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Introduction

The term ‘spillover effect’ is sometimes used in the social

and biomedical sciences to describe one person’s exposure

affecting the outcome of another.1–6 The term ‘contagion’

is sometimes used to describe one person’s outcome affect-

ing another’s outcome.6–9 One classic setting for such spill-

over and contagion is that of vaccines and infectious

diseases. The vaccination status of one person may affect

the infection status of a family member (spillover) and in-

fection status of one family member may affect the infec-

tion status of another (contagion).6,9–11 Indeed, much of

the methodological work in describing these phenomena

has arisen from infectious disease epidemiology, wherein

‘spillover’ is also sometimes referred to as an ‘indirect ef-

fect’ or ‘interference’.2,6,12–16 However, the phenomena

themselves are much more widespread than infectious dis-

ease contexts and may pertain to health behaviours, affec-

tive states, learning outcomes, judicial and voting

behaviours and to many other settings, exposures and out-

comes.5,7–9,17–25 Indeed, arising in part from the recogni-

tion of the importance of spillover in a variety of contexts,

the development of formal methodology to analyse spill-

over and contagion has begun to rapidly advance in a num-

ber of fields beyond the infectious disease setting.1

In two recently published articles in the International

Journal of Epidemiology, Benjamin-Chung et al.1,2 have

done a tremendous service to epidemiologists in providing

an overview of the types of questions and methodologies

that may be relevant in understanding spillover effects,2

and in providing a survey of current applications of these

approaches.1 Other overviews of the methodological litera-

ture on spillover, framed in terms of counterfactuals, is

provided elsewhere.26 It is clear that both the infectious

disease context (in which such spillover effects are most

frequently considered) and also other settings are of inter-

est and relevance. Indeed, here, we argue that spillover

needs to be considered far more frequently when thinking

about epidemiology and public health; otherwise, we may

miss important opportunities for public health impact and

evaluation. To that end, we introduce a new relevant met-

ric: the network multipler.

Network multipliers

Spillover effects and contagion should be taken into ac-

count when assessing the public health impact of an inter-

vention and also its cost-effectiveness.27 For example, with

a protective intervention where the baseline risk of the out-

come is p0 and the risk ratio for the outcome for the treat-

ment or intervention under consideration is RR, we could

calculate a number needed to treat as 1/[p0(1�RR)]. For

cost-effectiveness, the cost per life saved (or disease cured

or prevented) would be (cost per treatment)/[p0(1�RR)].

Now suppose that, in addition to an intervention having

an effect on its directly treated recipients, it also had spill-

over effects on various individuals in a person’s family or

community or social group. Consider an intervention in

which some subset of individuals within each community

are treated, and suppose that there are potential spillover

effects within communities, but not between communities.
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Suppose further that the average number of untreated per-

sons for whom the spillover effect was operative, for each

treated person, was N, and that the spillover effect of the

intervention on untreated persons was RRs on the risk

ratio scale. It is straightforward to show (see Appendix)

that for each person who was directly treated and cured,

we would expect an additional N x (1�RRs)/(1�RR) indi-

viduals cured because of the spillover effect. Because of

the spillover effects, we would thus essentially multiply the

effectiveness of our treatment by a factor of:

NM ¼ 1þN x ð1� RRsÞ=ð1� RRÞ (1)

to obtain the overall impact on the number cured from ad-

ministering a single intervention.

We will refer to this quantity above as a network multi-

plier (NM), defined as the ratio of the total number of

changed outcomes due either to someone being directly

treated or to spillover, as compared with the number of

changed outcomes due only to someone being directly

treated. For each person directly cured because of treat-

ment, we actually get a total of NM¼ 1þN x (1�RRs)/

(1-RR) cured because of the additional effects of spillover.

The network multiplier will be greater than or equal to 1,

unless it is the case that the direct effect on the individual

who actually received treatment and the spillover effects

are in opposite directions (for instance, as might arise if

effective treatment also happens to prolong the communi-

cable period). Thus, provided the direct effect and spillover

effect are in the same directions, we always ‘cure’ more

people than simply looking just at direct-effect risk ratios

would suggest. The calculations are exactly analogous if

the outcome is a positive desirable one with risk ratios

above 1, or an undesirable one with risk ratios below 1.

Once we have calculated these network multipliers, we

would also want to adjust our numbers-needed-to-treat

calculations, and our cost-effectiveness calculations,

accordingly. For the numbers-needed-to-treat and for cost-

effectiveness, we would divide the typical expressions and

calculations by the network multiplier. The number-

needed-to-treat would thus be 1/[p0(1�RR)NM] and

the cost-effectiveness would be (cost per treatment)/

[p0(1�RR)NM].

