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Abstract
Cancer metabolic heterogeneity develops in response to both intrinsic factors (mutations leading to activation of oncogenic 
pathways) and extrinsic factors (physiological and molecular signals from the extracellular milieu). Here we review causes 
and consequences of metabolic alterations in cancer cells with focus on hypoxia and acidosis, and with particular attention 
to carbonic anhydrase IX (CA IX). CA IX is a cancer-associated enzyme induced and activated by hypoxia in a broad range 
of tumor types, where it participates in pH regulation as well as in molecular mechanisms supporting cancer cells’ inva-
sion and metastasis. CA IX catalyzes reversible conversion of carbon dioxide to bicarbonate ion plus proton and cooperates 
with a spectrum of molecules transporting ions or metabolites across the plasma membrane. Thereby CA IX contributes to 
extracellular acidosis as well as to buffering intracellular pH, which is essential for cell survival, metabolic performance, 
and proliferation of cancer cells. Since CA IX expression pattern reflects gradients of oxygen, pH, and other intratumoral 
factors, we use it as a paradigm to discuss an impact of antibody quality and research material on investigating metabolic 
reprogramming of tumor tissue. Based on the validation, we propose the most reliable CA IX-specific antibodies and sug-
gest conditions for faithful immunohistochemical analysis of molecules contributing to heterogeneity in cancer progression.

Keywords Carbonic anhydrase IX · Metabolism · Heterogeneity · Hypoxia · Acidosis · Antibody validation

Abbreviations
AAT   Amino acid transporter
AE  Anion exchanger
CA IX  Carbonic anhydrase IX
CCRCC   Clear cell renal cell carcinoma
DSF  Disease-free survival
ECD  Extracellular domain
ELISA  Enzyme-linked immunosorbent assay
FACS  Fluorescence-activated cell sorting
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OS  Overall survival
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1 Introduction

During cancer progression, tumor cells are exposed to mul-
tiple physiological constraints present in the growing tumor 
tissue. These constraints dynamically change in spatial and 
temporal manner, generating selection pressures and adap-
tive responses leading to expansion of cancer cells that are 
able to survive and sustain proliferation. Selected cancer 
cell subpopulations exhibit phenotypic plasticity and inva-
sive/pro-metastatic behavior, and contribute to complex tis-
sue architecture with various physiological gradients. One 
of key adaptations to fluctuating supplies and demands for 
survival and proliferation of cancer cells is their metabolic 
reprogramming.

2  Causes and consequences of metabolic 
alterations and heterogeneity

2.1  Oncogenic activation

Initial tumor growth is associated with mutations that trig-
ger deregulated oncogenic signaling. Activated oncopro-
teins and/or inactivated tumor suppressor proteins promote 
abnormal cell proliferation not only by activating positive 
regulators and counteracting negative regulators of the cell 
cycle, but also by redirecting cellular metabolism from 
oxidative phosphorylation to glycolysis [1–3]. They do so 
through signal transduction pathways leading to enhanced 
transcription, translation, and/or catalytic activation of the 
glycolytic enzymes (including glucose transporter GLUT, 
lactate dehydrogenase LDH, pyruvate dehydrogenase kinase 
PDK, and monocarboxylate transporter MCT) as explained 
in more detail elsewhere. Classical examples of this phe-
nomenon include activated MYC and RAS and inactivated 
p53, von Hippel-Lindau (VHL), and phosphatase and tensin 
homolog (PTEN), but also many other regulatory molecules 
[4, 5]. In addition, activating mutations can occur directly in 
the components of the metabolic pathways, such as isocitrate 
dehydrogenase (IDH), fumarate hydratase (FH), and/or suc-
cinate dehydrogenase (SDH) [6–8]. Albeit glycolysis is not 
as efficient as respiration in energy production, it allows for 
synthesis of cellular biomass that is particularly important 
for uncontrolled proliferation of cancer cells [1, 2]. Yet, most 
cancer cells retain functional mitochondria that are essential 
for lipid synthesis and protein acetylation [6].

2.2  Stresses in tumor microenvironment

Proliferative advantage of cancer cells enables in situ 
expansion of tumor lesion until the demands for nutrients 

and oxygen exceed their supply from the nearest functional 
blood vessel [9–11]. Long-lasting lack of oxygen (i.e., 
anoxia) is incompatible with the survival of cells and gen-
erates necrotic regions that are histological surrogates of 
poor cancer prognosis. Lowered oxygenation (i.e., hypoxia) 
reinforces the shift of cancer cells to glycolytic metabolism 
and induces additional phenotypic changes, such as angio-
genesis generating aberrant tumor vasculature, cell–cell 
deadhesion linked with migration-invasion, and genomic 
instability facilitating accumulation of mutations [12]. 
Mechanisms behind these phenotypic changes include both 
transcriptional and translational reprogramming governed 
principally by the hypoxia-inducible transcription factors 
(HIFs) and by the unfolded protein response (UPR)-driven 
pathways, as reviewed in [13–16].

Importantly, these adaptations are not uniform. They vary 
depending on many circumstances including cancer type/
origin, position of cells in the diffusion gradients, and time 
of their exposure to the hypoxic stress [11, 17]. Thus, meta-
bolic preferences of the peri-necrotic cancer cells chronically 
suffering from severe hypoxia considerably differ from the 
preferences of the moderately hypoxic cells as well as from 
the oxygenated cells located proximally to the vasculature 
[18].

In a simplified interpretation, cells in the region of severe 
hypoxia are highly dependent on glycolysis, while the mod-
erately hypoxic cells can utilize tricarboxylic acid (TCA) 
cycle and oxidative phosphorylation system (OXPHOS) by 
consuming lactate exported from the highly glycolytic cells, 
a phenomenon known as metabolic symbiosis [19, 20]. Nor-
moxic cells exploit glycolysis in the presence of oxygen (so-
called Warburg effect) along with TCA/OXPHOS, driven 
by various fuels available in the tumor microenvironment 
(TME), including amino acids and lipids [11, 17].

