including pro-tumor factors (32). Our tumor transplant data indicates that 

overexpression of SEMA3B interferes with tumor metastasis similar to tumors expressing 

GATA3. By experimental analyses we showed that downregulation of SEMA3B leads to 

cellular proliferation, tumor growth and enhanced tumor invasiveness, even in presence of 

intact GATA3. We also show that SEMA3B inhibits tumor invasiveness by downregulating 

EMT-associated genes and increasing E-cadherin levels. Additionally, we found that 

SEMA3B, inhibits phosphorylation and subsequent activation of LIMK1/2. LIMK1/2 have 

been shown to promote breast cancer progression, therefore inhibition of LIMK1/2 is one 

potential mechanism for SEMA3B to exert inhibitory effects during breast cancer 

progression.

SEMA3B is a secreted molecule and it is important to consider its tumor suppressive 

influence beyond its potential autocrine functions. It is likely that other SEMA3B producing 

cells in the tumor microenvironment could influence the behavior of tumor cells. Loss of 

SEMA3B expression in cells of tumor microenvironment as well as tumor cells themselves 

could result in formation of aggressive breast cancer. To that extent, we hypothesize that the 

GATA3/SEMA3B signaling presents an important regulatory pathway that directs anti-tumor 

activity in the mammary gland.

The fact that a neuronal specific gene such as SEMA3B could influence mammary gland 

homeostasis is intriguing, building on other examples of such diversity. For example SLITs 

and their receptor ROBO were originally identified as axonal guidance signaling molecules 

during development(40, 41), but have been shown to play alternative roles in mammary 

gland branching(42), mammary stem cell self-renewal(43) and breast cancer 

development(44).

Recently, GATA3 has emerged as one of top three genes associated with breast cancer 

development. Thus, uncovering new GATA3 signaling axes could help to better understand 

breast cancer development. Previously, we have shown that tumor suppressive activity of 

GATA3 is partially mediated through direct upregulation of miR-29b(32). miR-29b 
functions as a signal transducer of GATA3 and directs many anti-tumor activities via 

targeting a collection of genes that are involved in angiogenesis and remodeling the tumor 

microenvironment. Preliminary studies indicate that induction of SEMA3B via GATA3 is 

independent miR-29b. Our findings suggest that GATA3 induces multiple anti-tumor 

pathways to inhibit mammary tumor development. Redundant regulatory pathways could 

provide a safeguard for proper cellular functioning. The GATA3/SEMA3B signaling could 

function in parallel with other pathways such as GATA3/miR-29b to ensure proper cellular 

function in mammary epithelial cells.

There are several possibilities as to how lack of SEMA3B expression could override GATA3 

activity. SEMA3B forms a complex with neuropilins and plexins on the cell surface. VEGF-

A also binds to neuropilins and this complex promotes cellular migration(45, 46). In tumor 

cells, upregulation of SEMA3B via GATA3 could push the competition for neuropilin 
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binding to favor SEMA3B. In turn, elevated SEMA3B levels could outcompete VEGF-A for 

binding to neuropilins, thereby disrupting tumor cell migration. Additionally, since 

SEMA3B can inhibit phosphatidylinositol 3-kinase (PI3K)/Akt(47), upregulation of 

SEMA3B by GATA3 could result in downregulation of PI3K/Akt activity and lead to 

inhibition of cellular proliferation and tumor growth.

Collectively, our data shed new insights into better understanding of GATA3 pathway in the 

mammary gland. We identified SEMA3B as a direct target of the GATA3 transcription factor 

and highlighted its importance as a signal transducer molecule. Loss of SEMA3B overrides 

GATA3’s instructive ability to function as a tumor suppressor and designates SEMA3B as an 

integral part of GATA3 pathway in mammary epithelial cells. Our findings introduce 

SEMA3B as a molecular target that could potentially provide new therapeutic strategies 

against aggressive breast cancer.

Methods

Cell Culture and siRNA Constructs

T47D tumor cells (ATCC) were cultured in RPMI 1640 medium supplemented with 10% 

FBS, insulin and antibiotics. MDA-MB-231 cells (ATCC) were cultured in RPMI 1640 

supplemented with 10% FBS and antibiotics. EpH4.9 cells were cultured in DME-H21 

medium supplemented with 5% fetal bovine serum (FBS), insulin (5 μg/ml) and antibiotics. 