As an example of the calculation of a network multi-

plier outside the infectious disease context, Nickerson28

examined the effect of a get-out-the-vote message in a ran-

domized experiment in Minneapolis, Minnesota.

Households with two registered voters were randomized to

receive either face-to-face encouragement to vote, or face-

to-face encouragement to recycle. The message was deliv-

ered to whichever registered voter answered the door, and

then it was later recorded whether or not each registered

household member subsequently voted. The effect of the

intervention on the recipient of the face-to-face message

was an increase in the probability of voting with

RR¼ 1.67; the effect of the intervention on the other mem-

ber of the household who did not directly receive the face-

to-face message was an increase in the probability of voting

with RRs¼ 1.36. Here, because there is only one additional

person per household who may benefit from the spillover

effect, we have N¼ 1 and the network multiplier is thus:

NM ¼ 1þN x ð1� RRsÞ=ð1� RRÞ
¼ 1þ 1 x ð1� 1:36Þ=ð1� 1:67Þ ¼ 1:54:

For every person for whom the face-to-face message

alters their voting behavior, there are a total of 1.54 per-

sons who in fact vote because of the intervention, who

would not have otherwise done so (i.e. an additional 0.54

person due to spillover).

The network multiplier is in some ways analogous to

the reproduction number, R0, in the infectious disease con-

text,29,30 defined as the number of cases that one case of in-

fection generates on average over the course of its

infectious period, in an otherwise uninfected population.

In the infectious disease context, when R0< 1, the infec-

tion will in general die out relatively quickly; but if R0> 1,

the infection will spread through the population. There are

arguably some differences across contexts. Often, when

assessing spillover effects outside of infectious diseases,

analyses are not carried out on effects across an entire pop-

ulation but are restricted to the spillover effects in one’s

own more local and immediate social group or cluster

(e.g. household, circle of friends etc.). Sometimes it is as-

sumed that there are only spillover effects within clusters

of individuals, not between clusters, an assumption some-

times referred to as ‘partial interference’.5,14 It is this as-

sumption that underlies the network multiplier formula

given above in equation (1). The network multiplier for-

mula given in (1) is thus not immediately applicable to

sociocentric settings in which there are not distinct clusters,

but only a single social network.

However, in many cases, proceeding with the ‘partial

interference’ assumption of no spillover between clusters

may lead to conservative estimates of the network multi-

plier if the treatment for the treated individual has effects

on the treated individual’s social group, and then the

effects on the members of this social group spread further

to individuals who may be part of other social groups not

otherwise socially connected to the original treatment re-

cipient. Such issues about multistage transmission of treat-

ment and outcomes throughout a network and population

may seem more likely to occur in the context of infectious

disease than with health behaviours such as smoking or
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diet. However, recent social network analyses involving

both observational and experimental approaches do sug-

gest some evidence for non-negligible spread of certain

health behaviours and other outcomes up to three degrees

of separation from the individual that was initially

treated.7,23,24,31–33 Thus, if one used risk ratio estimates

from a randomized trial with outcome data also collected

on each individual’s social group, the network multiplier

calculation might represent a conservative estimate of the

actual network multiplier for the entire population.

Conservative estimates of network
multipliers using contagion

Even in the absence of data on spillover effects, we might

be able to get conservative estimates of such network mul-

tipliers using estimates from contagion effects (one per-

son’s outcome affecting another’s). Suppose, for example,

that we were considering a smoking cessation support in-

tervention, and that the intervention’s risk ratio for ceasing

to smoke at the end of follow-up was RR¼ 1.5. We might

use this risk ratio and also information on the rate of

smoking cessation in the control group to estimate the

number needed to treat (NNT) or the cost-effectiveness of

the intervention. However, suppose all participants in the

programme were in fact married. Evidence from observa-

tional studies of contagion effects for smoking cessation19

suggests that when someone quits smoking, their spouse is

then 67% [95% confidence interval (CI): 59%–73%] less

likely to smoke subsequently. For every person for whom

the smoking cessation support intervention successfully led

to smoking cessation, we might then expect this to lead to,

say, an additional 67% x (prevalence of smoking among

spouses) individuals who cease smoking because their

spouse did as a result of the smoking cessation interven-

tion. In cost-effectiveness and number-needed-to-treat cal-

culations, we would likely want to take that into account

as well. We might use as the ‘network multiplier’ the quan-

tity [1þ 67% x (prevalence of smoking among spouses)]

since, for every person ‘cured’ by the intervention, we have

an additional 0.67 x (prevalence of smoking among

spouses) of the spouses ‘cured’ as a result as well.