Oncogenic metabolism produces an excess of acidic 
metabolic products, such as lactate, protons, and carbon 
dioxide. Although these metabolites are primarily gener-
ated intracellularly, machinery protecting cancer cells from 
an intracellular acidosis extrudes them to the pericellular 
space either by the active export mechanisms or by altering/
reversing their gradients across the plasma membrane [21]. 
Consequently, these acidic products accumulate in TME 
(especially when distant from the blood flow) and generate 
an extracellular acidosis, which has a significant impact on 
metabolic performance as well as on additional phenotypic 
characteristics of tumor cells contributing to their pro-met-
astatic behavior and to cancer progression [18, 22]. Acidosis 
was shown to directly affect protonation states of impor-
tant regulatory proteins with pH-sensitive amino acids, as 
exemplified by p53, sodium-proton exchanger 1 (NHE1), 
epidermal growth factor receptor (EGFR), ß-catenin, etc., 
thereby causing structural changes that results in their 
altered functions [23]. Moreover, intracellular acidosis 
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leads to increased accumulation of reactive oxygen species 
(ROS) and enhanced ferroptosis, a non-apoptotic form of 
iron-dependent cell death [24, 25]. Acidic pH is also linked 
with immune cells’ anergy and resistance to anticancer drugs 
[26].

Metabolic heterogeneity is also developing along the can-
cer progression stages. Invasive and circulating cancer cells 
depend on the acquisition of an anchorage-independence 
to avoid anoikis and gain metabolic phenotype overcoming 
excessive ROS production and bioenergetic crisis caused 
by the loss of attachment signals. These non-adherent cells 
require high amounts of ATP for survival (and not the bio-
mass for proliferation), thus relying more on mitochondrial 
metabolism during their detachment, invasion, and flow 
within the blood stream or in lymphatics [27–29].

2.3  Tumor‑stroma cross‑talk

Diversity of responses to physiological stresses in TME by 
cancer cell subpopulations is not the only determinants of 
the metabolic heterogeneity in tumors. This phenomenon 
gains complexity through the cross-talk of cancer cells with 
the cells in stroma. Stroma is a connective component of the 
tumor tissue showing highly variable extent and composition 
depending on the organ of residence, tumor type, and can-
cer stage. Different stromal cells communicate with cancer 
cells via multiple signaling entities including growth factors, 
exosomes, and micro-/nanotubular structures, but also via 
metabolites [17, 30, 31]. Cancer and stromal cells can live 
in a metabolic symbiosis not only by releasing/consuming 
lactate, but also by venting of cancer cells-produced  CO2 via 
gap junctions of stromal cells and potentially through addi-
tional mechanisms that still remain to be elucidated [32, 33].

2.4  Links between pH control and metabolism

Successful adaptation of tumor cells to oncogenic metabo-
lism and/or hypoxia strongly depends on activation of the 
pH control machinery [18, 34]. Its prime role is to maintain 
a slightly alkaline intracellular pH (pHi ~ 7.2 to 7.7) that is 
required for the effective biosynthesis, ATP production, and 
signaling [35]. Major components of this pH control machin-
ery can be induced by hypoxia and/or are pH-sensitive mol-
ecules, including sodium-proton exchangers (e.g., NHE1), 
anion exchangers (e.g., AE2), sodium-bicarbonate transport-
ers (e.g., NBCe1), monocarboxylate transporters (MCT1 and 
MCT4), and related molecules. Moreover, MCTs can also 
affect the glycolytic flux by mediating co-extrusion of lactate 
and protons and therefore represent one of the intersecting 
points of metabolism and pH control [20, 22, 36].

Besides extrusion of lactate and protons, pHi control also 
involves removal of the intracellular  CO2 by diffusion to 
extracellular space as well as the import of bicarbonate ions 

generated by the hydration of pericellular  CO2 to cytoplasm, 
leaving protons from the same reaction outside the cells. 
These processes lead to extracellular acidosis that often per-
sists in tumor microenvironment because the acidic meta-
bolic products cannot be effectively removed by the aberrant 
tumor vasculature. Extracellular acidosis can activate pro-
teolytic enzymes that degrade extracellular matrix and facili-
tate invasion and metastasis. Moreover, cancer cells with 
activated pH-regulating machinery can resist toxic effects 
of extracellular acidosis generated by oncogenic metabolism 
and even benefit from an acidosis-supported acquisition of 
aggressive tumor phenotypes. Thus, cancer cells gain selec-
tive advantage against surrounding normal cells that cannot 
adapt [37].

Acidosis strongly influences tumor metabolic preferences, 
reducing glycolysis while promoting mitochondrial activity. 
It supports progression-related processes such as angiogen-
esis, invasion, and metastasis and is linked to cellular phe-
nomena including aneuploidy and mutation rate, autophagy 
and survival, cell migration, and release of exosomes [18]. 
Moreover, acidosis is enriched at tumor-stroma interfaces 
(in addition to regions of chronic hypoxia) and cells within 
the acidic front are invasive and proliferative [33, 38]. From 
the clinical point of view, intratumoral acidosis is associated 
with resistance to chemo-, radio-, and immuno-therapies.

3  Carbonic anhydrase IX and its role 
in tumor metabolism

3.1  CA IX essentials

Carbonic anhydrase IX (CA IX) has been initially cloned as 
a cancer-associated transmembrane enzyme with an active 
site facing the extracellular space and catalyzing the revers-
ible conversion of carbon dioxide to bicarbonate ion and pro-
ton [39, 40]. CA IX shows very high catalytic activity, com-
parable to the CA II isoform that belongs to the most active 
enzymes in general. Interestingly, CA IX activity culminates 
at acidic pH around 6.5, typical for tumor microenviron-
ment [41, 42]. Moreover, CA IX is strongly responsive to 
hypoxia both at the level of expression by the HIF-mediated 
transcriptional activation [43], and at the level of catalytic 
activity by the protein kinase A (PKA)-mediated phospho-
rylation [44]. In addition, available experimental data show 
that the expression of CA IX can be induced under nor-
moxic conditions in connection with oncogenic activation 
of the RAS, SRC, or RET pathway, and upon treatment with 
glucose, lactate, and glutamine (particularly in combination 
with serum growth factors) that are important substrates of 
tumor metabolism [45–49].