3D Matrigel culture assays were performed as described(32). The lentiviral SEMA3B 

shRNA constructs were generous gift from Dr. Luca Tamagnone. The purchased siRNA 

sequences were as follows: ON-TARGETplus GATA3 siRNA (Dharmacon). SEMA3B 

siRNA (Santa Cruz Biotechnology INC.).

Immunostaining, Histology and Antibodies

Immunofluorescence—Cells were cultured on coverslips prior to staining. Cells were 

washed with cold PBS and fixed with 4% paraformaldehyde for 20 min. Cells were washed 

with cold PBS and blocked with PBS, 5% goat serum and 0.25% Triton X-100 for at least 1 

hour at room temperature. Coverslips were incubated with primary antibody diluted in PBS 

plus 5% goat serum overnight at 4°C. Coverslips were washed with PBS and incubated with 

secondary antibody for 1 hour at room temperature then washed with PBS and mounted with 

Vectashield mounting medium with DAPI (Vector Laboratories).

Immunohistochemistry—Tissues were fixed in 4% paraformaldehyde overnight and 

embedded in paraffin. Tissues were sectioned into 5–7 μm sections and a standard protocol 

for hematoxylin and eosin staining was used for histological analysis. Immunostaining was 

performed using the sodium citrate protocol for antigen retrieval as previously described 

(15). Images were captured using Nikon C1si confocal microscope.

Antibodies—Actin-HRP (cs-47778, Santa Cruz Biotechnology), Alexa Fluor 546 goat 

anti-mouse (A-11008, ThermoFisher Scientific), Alexa Fluor 488 goat anti-rabbit (A-11030, 

ThermoFisher Scientific), GATA3 (AF2605, R&D Systems, Ki67 (ab15580, Abcam), 

Sema3B (sc-21204-R, Santa Cruz Biotechnology). Phoshop-LIMK1 (Thr508)/LIMK2 
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(Thr505) (3841T, Cell Signaling Technology). LIMK1 (VMA00361KT, Bio-Rad 

Laboratories Inc.). LIMK2 (8C11) (3845, Cell Signaling Technology).

Bioinformatics and Computational Analysis

SEMA3B expression analysis in human breast cancer and normal tissues was performed 

using the Oncomine database (www.oncomine.org). Statistical analysis was performed via 

Oncomine default algorithms(48). The TCGA data set obtained from Oncomine is 

embedded in the TCGA database (https://tcga-data.nci.nih.gov/tcga)(49). Heatmaps were 

generated from breast cancer TCGA database. The GSE9014 dataset obtained from 

Oncomine is embedded in NCBI GEO database (http://www.ncbi.nlm.nih.gov/geo)(50) for 

SEMA3B expression analysis.

Kaplan–Meier log-rank tests were performed using default parameters in SurvExpress(51). 

Patient data was segregated into low or high SEMA3B expressing groups at the median 

expression value in all cases.

Promoter Analysis and Chromatin Immunoprecipitation Assay

SEMA3B promoter analysis was performed using the ENCODE ChIP-Seq data set. Primer 

sequences for ChIP analysis: Set #1, 5′-AGACAGGTATGACCGTGACC-3′ (forward) and 

5′-AGCTGTCTTGTGCTTGGGAAT-3′ (reverse); Set #2, 5′-

CAGACCTCATGGGACGAGAC-3′ (forward) and 5′-TGGCTAGCTGTCTTGTGCTT-3′ 
(reverse). GATA3 and SEMA3B chromatin immunoprecipitation analysis was performed 

using the ChIP-IT High-Sensitivity Kit as per manufacturer’s protocol (Active Motif).

Scratch Assay

Cells were seeded in 6-well plates at a density of 5×105 cells/well. After 24 hours, a 

monolayer of cells was scratched by a 200-μL pipette tip. Cell migration was quantified by 

counting the number of cells that had migrated to the scratched area within 24 hours.

Colony Formation Assay

Cells were seeded in 6-well plates at a density of 1×103 cells/well and cultured for 14 days. 

Cells were fixed using methanol and stained with Giemsa solution and colonies were 

counted.