This would, moreover, likely be an underestimate of the

network multiplier since the smoking cessation interven-

tion programme might potentially also affect the smoking

behaviouur of the spouse because of the transmission of

the information from the programme, even if the original

programme recipient did not, in the end, quit smoking.

Said another way, the contagion effect of the person ceas-

ing smoking on the spouses’ smoking cessation status is

only part of the spillover effect of the intervention itself.6

However, if the effect on the spouse that is independent of

the outcome of the treatment recipient were relatively

small, then the approximation above (just using the conta-

gion effect and the prevalence of the exposure among the

spouses) may not be far off from the actual network multi-

plier. If smoking cessation of the treatment recipient af-

fected not only the spouse but also the smoking behaviour

of other members of the household or the community, then

this too could potentially be included in the network multi-

plier calculation.

Implications for public health

What are the implications of such spillover effects and net-

work multipliers for public health? Traditionally, the pub-

lic health impact of an exposure is often assessed as a

function of the prevalence of the exposure and the magni-

tude of its effect on relevant outcomes, and this is some-

times captured in terms of attributable fractions.34–37 If an

exposure has large effects and is common, then its impact

on population health may well be substantial. However,

this traditional and important framework for thinking

about public health impact does not take into account

spillover. We might thus supplement the traditional frame-

work with this notion of the network multiplier. The pub-

lic health impact of an exposure is shaped by its

prevalence, its effect size and its network multiplier.

We could thus expand our understanding of public

health impact to include not only prevalence and effect

size, but also network multipliers. The network multiplier

is not entirely separate from exposure prevalence and effect

size, but it instead concerns both of these quantities in rela-

tion to individuals who have not been directly treated or

exposed.

The magnitude of the network multiplier itself depends

on multiple aspects of: (i) the structure of the network; (ii)

the attributes of the individuals in the network; and (iii)

the attributes of the item that is spreading (e.g. the patho-

gen). This can be illustrated by the following fanciful ex-

ample. Imagine that there are two islands, each with 100

people. On one island, every person is paired with another

and is sexually monogamous, and on the other, everyone

has intercourse with everyone else. On neither island is

there initially any sexually transmitted disease (STD). Now

suppose a sailor with an STD washes ashore and has inter-

course with one person. The epidemic will be larger on the

latter island than on the former. Here the structure of the

network matters, and the social network structure alters

the number of additionally affected individuals, N, in the

network multiplier calculation. Now, suppose that we

have two islands in which everyone has intercourse with

everyone else but, in one island, everyone is immunocom-

petent and, in the other, everyone is immuncompromised.
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Once again, suppose a sailor washes ashore and has inter-

course with one person. It is clear that the epidemic will be

larger on the latter island. The attributes of the individuals

in the network, and not just the structure of the network,

matter and in this case the attributes of the individuals al-

ter the magnitude of the spillover effect, RRs. Now, finally,

consider the scenario in which there are two islands in

which everyone has intercourse with everyone else, and ev-

eryone has intact immune systems. Suppose that on the

first island, a sailor with HIV washes ashore and, on the

second, a sailor with active syphilis washes ashore. It is

known that the probability of transmission from one per-

son to another with these two pathogens based on a single

sexual encounter varies by more than an order of

magnitude—one is much more likely to contract syphilis

than HIV. It is clear, again, that the epidemic of syphilis

will be larger. Here an intrinsic attribute of the item that is

spreading is also crucial, and this intrinsic attribute again

alters the magnitude of the spillover effect, RRs, in the net-

work multiplier calculation. A network multiplier may

thus itself be enhanced or dampened by altering: (i) the

structure of the network; (ii) the attributes of the individu-

als in the network; or (iii) the attributes of the item that is

spreading.

Ignoring such network multipliers has important impli-

cations for cost-effectiveness research and may yield sub-

stantial underestimates.27 Moreover, if different

interventions have spillover effects of different magnitudes

and hence different network multipliers, this could in fact

alter which of two interventions is deemed to be more cost-

effective. For instance, hip replacement might be formally

assessed as more cost-effective than cataract surgery but, if

fixing someone’s cataract added more quality-adjusted-

life-years to the person’s spouse than fixing someone’s hip,

both the cost-effectiveness assessments and the relative

standing of the two interventions could be reversed.