CA IX is an important constituent of pH regulation in 
tumor cells via contribution to intracellular neutralization/
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alkalization and extracellular acidification [50–52]. Indeed, 
CA IX cooperates with a number of genuine pH regulators 
mentioned above, including NBCe1 and NBCn1, MCT1 
and MCT4, NHE1, AE2, and NCX1 (Fig. 1) [53–59]. These 
cooperative activities are mainly dependent on the enzyme 
active site in the CA domain localized in the central part 
of the CA IX ectodomain near its transmembrane region, 
as described in [53–55] and depicted below. However, the 
N-terminal part (so-called PG region) protruding to the 
extracellular space participates in the non-catalytic pH regu-
lation, as an antenna enhancing export of protons coupled 
with export of lactate ions via MCTs [56–58]. In fact, CA IX 
acts as an extracellular pH–stat, maintaining an acidic tumor 
extracellular pH that is tolerated by cancer cells and supports 
their pro-metastatic behavior [52]. CA IX-mediated extra-
cellular acidosis is also associated with decreased immune 
activity in the tumors of patients with a broad spectrum of 
solid malignancies [60]. At the same time, CA IX stabilizes 
intracellular pH that is conducive to survival and prolifera-
tion [6, 51]. Recently, Chafe et al. have demonstrated that the 
role of CA IX in maintaining an alkaline intracellular pH is 
critical for  suppression of ferroptosis [25].

The effects of CA IX on tumor phenotype can be blunted 
either by the silencing/suppression of the CA IX expression, 
or by the small molecule inhibitors of the CA IX catalytic 

activity, or by the CA IX-specific antibodies as documented 
in a number of published studies and reviews [61–68]. More-
over, the knowledge obtained in pre-clinical studies of CA 
IX inhibitors and/or antibodies has opened the window for 
novel anticancer strategies, some of which have been trans-
lated into the clinical trials (reviewed in [69] and listed in 
https:// clini caltr ials. gov].

3.2  CA IX and metabolic reprogramming

Since hypoxia and acidosis are intimately coupled with 
expression and activities of enzymes involved in oncogenic 
metabolism, it is not surprising that CA IX can play a role 
in metabolic pathways, echoing intratumoral oxygen and pH 
gradients in metabolic heterogeneity of tumor tissue. CA IX 
expression and/or activity appears to be required for acceler-
ated lactate efflux via MCTs [57, 58], for full expression and 
activity of PDK1, a gate-keeping enzyme to the TCA cycle 
in mitochondria [70, 71], for full expression and activity 
of a key glycolytic enzyme LDHA [72], and ultimately for 
maximizing glycolytic flux and facilitating cell prolifera-
tion in hypoxic/acidic  TME [73]. This conclusion is in line 
with the fact that glycolysis both generates and senses pH 
changes caused by the formation and accumulation of acidic 
metabolites [74, 75].

Fig. 1  Schematic view of the 
CA IX position in molecular 
pathways driving metabolic 
reprogramming of cancer 
cells. Oncogenic activation 
and hypoxia drive metabolic 
reprogramming in part via 
HIF-mediated induction and/or 
activation of certain glycolytic 
enzymes (LDHA) and trans-
porters of glucose (GLUT), 
lactate (MCT), and amino acids 
(AAT). This allows cancer cells 
to generate energy and biomass 
for survival and proliferation. At 
the same time, HIF induces key 
components of pH regulating 
machinery, including ion trans-
porters (NBC and NCX) as well 
as carbonic anhydrase IX (CA 
IX), in order to protect cancer 
cells from intracellular acidosis 
generated by the oncogenic 
metabolism. CA IX cooperates 
with these molecules via its 
extracellular domains either in 
a catalytic or in a non-catalytic 
manner thereby regulating pH 
and supporting metabolic adap-
tations of cancer cells
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CA IX also plays a role in molecular mechanisms medi-
ating cell adhesion-migration-invasion [76, 77]. On one 
hand, CA IX can affect the assembly and maturation of focal 
adhesion contacts during cell attachment and spreading on 
solid support [78, 79], and on the other one, it can desta-
bilize E cadherin-mediated intercellular contacts [80] and 
facilitate migration/invasion. CA IX re-localizes to cellular 
leading-edge structures, namely filopodia during migration 
and invadopodia during invasion, where it contributes to pH 
regulation at both sides of the plasma membrane [54, 81]. It 
operates via coordinated regulation of an interactome com-
posed of bicarbonate transporters and amino acid transport-
ers as well as cortactin, integrins, and metalloproteinases 
[81–83]. This also implies possible involvement of CA IX in 
metabolic processes that supply energy both to (1) formation 
and growth of these highly dynamic subcellular structures 
potentially via podosome-confined glycolysis, as suggested 
by Stock and Schwab [84], and (2) movement and protrusion 
of individual cells or cell clusters via enhanced respiration, 
mitochondrial biogenesis, and reduced lipogenesis [85, 86].

3.3  CA IX as a surrogate marker of hypoxia, acidosis, 
and glycolytic metabolism

CA IX is mostly viewed as a biomarker of hypoxia and/
or acidosis. It is expressed in many tumor types and shows 
highly heterogeneous expression pattern, as reviewed in 
[68]. It is usually localized in broader peri-necrotic zones 
involving both highly and moderately hypoxic cells that are 
viable and possess a strong metastatic potential. Because 
of the responsiveness to both severe and moderate hypoxia, 
CA IX distribution only partly overlaps with that of HIF-1α 
and of other hypoxia-regulated proteins induced at differ-
ent hypoxic thresholds [43, 87, 88]. Occasionally, CA IX 
distribution is diffused, presumably as a sign of oncogene 
activation or inactivating mutation of tumor suppressor. 
CA IX can be also found in HIF-1α negative areas possi-
bly because reoxygenation leads to instantaneous degrada-
tion of the HIF-1α but not of the highly stable CA IX. In 
accord with the CA IX role in pH regulation, its expression 
is increased at the interface between tumor and stroma, in 
the acidic front containing invasive and proliferative cells 
that rely on glycolysis [9, 38].