Animal Studies

5×105 cells in 10 μl of 1:1 DMEM/Matrigel (BD Biosciences) were injected in the fat pads 

of female 8-week-old nude mice (Simonsen Laboratories). Once palpable, tumors were 

measured twice weekly and the tumor volumes were determined as follows: V = 0.52 × 

(length) 2 × width. All mouse procedures were approved by University of California, San 

Francisco, Institutional Animal Care and Use Committee.

Statistical Analysis

Statistical analysis was conducted using Prism 7 software (Graph Pad Software, Inc.). 

Statistical significance between two groups was calculated using Student’s t test, A one-way 
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analysis of variance (ANOVA) was performed to determine two or more group differences 

with Bonferroni test and P values < 0.05 were considered significant.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Acknowledgments

Grant Support

This study was supported by funds from the National Cancer Institute (R01 CA129523 and R01 CA190851 to 
Z.W.), an Institutional National Research Service Award (T32 CA108462 to P.S.), a grant from the Ministry of 
Science and Technology, Taiwan (104-2917-I-006-002 to C.-Y.W.), the Tegger Foundation, Wenner-Gren 
Foundations, Sweden-America Foundation, Swedish Society of Medicine and Swedish Society for Medical 
Research (to C.H.) and by a Becas Chile Scholarship (to H.G.V.)

We acknowledge Dr. Gera Neufeld for providing the SEMA3B overexpression DNA construct. We thank Dr. Luca 
Tamagnone for his generous gift of lentiviral SEMA3B shRNA constructs. We thank Aline Ruderisch and Elena 
Atamaniuc for technical assistance. This study was supported by funds from the National Cancer Institute (R01 
CA129523 and R01 CA190851 to Z.W.); P.S. was supported by an Institutional National Research Service Award 
(T32 CA108462); C.-Y.W was supported by a grant from the Ministry of Science and Technology, Taiwan 
(104-2917-I-006-002); C.H. was supported by funds from the Tegger Foundation, Wenner-Gren Foundations, 
Sweden-America Foundation, Swedish Society of Medicine and Swedish Society for Medical Research; and H.G.V. 
was supported by a Becas Chile Scholarship.

References

1. Luo Y, Raible D, Raper JA. Collapsin: a protein in brain that induces the collapse and paralysis of 
neuronal growth cones. Cell. 1993; 75(2):217–27. [PubMed: 8402908] 

2. Neufeld G, Kessler O. The semaphorins: versatile regulators of tumour progression and tumour 
angiogenesis. Nat Rev Cancer. 2008; 8(8):632–45. [PubMed: 18580951] 

3. Staton CA, Shaw LA, Valluru M, Hoh L, Koay I, Cross SS, et al. Expression of class 3 semaphorins 
and their receptors in human breast neoplasia. Histopathology. 2011; 59(2):274–82. [PubMed: 
21884206] 

4. Kruger RP, Aurandt J, Guan KL. Semaphorins command cells to move. Nat Rev Mol Cell Biol. 
2005; 6(10):789–800. [PubMed: 16314868] 

5. Driessens MH, Hu H, Nobes CD, Self A, Jordens I, Goodman CS, et al. Plexin-B semaphorin 
receptors interact directly with active Rac and regulate the actin cytoskeleton by activating Rho. 
Curr Biol. 2001; 11(5):339–44. [PubMed: 11267870] 

6. Turner LJ, Nicholls S, Hall A. The activity of the plexin-A1 receptor is regulated by Rac. J Biol 
Chem. 2004; 279(32):33199–205. [PubMed: 15187088] 

7. Falk J, Bechara A, Fiore R, Nawabi H, Zhou H, Hoyo-Becerra C, et al. Dual functional activity of 
semaphorin 3B is required for positioning the anterior commissure. Neuron. 2005; 48(1):63–75. 
[PubMed: 16202709] 

8. Jin Z, Strittmatter SM. Rac1 mediates collapsin-1-induced growth cone collapse. J Neurosci. 1997; 
17(16):6256–63. [PubMed: 9236236] 

9. Hall C, Brown M, Jacobs T, Ferrari G, Cann N, Teo M, et al. Collapsin response mediator protein 
switches RhoA and Rac1 morphology in N1E-115 neuroblastoma cells and is regulated by Rho 
kinase. J Biol Chem. 2001; 276(46):43482–6. [PubMed: 11583986] 

