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A B S T R A C T   

COVID-19 (Coronavirus Disease 2019), a life-threatening viral infection, is caused by a highly pathogenic virus 
named SARS-CoV-2 (Severe Acute Respiratory Syndrome Coronavirus 2). Currently, no treatment is available for 
COVID-19; hence there is an urgent need to find effective therapeutic drugs to combat COVID-19 pandemic. 
Considering the fact that the world is facing a major issue of antimicrobial drug resistance, naturally occurring 
compounds have the potential to achieve this goal. Antimicrobial peptides (AMPs) are naturally occurring 
antimicrobial agents which are effective against a wide variety of microbial infections. Therefore, the use of 
AMPs is an attractive therapeutic strategy for the treatment of SARS-CoV-2 infection. This review sheds light on 
the potential of antimicrobial peptides as antiviral agents followed by a comprehensive description of effective 
antiviral peptides derived from various natural sources found to be effective against SARS-CoV and other res-
piratory viruses. It also highlights the mechanisms of action of antiviral peptides with special emphasis on their 
effectiveness against SARS-CoV-2 infection.   

1. Introduction 

Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) is a 
highly pathogenic virus and has led to the emergence of Coronavirus 
Disease pandemic in 2019 (COVID-19). According to World Health Or-
ganization, there have been over 500 million reported cases of COVID- 
19 and 6 million deaths worldwide as of June 2022 (Anon, 2022). 
Vaccines have been developed to prevent the spread of COVID-19; 
however, no treatment for SARS-CoV-2 is available yet. A few already 
available antimicrobial drugs such as hydroxychloroquine, azi-
thromycin, chloroquine, remdesivir (RDV), lopinavir, ritonavir, oselta-
mivir, umifenovir, dexamethasone and favipiravir are under 
investigation for the treatment of COVID-19. Even though drugs like 
dexamethasone and RDV have proven to be effective for the treatment of 
COVID-19, their use is still considered to be controversial (Ma et al., 
2020). Moreover, antimicrobial drug resistance (ADR) is an emerging 
threat to the world due to a variety of technological, socio-economic, 

microbial, and environmental factors. Unavailability of affordable 
healthcare, microbial adaptation to drugs, growing populations of sus-
ceptible hosts, and unethical uses of antibiotics in cure as well as 
non-therapeutic regimens are few other factors responsible for ADR 
(Fletcher, 2015; Van Hoek et al., 2011). Microbes are developing 
resistance to existing armature of antimicrobial drugs through several 
mechanisms such as active efflux pump, decreased/blocked uptake of 
antibiotics, inactivation of enzymes and modification of targets such as 
DNA, RNA, and ribosomes (Kaur et al., 2022; Peterson and Kaur, 2018). 
It is estimated that approximately 10 million people will die worldwide 
by 2050 if antimicrobial drug resistance is not tackled (Dadgostar, 
2019). Although ADR has been reported worldwide, developing coun-
tries are hit hard by this crisis due to the lack of availability of second 
and third-line treatments (Cox et al., 2017). This has led to considerable 
interest in the identification of natural compounds against 
multidrug-resistant microorganisms. The United Nations (UN) General 
Assembly pledged to tackle the issue of antimicrobial resistance in 
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September 2016 by strengthening the regulation of antimicrobials and 
fostering new technologies and alternatives. In 2018, Singapore orga-
nized a meeting to discuss the challenges of antimicrobial resistance and 
the innovative solutions that could be employed (Yam et al., 2019). 
Naturally formulated compounds have become a popular choice as 
antimicrobial agents against multidrug-resistant microorganisms. While 
antibiotics, sometimes possess side effects such as immunosuppression, 
hypersensitivity and allergic reactions on the host, these antimicrobials 
of natural origin treat infections by overcoming the disadvantages of 
traditional antibiotics (Anand et al., 2019; Khameneh et al., 2019; Ncube 
et al., 2008). The use of antimicrobial peptides (AMPs) provides an 
attractive solution to combat the problem of antimicrobial resistance. 
These peptides are effective, broad-spectrum antimicrobials that estab-
lish themselves as new therapeutic agents, and hold potential to kill 
gram-negative and gram-positive bacteria, fungi, enclosed viruses, and 
even mutated or malignant cells (Boparai and Sharma, 2020; Di Somma 
et al., 2020). Mainly, this review will narrate the overview about AMPs, 
their mechanism of action, and their role as antiviral agents. Moreover, 
it will shed light on the possible role of AMPs exhibiting antiviral ac-
tivity against SARS-CoV-2. 

2. Antimicrobial peptides as antiviral agents 

AMPs are small peptides consisting of 8–100 amino acids, amphi-
philic in nature, and display broad-spectrum antimicrobial activity. 
Natural AMPs are found both in prokaryotes (e.g., bacteria) and eu-
karyotes (e.g., protozoans, fungi, plants, insects, and animals). The first 
AMP, gramicidin, was discovered in 1939 from a soil Bacillus strain, 
which provided protection against Pneumococcal infection in mice 
(Dubos, 1939). The first AMP, phagocytin, known to show bactericidal 
activity was isolated from animals (rabbit leukocytes) in 1956 (Hirsch, 
1956). In the following years, AMPs from human leukocytes, lactoferrin 

from cow’s milk, and various others were also identified (Conesa et al., 
2008; Weissmann et al., 1971). Recent evidence reveals that several 
AMPs of humans, insects and plants origin have antiviral activity against 
a broad range of viruses (Table 1). 