In light of the data connecting CA IX to glycolytic 
metabolism, CA IX can be viewed as a surrogate indica-
tor of glycolytic metabolic phenotype. Indeed, data from 
the literature show that in patients’ specimens of tumors 
derived from diverse tissue types, CA IX is often cor-
related, co-expressed, and/or spatially overlapped with 
the traditional biomarkers of the glycolytic metabolism 
(GLUT1, MCTs, LDH) and glucose consumption rate 
(18FDG). For example, significant overall correlation 
and co-localization of CA IX with GLUT1, MCT4, and 

MCT1 was demonstrated by immunohistochemistry (IHC) 
in advanced head and neck carcinomas [89]. Considerable 
spatial overlap between CA IX and GLUT1 was found 
in areas of diffusion-limited hypoxia in glioblastomas 
and astrocytomas [90]. CA IX correlation with GLUT1 
was also found in papillary renal cell carcinomas [91], 
in bladder cancer [92], and in cervical carcinomas [93]. 
In addition, higher expression of CA IX was linked with 
the stronger 18FDG uptake in non-small cell lung cancer 
[94]. CA IX expression was also correlated with LDH5 
expression in gastrointestinal adenocarcinomas [95]. Inter-
estingly, analysis of transcriptional profiles of different 
tumor types fully supports these links (Fig. 2). Altogether, 
these data reinforce the existence of in vivo link between 
CA IX and glycolysis.

Mixed glioma (20)
Astrocytoma (76)

Oligodendroglioma (60)
Testis, seminoma (28)

Testis, non-seminoma (178)
Nephroblastoma (37)

Renal transitional cell carcinoma (65)
Bladder carcinoma, pappilary (6)

Uterine endometroid adenocarcinoma (126)
GBM (469)

Rhabdomyosarcoma (37)
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Neuroblastoma (265)
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Thyroid carcinoma, follicular (14)
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Ovarian carcinoma, other (65)
Ovarian serous carcinoma (449)

Mesothelioma (43)
Renal carcinoma, other (62)

Renal clear cell carcinoma (213)
Lung carcinoid tumor (31)

Ovarian mucinous carcinoma (19)
Pancreatic cancer, other (36)

Colorectal mucinous carcinoma (33)
Cervical squamous cell carcinoma (51)

Lung squamous cell carcinoma (184)
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Oral squamous cell carcinoma (17)

Lung large cell cancer (18)
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Bladder, transitional cell carcinoma (160)

LDHB                              CA9 LDHA MCT4

Fig. 2  A heatmap visualizing differential expression of genes coding 
for the CA IX (CA9) and for the glycolytic enzymes LDHA (support-
ing glycolysis), LDHB (supporting TCA cycle), and MCT4 (extrud-
ing lactate ions and protons) in various tumor samples (the number 
of samples is indicated in brackets). The color scale ranges from blue 
(lowest mean expression) through white (average mean expression) 
to red (highest mean expression). Data were analyzed and extracted 
through IST (in silico transcriptomics) online (MediSapiens; https:// 
medis apiens. com/), the largest fully integrated and annotated human 
gene expression data source
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4  Challenges for characterizing metabolic 
heterogeneity in tumor tissues

Current research of cancer metabolism and metabolic het-
erogeneity in cancer progression focuses primarily on tech-
nologically advanced methods of metabolomics, as reviewed 
by [96]. However, identification of underlying molecular 
mechanisms still depends on approaches of molecular/cell 
biology and cancer physiology. Due to a complex nature 
of this topic, it is extremely important to employ validated 
research tools and correct methodical approaches as well as 
appropriate research material.

The need for antibody validation is particularly evident 
for molecules that are functionally involved in metabolic 
pathways, irrespective of whether they are detected in cel-
lular extracts, cultured cells, or in tumor tissues [97]. Once 
the antibody does not fulfill strict specificity and quality 
requirements, it can provide false data leading to inaccurate 
interpretation of results. This can eventually obscure the rec-
ognition of a real biological role and/or clinical value of the 
studied molecule. In addition, such situation can result in 
impairment of data reproducibility and failure of therapeutic 
targeting strategies, as witnessed in nowadays’ science and 
clinical R&D. There are also additional challenges includ-
ing inappropriate tissue material and data presentation that 
have to be addressed in order to improve the way towards 
unraveling tumor heterogeneity.

4.1  Quality of antibodies

Looking at the investigations of CA IX as a molecule that 
contributes to tumor heterogeneity and metabolic repro-
gramming through response to hypoxia and acidosis, it is 

evident that researchers use diverse antibodies from various 
sources, often without proper characterization, just relying 
on the recommendations in datasheet. To date, more than 
1,310 (from 45 providers) and 959 anti-CA IX antibodies 
are listed in Antibodypedia [98] and CiteAb [99], respec-
tively. Many of these antibodies are routinely used in basic 
research for detection and quantification of CA IX, as well as 
for determination of its distribution and interactions within 
cells. A subgroup of antibodies is also used in clinical stud-
ies to reveal the CA IX expression in tissues and its prog-
nostic, diagnostic, and therapeutic potential. However, not 
all of these antibodies can comply with high standards of 
performance and reliability.

To clarify this situation, eight commercially available 
antibodies that are most frequently cited in the numerous 
clinical studies of CA IX were subjected to a comprehen-
sive validation in our laboratory. Overall reactivity of the 
antibodies was compared with the providers’ recommenda-
tions in the datasheets. Table 1 summarizes an overview of 
the antibody validation results obtained in five applications, 
namely WB, ELISA, FACS, IF/ICC, and IHC (see the origi-
nal validation data in the Supplementary information). Anti-
body binding regions on the CA IX molecule are depicted 
in Fig. 3. The antibodies were selected predominantly on 
the basis of meta-analysis performed by van Kuijk and col-
leagues [100]. There, the data from 147 clinical studies 
encompassing more than 24,000 cancer patients were evalu-
ated with respect to CA IX expression assessed by IHC in 
relationship to several endpoints, including overall survival 
(OS), disease-free survival (DFS), and progression-free 
survival (PFS). Meta-analysis confirmed the correlation of 
high CA IX expression to disease progression, locoregional 
failure, and development of metastasis, independently of 
tumor type or site. Since most of the included clinical studies 

Table 1  Characteristics of antibodies demonstrated by validation compared to recommendations of providers

WB ELISA FACS IF/ICC IHC
R V R V R V R V

M75 (m) Y Y Y Y Y Y Y Y Y Y
ab15086 (r) Y Y Y Y N Y b

D10C10 (r) Y Y N N Y a b

GT12 (m) Y Y N Y N Y N Y N
2D3 (m) d Y N N Y N N Y N
NB100-417 (r) Y Y Y N Y N Y Y b

AF2188 (g) Y Y N Y Y Y Y

R V

Y Y

Y Y

Y Y
Y Y c

H-11 (m) Y Y Y Y Y Y Y Y Y c

SAB1300310 (r) Y Y Y N Y Y a Yd

a Only in cells with high ectopic expression
b Only after demasking
c High background
d Clone with the same characteristics is available also as  NBP1-51691 and ab107257
d Faint staining signal
R, recommended by the provider; V, validated in our laboratory; Y, yes; N, no; m, mouse; r, rabbit; g, goat; red color signifies a disagreement 
with the provider’s recommendation

1040 Cancer and Metastasis Reviews (2021) 40:1035–1053



1 3

(46%) employed M75 monoclonal antibody, it was used as 
a reference antibody. Moreover, its CA IX specificity and 
excellent performance was proven in many other research 
papers from a number of laboratories. Representative IHC 
staining with M75 antibody is shown in Fig. 4.