10. Kuroki T, Trapasso F, Yendamuri S, Matsuyama A, Alder H, Williams NN, et al. Allelic loss on 
chromosome 3p21.3 and promoter hypermethylation of semaphorin 3B in non-small cell lung 
cancer. Cancer Res. 2003; 63(12):3352–5. [PubMed: 12810670] 

11. Castro-Rivera E, Ran S, Thorpe P, Minna JD. Semaphorin 3B (SEMA3B) induces apoptosis in 
lung and breast cancer, whereas VEGF165 antagonizes this effect. Proc Natl Acad Sci U S A. 
2004; 101(31):11432–7. [PubMed: 15273288] 

Shahi et al. Page 10

Oncogene. Author manuscript; available in PMC 2017 December 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



12. Sekido Y, Bader S, Latif F, Chen JY, Duh FM, Wei MH, et al. Human semaphorins A(V) and IV 
reside in the 3p21.3 small cell lung cancer deletion region and demonstrate distinct expression 
patterns. Proc Natl Acad Sci U S A. 1996; 93(9):4120–5. [PubMed: 8633026] 

13. Tse C, Xiang RH, Bracht T, Naylor SL. Human Semaphorin 3B (SEMA3B) located at 
chromosome 3p21.3 suppresses tumor formation in an adenocarcinoma cell line. Cancer Res. 
2002; 62(2):542–6. [PubMed: 11809707] 

14. Tomizawa Y, Sekido Y, Kondo M, Gao B, Yokota J, Roche J, et al. Inhibition of lung cancer cell 
growth and induction of apoptosis after reexpression of 3p21.3 candidate tumor suppressor gene 
SEMA3B. Proc Natl Acad Sci U S A. 2001; 98(24):13954–9. [PubMed: 11717452] 

15. Kouros-Mehr H, Slorach EM, Sternlicht MD, Werb Z. GATA-3 maintains the differentiation of the 
luminal cell fate in the mammary gland. Cell. 2006; 127(5):1041–55. [PubMed: 17129787] 

16. Asselin-Labat ML, Sutherland KD, Barker H, Thomas R, Shackleton M, Forrest NC, et al. Gata-3 
is an essential regulator of mammary-gland morphogenesis and luminal-cell differentiation. Nat 
Cell Biol. 2007; 9(2):201–9. [PubMed: 17187062] 

17. Dydensborg AB, Rose AA, Wilson BJ, Grote D, Paquet M, Giguere V, et al. GATA3 inhibits breast 
cancer growth and pulmonary breast cancer metastasis. Oncogene. 2009; 28(29):2634–42. 
[PubMed: 19483726] 

18. Kouros-Mehr H, Kim JW, Bechis SK, Werb Z. GATA-3 and the regulation of the mammary 
luminal cell fate. Curr Opin Cell Biol. 2008; 20(2):164–70. [PubMed: 18358709] 

19. Kaufman CK, Zhou P, Pasolli HA, Rendl M, Bolotin D, Lim KC, et al. GATA-3: an unexpected 
regulator of cell lineage determination in skin. Genes Dev. 2003; 17(17):2108–22. [PubMed: 
12923059] 

20. Yagi R, Zhu J, Paul WE. An updated view on transcription factor GATA3-mediated regulation of 
Th1 and Th2 cell differentiation. Int Immunol. 2011; 23(7):415–20. [PubMed: 21632975] 

21. Sellheyer K, Krahl D. Expression pattern of GATA-3 in embryonic and fetal human skin suggests a 
role in epidermal and follicular morphogenesis. J Cutan Pathol. 2010; 37(3):357–61. [PubMed: 
19719829] 

22. Home P, Ray S, Dutta D, Bronshteyn I, Larson M, Paul S. GATA3 is selectively expressed in the 
trophectoderm of peri-implantation embryo and directly regulates Cdx2 gene expression. J Biol 
Chem. 2009; 284(42):28729–37. [PubMed: 19700764] 

23. Du F, Yuan P, Wang T, Zhao J, Zhao Z, Luo Y, et al. The Significance and Therapeutic Potential of 
GATA3 Expression and Mutation in Breast Cancer: A Systematic Review. Med Res Rev. 2015; 
35(6):1300–15. [PubMed: 26313026] 