There may of course be a temptation, when making use

of such network multipliers, to exaggerate the spillover

effects. For decision making concerning a single potential

intervention, it might be best to try to mitigate these dan-

gers by using more conservative calculations in the applica-

tion of network multipliers; and indeed, the calculations

proposed above all were intended to err on the conserva-

tive side. However, when two different intervention strate-

gies are being compared, erring on the conservative side

for both may not be sufficient, since differences in the de-

gree to which the network multiplier is specified under its

true value may alter which of two interventions seems

most cost-effective. Such issues should be considered more

frequently in thinking about population health. Although

considerable research has gone into understanding spill-

over effects and network effects, much of the analysis and

thinking in epidemiology remains at the individual level.

Outside of the infectious disease context, the consequences

of spillover and contagion for public health impact and

population health are often neglected.

Networks multipliers, social media and
public health

Another important consequence of thinking about net-

work multipliers in public health is that if an intervention

has a particularly large network multiplier, its public

health implications may be very large indeed, even if the

effect size or even the original prevalence of exposure is

modest. This also is perhaps especially relevant given the

use of contemporary media, since it has potential both

for massive outreach (high prevalence of exposure) and

massive spillover/contagion (large network multipliers).

Contemporary media, therefore, from news outlets to on-

line social network sites, have the capacity to transform

what are in fact relatively small, perhaps even tiny, effects

into something with potentially very large public health

consequences.

As an example in which public health consequences

may be massive even though initial effect sizes are small,

consider the increasingly negative content of media com-

munications. There is evidence that the content of media

has become increasingly negative and polarizing.38 The

negative content of media is likely in part motivated by the

fact that the human brain is more likely to be attracted to,

carefully watch and become fixated upon something that is

negative than something that is positive, perhaps as an

adaptive survival response (a phenomenon often referred

to as ‘negativity bias’39). Media sources with negative ma-

terial thus end up with more viewers.40 There is evidence

also that the witnessing of a positive event is more likely to

result in someone subsequently acting altruistically to-

wards another,31,41–43 and that the witnessing of a negative

event or violence is more likely to result in more negative

actions and behaviours towards others.44,45 Finally, evi-

dence continues to emerge that altruistic behaviours are

themselves subject to considerable contagion31,46,47: the re-

cipient of an action of goodwill is more likely to go on to

do the same. The contagion effects of altruistic action may

extend so far that a positive interaction between two per-

sons can travel through a social network by contagion, and

ultimately positively affect the actions of two other per-

sons, neither of whom know either person in the original

pair.31

The consequences of this chain of causation from the

witnessing of negative or positive events, through negative

or positive personal interactions, and the spread by conta-

gion through a social network, may be very powerful
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indeed. Whereas the effect size of negative, divisive or po-

larizing media reporting or social media posts may, at the

individual level, be very tiny, the capacity to both reach

large numbers (e.g. through a large social media following)

and spread massively through a social network (e.g. by

sharing and re-posting) may result in social and public

health consequences that, at the population level, bring

about considerable harm in human interaction, and subse-

quently also health.

Media reporting of negative events does have an impor-

tant role in bringing awareness of society’s problems and

ills. However, in light of the very strong spillover and conta-

gion, greater effort should perhaps also be given to balance

negative reports with those that comment upon what is

good in the community or what individuals or groups are

doing to bring about a better world. Given the available

empirical evidence, it seems that small changes in reporting

practices could have substantial beneficial impacts.
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Appendix

Suppose that the baseline risk of an adverse outcome for

those untreated is p0, and that an intervention for someone

directly treated reduces the risk by risk ratio RR so that

the risk with the treatment is p0RR. Suppose further that

for each treated person in a community, there are on aver-

age an additional N untreated individuals in the commu-

nity who also indirectly benefit from the intervention (by

spillover or contagion), such that the intervention reduces

their risk by risk ratio RRs. For the directly treated individ-

uals, it will be necessary to treat 1/[p0(1�RR)] per out-

come averted. If 1/[p0(1�RR)] treatments were directly

applied, then one outcome would be averted for these di-

rectly treated individuals. For those in the directly treated

individuals’ communities who were not directly treated,

the expected number of outcomes among those not directly

treated, for each directly treated individual’s outcome that

was averted, would be reduced because of spillover from

N x p0 x 1/[p0(1�RR)] to RRs x N x p0 x 1/[p0(1�RR)].

This would result in a further reduction in outcomes

of magnitude {N x p0 x 1/[p0(1�RR)]}� { RRs x N x p0 x 1/

[p0(1�RR)]}¼ N x (1�RRs)/ (1�RR). Thus the ratio of

the total number of changed outcomes due either to some-

one being directly treated or to spillover, as compared with

the number of changed outcomes due only to someone be-

ing directly treated, is given by NM¼ 1þN x (1�RRs)/

(1�RR).
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