Because IHC is (except metabolomics) a key approach 
in determining tissue expression of regulators/executors of 
metabolic reprogramming in tumors and in elucidating their 
clinical value as potential biomarkers and therapy targets, 
our validation was focused primarily on this application. 
Specificity of anti-CA IX antibodies in IHC was examined 
using serial tissue sections of the clear cell renal cell car-
cinoma (CCRCC) with proven high expression of CA IX 
compared to the CA IX-negative normal kidney tissue (Sup-
plementary information). In addition to the M75 reference, 
additional 3 commercial antibodies were found more or less 
suitable for IHC, considering specific methodical adjust-
ments, such as requirement for antigen retrieval (citrate or 
EDTA) as well as duration and temperature of staining (1 h 
at RT versus O/N at 4 °C). Assessment of these methodical 
details for each particular antibody and their precise descrip-
tion in related publication is extremely important for the 
reliability and reproducibility of data.

In brief, the validation performed in our laboratory 
revealed that monoclonal D10C10 and polyclonal antibodies 

ab15086 and NB100-417 are reliable alternatives to mono-
clonal antibody M75, while the antibodies H-11 and AF2188 
suffer from non-specific reactivity and high background that 
may potentially lead to false positivity. The antibodies GT12 
and 2D3 are not suitable for the detection of CA IX by IHC.

4.2  Identification of antibodies and data 
presentation

Almost 30% of the IHC studies involved in the meta-analysis 
by van Kuijk et al. (2016) [100] contain insufficient descrip-
tion of the used anti-CA IX antibody, missing its unambigu-
ous identification and just mentioning the provider (if at all). 
In some cases, authors declare an incorrect source of the 
antibody (see Table 2). Since some providers offer a number 
of different antibodies to CA IX, this introduces a lot of con-
fusion and questions the data interpretation as well as their 
reproducibility. However, this drawback is not limited to CA 
IX—it is a generally occurring and persisting problem in 
the entire biomedical research, since the antibody cannot be 
recognized in more than a half of all respective publications 
(as reviewed by [101]).

Moreover, about 14% of papers included in the meta-
analysis [100]do not display even the representative images 
of the IHC stained tissues (neither in the articles themselves, 

Fig. 3  Schematic illustration of binding sites of M75 and eight vali-
dated antibodies. The positions of antibody binding regions are 
shown on the schematic model of the CA IX protein comprising a 
proteoglycan-like (PG) region, carbonic anhydrase (CA) domain, 
transmembrane (TM) anchor, and intracytoplasmic (IC) tail. Anti-
body arrangement reflects the information available in the datasheets. 

Monoclonal and polyclonal type of antibody is depicted using full 
and dashed line, respectively. No information regarding the immuno-
gen used for the generation of 2D3 monoclonal antibody is available 
in its datasheet. According to “Ten basic rules of antibody validation” 
[101], all selected antibodies are correctly described by providers 
and, with exception of 2D3, have a defined immunogen
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nor in their Supplementary data), thus precluding a visual 
inspection of the staining intensity and pattern.

4.3  Tissue specimens

Deeper analysis of all CA IX-dedicated IHC studies sum-
marized by van Kuijk and colleagues [100] revealed another 
problem. Whole tissue blocks were used in 40% of studies, 
the rest was performed using either biopsy or tissue microar-
ray (TMA). Although there are several advantages favoring 
the utilization of TMAs in IHC, this approach can lead to 
loss of important information due to intratumoral hetero-
geneity, especially when only one TMA core is included 
in the staining. This is supported by the observation that 
only 4.7% of breast cancer TMA cores were found CA IX-
positive compared to 18.1% of whole tissue blocks [138]. 

Another factor negatively impacting results of IHC lies in 
omitting perinecrotic regions from TMA construction. It is 
well-known that intratumoral hypoxia is reflected histologi-
cally by the presence of necrosis, which is considered a bad 
prognostic factor in cancer patients [176, 177]. Staining pat-
tern of the hypoxia-induced CA IX is very heterogeneous, 
often confined to perinecrotic areas, and therefore, use of 
TMAs devoid of necrotic regions is not appropriate for the 
CA IX IHC analysis. The same is true for other molecules 
related to cancer metabolism, which is a phenomenon with 
inherent heterogeneity.

In case of TMA, the best way how to overcome the 
problem of tumor tissue heterogeneity is to analyze mul-
tiple cores. According to several studies, up to 98% con-
sistency with the results from full-block sections can be 
achieved when at least three TMA cores are stained. Lower 

Fig. 4  Representative images from tumor (CCRCC) and normal kid-
ney tissue stained using M75 reference antibody. Tissue sections were 
directly incubated with M75 monoclonal antibody for 1 h at RT. Fol-
lowing the incubation with anti-mouse secondary antibody, positive 

reaction was visualized using DAB as a chromogen. Sections were 
counterstained with Mayer hematoxylin. A, C Original magnifica-
tion × 100. B,  D Original magnification × 400
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Table 2  Evaluation of selected clinical studies (first author, year) 
with respect to their reproducibility potential. The studies were clus-
tered according to organ of tumor origin and subjected to evaluation 
of the primary antibody quality based on the results of our current 
validation (antibody), relevance of tissue specimens for investigation 
of tumor heterogeneity (tissue), and methodology judged according 
to the available data on antigen retrieval, staining kits, and positive/
negative control (IHC staining). The “reproducibility index” (RI) was 
calculated as a sum of stars awarded to each variable (Antibody, Tis-
sue, IHC staining)  with the maximum of 7 points per study. Three 

stars were used when a sufficient description (clone name, source, 
dilution) of primary anti-CA IX antibody was mentioned within a 
particular study. Tissue sample was evaluated using either T/TMA≧3 
(for whole tissue or TMA ≧ 3 cores, 1 star) or B/TMA < 3 (for biopsy 
or TMA < 3 cores, no star). IHC staining was evaluated regarding the 
available data about antigen retrieval, staining kit, and positive/nega-
tive control (maximum 3 stars). Hazard ratio (HR) with correspond-
ing 95% CI as well as Newcastle–Ottawa score (NOS) quality assess-
ment was adopted from van Kuijk et al., Front Oncol 2016 [100]