24. Ko LJ, Engel JD. DNA-binding specificities of the GATA transcription factor family. Mol Cell 
Biol. 1993; 13(7):4011–22. [PubMed: 8321208] 

25. Kouros-Mehr H, Bechis SK, Slorach EM, Littlepage LE, Egeblad M, Ewald AJ, et al. GATA-3 
links tumor differentiation and dissemination in a luminal breast cancer model. Cancer Cell. 2008; 
13(2):141–52. [PubMed: 18242514] 

26. Wilson BJ, Giguere V. Meta-analysis of human cancer microarrays reveals GATA3 is integral to 
the estrogen receptor alpha pathway. Mol Cancer. 2008; 7:49. [PubMed: 18533032] 

27. Bertucci F, Houlgatte R, Benziane A, Granjeaud S, Adelaide J, Tagett R, et al. Gene expression 
profiling of primary breast carcinomas using arrays of candidate genes. Hum Mol Genet. 2000; 
9(20):2981–91. [PubMed: 11115842] 

28. Hoch RV, Thompson DA, Baker RJ, Weigel RJ. GATA-3 is expressed in association with estrogen 
receptor in breast cancer. Int J Cancer. 1999; 84(2):122–8. [PubMed: 10096242] 

29. Mehra R, Varambally S, Ding L, Shen R, Sabel MS, Ghosh D, et al. Identification of GATA3 as a 
breast cancer prognostic marker by global gene expression meta-analysis. Cancer Res. 2005; 
65(24):11259–64. [PubMed: 16357129] 

30. Jiang YZ, Yu KD, Zuo WJ, Peng WT, Shao ZM. GATA3 mutations define a unique subtype of 
luminal-like breast cancer with improved survival. Cancer. 2014; 120(9):1329–37. [PubMed: 
24477928] 

31. van ‘t Veer LJ, Dai H, van de Vijver MJ, He YD, Hart AA, Mao M, et al. Gene expression profiling 
predicts clinical outcome of breast cancer. Nature. 2002; 415(6871):530–6. [PubMed: 11823860] 

Shahi et al. Page 11

Oncogene. Author manuscript; available in PMC 2017 December 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



32. Chou J, Lin JH, Brenot A, Kim JW, Provot S, Werb Z. GATA3 suppresses metastasis and 
modulates the tumour microenvironment by regulating microRNA-29b expression. Nat Cell Biol. 
2013; 15(2):201–13. [PubMed: 23354167] 

33. Lagoutte E, Villeneuve C, Lafanechere L, Wells CM, Jones GE, Chavrier P, et al. LIMK Regulates 
Tumor-Cell Invasion and Matrix Degradation Through Tyrosine Phosphorylation of MT1-MMP. 
Sci Rep. 2016; 6:24925. [PubMed: 27116935] 

34. McConnell BV, Koto K, Gutierrez-Hartmann A. Nuclear and cytoplasmic LIMK1 enhances human 
breast cancer progression. Mol Cancer. 2011; 10:75. [PubMed: 21682918] 

35. Bagheri-Yarmand R, Mazumdar A, Sahin AA, Kumar R. LIM kinase 1 increases tumor metastasis 
of human breast cancer cells via regulation of the urokinase-type plasminogen activator system. Int 
J Cancer. 2006; 118(11):2703–10. [PubMed: 16381000] 

36. Johnson EO, Chang KH, Ghosh S, Venkatesh C, Giger K, Low PS, et al. LIMK2 is a crucial 
regulator and effector of Aurora-A-kinase-mediated malignancy. J Cell Sci. 2012; 125(Pt 5):1204–
16. [PubMed: 22492986] 

37. Shea KF, Wells CM, Garner AP, Jones GE. ROCK1 and LIMK2 interact in spread but not blebbing 
cancer cells. PLoS One. 2008; 3(10):e3398. [PubMed: 18852895] 

38. Edwards DC, Sanders LC, Bokoch GM, Gill GN. Activation of LIM-kinase by Pak1 couples Rac/
Cdc42 GTPase signalling to actin cytoskeletal dynamics. Nat Cell Biol. 1999; 1(5):253–9. 
[PubMed: 10559936] 

39. Ohashi K, Nagata K, Maekawa M, Ishizaki T, Narumiya S, Mizuno K. Rho-associated kinase 
ROCK activates LIM-kinase 1 by phosphorylation at threonine 508 within the activation loop. J 
Biol Chem. 2000; 275(5):3577–82. [PubMed: 10652353] 