Brain
Study Antibody Tissue IHC staining  RI HR (95% CI)/endpoint NOS
Dungwa, 2012 [102] M75 ✶ ✶ T/TMA≧3 ✶ ✶ ✶ 5 1.71 (0.80–3.65)/OS 1.73 

(0.83–3.59)/PFS
7

Korkolopoulou, 2007 [103] M75 ✶ ✶R T/TMA≧3 ✶ ✶ ✶ ✶ 6* 4.04 (2.38–6.85)/OS 6
Ameis, 2015 [104] M75 ✶ ✶ ✶ T/TMA≧3 ✶ ✶ ✶ 6 15.7 (2.04–121.1)/OS 5
Jarvela, 2008 [105] M75 ✶ ✶ ✶ B/TMA < 3 ✶ ✶ 5 2.98 (1.67–5.30)/OS 5
Nordfors, 2010 [106] M75 ✶ ✶ ✶ B/TMA < 3 ✶ ✶ 5 3.96 (1.20–13.0)/OS 4
Haapasalo, 2006 [107] M75 ✶ ✶ ✶ B/TMA < 3 ✶ ✶ ✶ 6 1.40 (1.01–1.94)/0S 3
Erpolat, 2013 [108] Abcam ✶ ✶ T/TMA≧3 ✶ ✶ ✶ ✶ 6 2.34 (1.47–3.71)/OS 5
Proescholdt, 2012 [109] Novus ✶ ✶ B/TMA < 3 R 2* 3.67 (2.03–6.61)/OS 6
Yoo, 2010 [110] Novus ✶ ✶ T/TMA≧3 ✶ ✶ ✶ 5 2.27 (1.29–4.00)/OS 4
Abraham, 2012 [111] †Santa Cruz

✶ ✶
T/TMA≧3 ✶ ✶ ✶ ✶ 6 1.59 (0.35–7.15)/OS 1.65 

(0.50–5.48)/PFS
5

Abraham, 2012 [111] †Santa Cruz
✶ ✶

T/TMA≧3 ✶ ✶ ✶ ✶ 6 0.19 (0.02–1.61)/OS 0.47 
(0.06–3.69)/PFS

5

Jensen, 2012 [112] †Santa Cruz
✶ ✶

T/TMA≧3 ✶ ✶ ✶ ✶ 6 1.10 (0.62–1.95)/OS 1.31 
(0.64–2.66)/PFS

4

Sooman, 2015 [113] Strategic Diagnostics
✶ ✶ ✶

B/TMA < 3 R 3* 3.35 (1.55–7.22)/OS 4

Flynn, 2008 [114] ? T/TMA≧3 ✶ ✶ ✶ ✶ 4 1.19 (0.70–2.03)/OS 4
Preuser, 2005 [115] ? T/TMA≧3 ✶ ✶ ✶ 3 Inadequate data/OS -
Pancreas
Study Antibody Tissue IHC staining  RI HR (95% CI)/endpoint NOS
Couvelard, 2005 [116] M75 ✶ a T/TMA≧3 ✶ ✶ ✶ ✶ 5 35.3 (10.3–121)/OS 7
Couvelard, 2005 [117] M75 ✶ a T/TMA≧3 ✶ ✶ ✶ ✶ 5 1.86 (0.90–3.84)/OS 7
Chang, 2010 [118] M75 ✶ ✶ R T/TMA≧3 ✶ ✶ ✶ 5* 0.99 (0.54–1.80)/OS 4
Hiraoka, 2010 [119] M75 ✶ ✶ ✶ T/TMA≧3 ✶ ✶ ✶ ✶ 7 1.33 (0.97–1.84)/DFS 1.49 

(1.07–2.07)/DSS
3

Li, 2016 [120] Abcam ✶ ✶ T/TMA≧3 ✶ ✶ ✶ ✶ 6 2.24 (1.26–3.96)/OS 7
Schmitt, 2009 [121] Abcam ✶ ✶ ✶ B/TMA < 3 ✶ ✶ ✶ 6 7.36 (3.11–17.4)/DFS 3
Yu, 2015 [122] Epitomics ✶ ✶ T/TMA≧3 ✶ ✶ ✶ ✶ 6 1.07 (0.63–1.81)/OS 6
Breast
Study Antibody Tissue IHC staining  RI HR (95% CI)/endpoint NOS
Trastour, 2007 [123] M75 ✶ ✶ ✶ T/TMA≧3 ✶ ✶ ✶ 6 Inadequate data/OS 2.57 (1.39–

4.77)/DFS 2.70 (1.20–6.10)/
MFS

7

Hussain, 2007 [124] M75 ✶ ✶ ✶ T/TMA≧3 ✶ ✶ ✶ ✶ 7 2.63 (1.21–5.70)/OS 6
Betof, 2012 [125] M75 ✶ ✶a B/TMA < 3 ✶ ✶ ✶ 5 2.20 (1.10–4.41)/OS 1.88 

(1.13–3.13)/PFS
5

Aomatsu, 2014 [126] M75 ✶ ✶a T/TMA≧3 ✶ ✶ ✶ 5 4.44 (1.80–10.9)/DFS 4
Lou, 2011 [127] M75 ✶ ✶R B/TMA < 3 ✶R 3** 1.93 (1.65–2.26)/DFS 2.28 

(1.89–2.73)/DSS 2.06 (1.74–
2.43)/MFS

4

Tan, 2009 [128] M75 ✶ ✶ ✶ B/TMA < 3 ✶ ✶ 5 5.02 (3.01–8.38)/OS 1.89 
(1.19–3.00)/DFS

4
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Table 2  (continued)

Brennan, 2006 [129] M75 ✶ ✶a B/TMA < 3 ✶ ✶ ✶ 5 1.91 (1.12–3.26)/OS 1.99 (1.30–
3.05)/DFS 1.85 (1.19–2.87)/
DSS