40. Brose K, Bland KS, Wang KH, Arnott D, Henzel W, Goodman CS, et al. Slit proteins bind Robo 
receptors and have an evolutionarily conserved role in repulsive axon guidance. Cell. 1999; 96(6):
795–806. [PubMed: 10102268] 

41. Wang KH, Brose K, Arnott D, Kidd T, Goodman CS, Henzel W, et al. Biochemical purification of 
a mammalian slit protein as a positive regulator of sensory axon elongation and branching. Cell. 
1999; 96(6):771–84. [PubMed: 10102266] 

42. Macias H, Moran A, Samara Y, Moreno M, Compton JE, Harburg G, et al. SLIT/ROBO1 signaling 
suppresses mammary branching morphogenesis by limiting basal cell number. Dev Cell. 2011; 
20(6):827–40. [PubMed: 21664580] 

43. Ballard MS, Zhu A, Iwai N, Stensrud M, Mapps A, Postiglione MP, et al. Mammary Stem Cell 
Self-Renewal Is Regulated by Slit2/Robo1 Signaling through SNAI1 and mINSC. Cell Rep. 2015; 
13(2):290–301. [PubMed: 26440891] 

44. Marlow R, Strickland P, Lee JS, Wu X, Pebenito M, Binnewies M, et al. SLITs suppress tumor 
growth in vivo by silencing Sdf1/Cxcr4 within breast epithelium. Cancer Res. 2008; 68(19):7819–
27. [PubMed: 18829537] 

45. Soker S, Takashima S, Miao HQ, Neufeld G, Klagsbrun M. Neuropilin-1 is expressed by 
endothelial and tumor cells as an isoform-specific receptor for vascular endothelial growth factor. 
Cell. 1998; 92(6):735–45. [PubMed: 9529250] 

46. Bernatchez PN, Rollin S, Soker S, Sirois MG. Relative effects of VEGF-A and VEGF-C on 
endothelial cell proliferation, migration and PAF synthesis: Role of neuropilin-1. J Cell Biochem. 
2002; 85(3):629–39. [PubMed: 11968003] 

47. Castro-Rivera E, Ran S, Brekken RA, Minna JD. Semaphorin 3B inhibits the phosphatidylinositol 
3-kinase/Akt pathway through neuropilin-1 in lung and breast cancer cells. Cancer Res. 2008; 
68(20):8295–303. [PubMed: 18922901] 

48. Rhodes DR, Yu J, Shanker K, Deshpande N, Varambally R, Ghosh D, et al. ONCOMINE: a cancer 
microarray database and integrated data-mining platform. Neoplasia. 2004; 6(1):1–6. [PubMed: 
15068665] 

49. Cancer Genome Atlas N. Comprehensive molecular portraits of human breast tumours. Nature. 
2012; 490(7418):61–70. [PubMed: 23000897] 

50. Finak G, Bertos N, Pepin F, Sadekova S, Souleimanova M, Zhao H, et al. Stromal gene expression 
predicts clinical outcome in breast cancer. Nat Med. 2008; 14(5):518–27. [PubMed: 18438415] 

Shahi et al. Page 12

Oncogene. Author manuscript; available in PMC 2017 December 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



51. Aguirre-Gamboa R, Gomez-Rueda H, Martinez-Ledesma E, Martinez-Torteya A, Chacolla-
Huaringa R, Rodriguez-Barrientos A, et al. SurvExpress: an online biomarker validation tool and 
database for cancer gene expression data using survival analysis. PLoS One. 2013; 8(9):e74250. 
[PubMed: 24066126] 

Shahi et al. Page 13

Oncogene. Author manuscript; available in PMC 2017 December 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 1. 
In silico analysis of breast cancer databases. (a) Analysis of TCGA database. Heat map 

indicating gene expression analysis for GATA3, SEMA3B and MYC in multiple breast 

cancer samples. (N = 597) (b) Analysis of TCGA database via Regulome explorer. Data 

present a collection of proteins including GATA3 that may reside in the same protein 

network as SEMA3B. (c) Analysis of SEMA3B expression via the GSE9014 database. 

SEMA3B expression is significantly lowered in the invasive breast carcinoma samples. 

(Normal: N = 6, Invasive breast carcinoma: N = 53, P = 1.03E-21) (d) TCGA analysis 

indicating significantly lowered SEMA3B expression in triple negative breast cancer 

samples. (Normal: N = 244, Triple negative: N = 49, P = 4.06E-9) (e) Analysis of SEMA3B 
expression in PAM50 subtypes using the METABRIC database. Luminal breast cancers 

possess higher levels of SEMA3B expression than the basal subtype, P = <0.0001, Normal: 

N = 202, Luminal A: N = 721, Luminal B: N = 492. HER2: N = 240, Basal: N = 331) (f) 

Analysis of breast cancer patient survival (31). Tumor samples exhibiting lower SEMA3B 
expression show poorer patient prognosis. (Concordance index = 62.3, Log-rank equal 

curves P = 1.6E-4, R^ 2 = 0.005/0.941, Risk groups hazard ratio = 2.4, P = 2.61E-6)
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Figure 2. 
GATA3 directly controls SEMA3B expression. (a) ChIP analysis indicating GATA3 

transcription factor binding to SEMA3B promoter in EpH4.9, T47D and MDA-MB-231 

cells. (b) qPCR analysis of GATA3 and SEMA3B expression in MDA-MB-231 cells, N = 6. 

Overexpression of GATA3 in MDA-MB-231 cells results in elevation of SEMA3B levels. 

(c) Western blot analysis of MDA-MB-231 cell lysate. Overexpression of GATA3 enhances 

SEMA3B expression. (d) Immunostaining of MDA-MB-231 (control) and GATA3 

overexpressing MDA-MB-231 cells. Overexpression of GATA3 upregulates SEMA3B 
levels. Bar 50 μm. (e) qPCR analysis of SEMA3B in NMuMG cells, N = 2. Lowering 

GATA3 expression via siRNA results in downregulation of SEMA3B levels.
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Figure 3. 
Inhibition of cellular migration and proliferation by GATA3 relies on presence of SEMA3B. 

(a) Bright-field images of MDA-MB-231 stable cell lines in 2D cell cultures. Bar, 50 μm. 

(b) Phase-contrast images of MDA-MB-231 stable cell lines in 3D cultures. Arrows indicate 

the presence of invadopodia moving outward from the colony. Bar, 200 μm. (c) 

Quantification of 3D Matrigel culture colonies. (N = 7) (d) qRT-PCR analysis of EMT-

associated genes. RNA samples from MDA-MB-231 control and MDA-SEMA3B cells were 

collected. qRT-PCR analysis indicates that SEMA3B lowers EMT gene levels. SEMA3B 

enhanced E-cadherin levels compared to control. (e) Scratch assay analysis indicating 

difference in cellular migration in MDA-MB-231 stable cell lines. N = 6 (f) Quantification 

of cell infiltration of gaps between the two invading cell fronts. The gap was measured using 

ImageJ software. Y-axis indicates experimental group/control group. (N = 6). (g) Colony 

formation assay. MDA-MB-231 stable cell lines were cultured in 6-well plates to allow 

colony growth. Colonies were stained with crystal violet and counted. N = 12. (h) Graph 

representing the quantification of Giemsa stained colonies. (N = 12).
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Figure 4. 
Loss of SEMA3B disrupts GATA3 tumor suppressive activity. (a) MDA-SEMA3B and (b) 
MDA-GATA3-SEMA3BKD stable cell lines where transplanted in 8-week-old female nude 

mice via orthotopic injection. Color photographs show a representative set of gross tumors 

from each transplanted group. Graphs indicates tumor measurement during the course of 

experiment, N = 10 for each group. (c) Immunostaining and quantification analysis for Ki67 

expression in the tumor sections (N = 6). Bar, 100 μm. (d) Analysis of inguinal lymph node 

weight from transplanted mice, N = 10 for each group. (e) H&E analysis of lymph node 

sections indicating tumor metastasis. For each transplanted group, metastatic tumor cells to 

the lymph node was quantified (N = 6). Bar = 200 μm. (f) Western blot analysis indicating 

phosphorylation status of LIMK1 and LIMK2 in control and MDA-SEMA3B cell extracts. 

Total LIMK1 and LIMK2 indicate equal loading of samples. Protein bands 72 kDa.
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