3

Generali, 2006 [130] M75 ✶ ✶ ✶ B/TMA < 3 ✶ ✶ ✶ 6 1.93 (0.86–4.33)/OS 1.67 
(0.89–3.14)/DFS

3

Kyndi, 2008 [131] M75 ✶ ✶R B/TMA < 3 ✶ ✶ ✶ 5* 1.30 (1.06–1.60)/OS 1.28 (0.82–
2.01)/LC 1.29 (1.02–1.62)/DSS 
1.23 (0.98–1.54)/MFS

3

Neumeister, 2012 [132] M75 ✶ ✶ ✶ B/TMA < 3 ✶ ✶ ✶ 6 2.21 (1.20–4.09)/DSS 3
Neumeister, 2012 [132] M75 ✶ ✶ ✶ B/TMA < 3 ✶ ✶ ✶ 6 1.36 (0.75–2.47)/DSS 3
Tomes, 2003 [88] M75 ✶ ✶ ✶ T/TMA≧3 ✶ ✶ ✶ ✶ 7 0.78 (0.31–1.94)/OS 2
Doyen, 2014 [133] M75 ✶ ✶ ✶ T/TMA≧3 ✶ ✶ ✶ 6 Inadequate data/MFS -
Pinheiro, 2011 [134] Abcam ✶ ✶ ✶ B/TMA < 3 ✶ ✶ ✶ 6 2.22 (0.79–6.20)/DFS 7
Garcia, 2007 [135] Abcam ✶ ✶ ✶ B/TMA < 3 ✶ ✶ 5 1.55 (1.19–2.01)/OS 4
Bane, 2014 [136] Abcam ✶ ✶ T/TMA≧3 ✶ ✶ 4 1.53 (0.84–2.77)/LC 4
Kim H, 2014 [137] Abcam ✶ ✶ B/TMA < 3 ✶ ✶ ✶ 5 1.43 (0.80–2.56)/OS 4
Lancashire, 2010 [138] Abcam ✶ ✶ ✶ B/TMA < 3

T/TMA≧3 ✶
✶ ✶ ✶ 6* Inadequate data/OS 2.19 

(0.78–6.16)/DFS
3

Kornegoor, 2012 [139] Abcam ✶ ✶ T/TMA≧3 ✶ ✶ ✶ ✶ 6 0.62 (0.19–2.11)/OS 3
Noh, 2014 [140] Abcam ✶ ✶ B/TMA < 3 ✶ ✶ ✶ 5 Inadequate data/OS inadequate 

data/DFS
-

Currie, 2013 [141] Novus ✶ ✶ T/TMA≧3 ✶ ✶ ✶ ✶ 6 1.05 (0.48–2.26)/OS 0.77 
(0.39–1.55)/DFS

6

Deb, 2014 [142] Novus ✶ ✶ B/TMA < 3 ✶ ✶ 4 2.20 (0.80–5.70)/OS 3
Beketic-Oreskovic, 2011 [143] †Santa Cruz

✶ ✶
T/TMA≧3 ✶ ✶ ✶ ✶ 6 4.78 (2.15–10.6)/OS 7

Kaya, 2012 [144] †Santa Cruz
✶ ✶ ✶

T/TMA≧3 ✶ ✶ ✶ ✶ 7 2.82 (1.71–4.64)/OS 0.84 
(0.53–1.33)/DFS

5

Head and neck
Study Reproducibility index HR (95% CI)/endpoint NOS

Antibody Tissue IHC staining  RI
Silva, 2010 [145] M75 ✶ ✶ ✶ B/TMA < 3 ✶ ✶ ✶ 6 5.21 (2.48–10.9)/LC 5.08 

(2.53–10.2)/DSS
7

Hui, 2002 [87] M75 ✶ ✶ B/TMA < 3 ✶ ✶ ✶ 5 1.39 (0.64–3.01)/OS 1.28 
(0.65–2.52)/PFS

6

Koukourakis, 2001 [146] M75 ✶ ✶ ✶ B/TMA < 3 ✶ ✶ 5 2.47 (1.23–4.98)/OS 3.05 
(1.46–6.35)/LC

6

Koukourakis, 2006 [147] M75 ✶ ✶ B/TMA < 3 ✶ ✶ 4 1.79 (1.21–2.64)/OS 1.84 
(1.24–2.75)/LC

6

Bernstein, 2015 [148] M75 ✶ ✶ ✶ B/TMA < 3 ✶ ✶ ✶ 6 1.67 (0.77–3.61)/LC 2.31 
(1.04–5.12)DSS

5

Choi, 2008 [149] M75 ✶ ✶ ✶ T/TMA≧3 ✶ ✶ 6 1.91 (0.77–4.71)/OS 5
De Schutter, 2005 [150] M75 ✶ ✶ ✶ B/TMA < 3 ✶ ✶ ✶ 6 1.68 (0.94–2.99)/DFS 1.72 

(0.94–3.14)/LC
5

Douglas, 2013 [151] M75 ✶ ✶ ✶ B/TMA < 3 ✶ ✶ ✶ 6 1.76 (0.87–3.56)/LC 5
Heo, 2012 [152] M75 ✶ ✶ ✶ T/TMA≧3 ✶ ✶ ✶ 6 4.95 (1.39–17.5)/DFS 5
Kim S, 2007 [153] M75 ✶ ✶a T/TMA≧3 ✶ ✶ ✶ ✶ 6 2.99 (1.39–6.45)/OS 1.76 

(0.89–3.51)/DFS
5

Perez-Sayans, 2012 [154] M75 ✶ ✶ ✶ B/TMA < 3 ✶ ✶ ✶ 6 1.36 (0.43–4.26)/OS 4
Wachters, 2013 [155] M75 ✶ ✶ ✶ T/TMA≧3 ✶ ✶ ✶ 6 0.83 (0.31–2.22)/OS 0.34 

(0.04–2.58)/LC
4

Eriksen, 2007 [156] M75 ✶ ✶ ✶ T/TMA≧3 ✶ ✶ ✶ ✶ 7 1.10 (0.74–1.64)/LC 3
Le, 2005 [157] M75 ✶ ✶R B/TMA < 3 ✶ R 3** 1.73 (0.91–3.29)/OS 2.21 

(1.11–4.39)/DFS
3

Nordsmark, 2007 [158] M75 ✶ ✶a T/TMA≧3 ✶ ✶ ✶ 5 1.27 (0.62–2.62)/LC 2

1044 Cancer and Metastasis Reviews (2021) 40:1035–1053



1 3

concordance is observed with only 1 or 2 cores (as reviewed 
in [178]). In meta-analysis presented by van Kuijk et al. 
(2016), 3 or more cores were used in 41.7% of TMA-based 
IHC studies, and less than three cores were used in 38.3% 
cases, whereas in the rest of the studies, tissue selection was 
not properly defined.

While insufficient identification and quality of antibodies 
clearly contribute to replication crisis in general, use of inap-
propriate tissue material particularly jeopardizes understand-
ing of tumor heterogeneity including its metabolic aspects.

Deeper analysis of the 147 clinical studies mentioned in 
the meta-analysis by van Kuijk and colleagues revealed some 
general weak points frequently occurring in multiple clini-
cal studies, e.g., insufficient description of antibody (clone 
name, source, dilution) and staining procedure (antigen 
retrieval, staining kit, positive/negative control), and tissue 
selection (whole tissue block vs TMA). As shown in Table 2, 
reevaluation of these studies with respect to their reliabil-
ity and reproducibility using a “reproducibility index” (RI) 

based on inspection of the antibody properties and stain-
ing methodology showed remarkable discrepancies with an 
established Newcastle–Ottawa scale (NOS) (which was used 
by van Kuijk and colleagues) [100, 179]. The traditional 
NOS evaluation system puts emphasis on the scoring meth-
odology, the cohort characteristics, and the disease outcome, 
while it ignores the abovementioned important aspects of 
IHC studies, such as precise description of antibody, type 
of tissue specimen, and details of staining procedure. This 
can significantly impact on the interpretation of data and 
ultimately affect their translation to clinical side.

5  Conclusion

Understanding physiological and molecular mechanisms of 
cancer metabolic plasticity requires not only technologically 
advanced high-throughput metabolomic, proteomic, and 

Table 2  (continued)

Winter, 2006 [159] M75 ✶ ✶R B/TMA < 3 ✶ ✶ ✶ 5* Inadequate data/OS inadequate 
data/DFS inadequate data/DSS

-

Koukourakis, 2008 [160] Abcam ✶ ✶ T/TMA≧3 ✶ B/
TMA < 3

✶ ✶ 4* 1.64 (0.62–4.32)/OS 4.41 
(1.72–11.3)/LC

5

Kondo, 2011 [161] Abcam ✶ ✶ T/TMA≧3 ✶ ✶ ✶ 5 3.36 (0.97–11.7)/OS 4
Brockton, 2011 [162] Abcam ✶ ✶ T/TMA≧3 ✶ ✶ ✶ 5 1.20 (0.46–3.12)/OS 4
Brockton, 2012 [163] Abcam ✶ ✶ ✶

M75 ✶ ✶a
T/TMA≧3 ✶ ✶ ✶ ✶ 7 2.04 (0.76–5.49)/DSS 3

Zheng, 2015 [164] Cell Signaling ✶ B/TMA < 3 ✶ ✶ 3 4.27 (2.37–7.72)/OS 4
Sakata, 2008 [165] Novus ✶ B/TMA < 3 R 1* 0.91 (0.32–2.61)/LC 7
Chen, 2014 [166] Novus ✶ ✶ B/TMA < 3 ✶ ✶ 4 1.97 (1.02–3.81)/OS 1.96 (1.01–

3.78)/LC 1.96 (1.02–3.76)/
MFS 2.01 (1.05–3.86)/PFS

6

Hwa, 2015 [167] Novus ✶ ✶ B/TMA < 3 ✶ ✶ 4 0.29 (0.05–1.77)/DSS 4
Kwon, 2015 [168] Novus ✶ ✶ B/TMA < 3 ✶ ✶ 4 8.65 (1.01–74.1)/LC 4
Han, 2012 [169] R&D Systems

✶ ✶ ✶
B/TMA < 3 ✶ 4 0.65 (0.12–3.67)/OS 0.50 

(0.80–3.15)/DFS
6

Roh, 2008 [170] R&D Systems
✶ ✶ ✶

B/TMA < 3 - 3 0.71 (0.23–2.22)/OS 1.77 (0.56–
5.56)/DFS 1.20 (0.34–4.18)/LC

5

Roh, 2009 [171] R&D Systems
✶ ✶ ✶

B/TMA < 3 - 3 1.09 (0.43–2.76)/LC 2.13 
(0.74–6.13)/DSS

4

Yang, 2015 [172] †Santa Cruz ✶ ✶ B/TMA < 3 ✶ ✶ 4 1.76 (1.07–2.87)/OS 7
Eckert, 2010 [173] †Santa Cruz

✶ ✶ ✶
B/TMA < 3 ✶ 4 1.34 (0.65–2.76)/OS 5

Jonathan, 2006 [174] ? B/TMA < 3 ✶ ✶ 2 0.27 (0.08–0.93)/LC 0.27 
(0.09–0.83)/MFS

2

Rademakers, 2013 [175] ? B/TMA < 3 ✶ ✶ 2 0.70 (0.50–1.10)/OS 0.50 
(0.20–1.10)/LC 0.70 (0.40–
1.50)/MFS

1

R Relevant information was supplied as a reference
† Antibody no longer available
a Incorrect reference to the origin or source of the M75 antibody
? no data available
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genomic approaches, but also classical methods of molecu-
lar and cellular biology. The latter approaches have already 
uncovered spectrum of molecules and pathways driving met-
abolic reprogramming that facilitates survival and prolifera-
tion of cancer cells in the process of tumor tissue growth as 
well as during metastatic dissemination. These molecules 
include metabolic enzymes, transporters, and regulators 
that often display highly heterogeneous expression pattern 
reflecting dynamically changing selection-adaptation forces 
in tumor microenvironment. Using the example of CA IX, 
we provide a basic insight into the interplay of these mol-
ecules. Through the validation of CA IX-specific antibodies, 
we explain that well-characterized research tools/materials 
and sufficient technical details are important prerequisites 
for acquisition of reliable/reproducible data and for building 
of new knowledge translatable from bench to bedside.
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tary material available at https:// doi. org/ 10. 1007/ s10555- 021- 10011-5.
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