Certain evolutionary mechanisms in viruses lead to antiviral drug 
resistance and is a major cause of concern upon drug treatment. These 
mechanisms involve but not limited to high mutation rate due to 
frequent replication and proofreading errors caused by viral RNA po-
lymerase as in case of Hepatitis C virus (HCV), error-prone reverse 
transcription leading to nucleotide substitution (e.g., Human Immuno-
deficiency Virus (HIV)), lack of proofreading during reverse transcrip-
tion (e.g., Hepatitis B Virus (HBV)). Since the problem of antiviral drug 
resistance is a major concern in the development of therapeutic drugs, 
AMPs effective against viruses can be taken into consideration as anti-
viral agents (Kausar et al., 2021). 

2.1. Human-derived antiviral peptides 

During evolution, the tactics of mammals have slowly evolved for 
combating harmful microbes. AMPs are derived from various tissues in 
mammals, as exemplified by neutrophil granules, the intestinal tract, 
and secretions from mucosal membranes (Befus et al., 1999). In mam-
mals, AMPs mainly belong to the class of cathelicidins and defensins. 
Cathelicidins are the AMPs derived from a variety of vertebrates, such as 
fish, birds, goats, pigs, rabbits, monkeys, horses, and human beings 
(Kościuczuk et al., 2012). They are generally found in epithelial cells, 
macrophages, and neutrophils. The most studied members of this class 
are Indolicidin and human cathelicidin LL-37 (Dürr et al., 2006; Lado-
khin et al., 1999; Xhindoli et al., 2016). Cathelicidin LL-37 is a widely 
studied class of antimicrobial peptides commonly found in neutrophil 
granules (Nijnik and Hancock, 2009; Nizet et al., 2001). Cathelicidins 
are also known as myeloid AMPs because they were first identified in 

Table 1 
Antimicrobial peptides effective against viral infections.  

AMP Target Source References 

Gloverin Autographa californica M nucleopolyhedrovirus (AcMNPV) Trichoplusia ni larvae Moreno-Habel et al. (2012) 
α-defensin-5 (HD-5) Human Immunodeficiency Virus-1 (HIV-1), Human papillomavirus 

16 (HPV) 
Humans Furci et al. (2012); Wiens and Smith (2017) 

Lactoferrin Influenza virus, Hepatitis C virus (HCV), Dengue Virus (DENV) Humans Ammendolia et al. (2012);El-Fakharany et al. 
(2013);Chen et al. (2017) 

Elafin and Trappin-2 HIV-1 Humans Drannik et al. (2013) 
Griffithsin (GRFT) Hepatitis C Virus (HCV), Japanese encephalitis virus (JEV), Middle 

East respiratory syndrome coronavirus (MERS-CoV) 
Griffithsia sp (red alga) Takebe et al. (2013);Ishag et al. (2016);Millet 

et al. (2016);Derby et al. (2018) 
Cycloviolacin Y5 and 

Cycloviolacin VY1 
Influenza A virus (IAV) Viola yedoensis plant Liu et al. (2014) 

Hepcidin IAV, HIV-1, HCV, and Hepatitis B Virus (HBV) Humans Armitage et al. (2014);Rodriguez et al. (2014) 
Cathelicidin (LL-37) IAV, HCV, Respiratory syncytial virus (RSV), DENV type 2, 

Venezuelan equine encephalitis virus (VEEV) 
Humans Tripathi et al. (2014);Harcourt et al. (2016); 

Matsumura et al. (2016);Alagarasu et al. (2017); 
Ahmed et al. (2019); 

Lectin (NICTABA) IAV, IBV, DENV type 2, Herpes Simplex Virus (HSV) types 1 and 2, 
HIV-1/2 

Nicotiana tabacum plant Gordts et al. (2015) 

Alstotides Infectious bronchitis virus (IBV), DENV Alstonia scholaris plant Nguyen et al. (2015) 
A. elatior lectin (AEL) Vesicular Stomatitis Virus (VSV), Coxsackie Virus B4, and RSV Aspidistra elatior plant Xu et al. (2015) 
Cathelicidins (Protegrin-1, 

and SMAP-29) 
Human rhinoviruses (HRVs) Humans Sousa et al. (2017) 

Cathelicidins (GF-17 and 
BMAP-18) 

Zika virus (ZIKV) Humans He et al. (2018) 

C-lysozyme Nucleopolyhedrovirus (NPV) Bombyx mori Chen et al. (2018) 
Lectin (TCLL) Chikungunya virus (CHIKV) and Sindbis virus (SINV) Tamarindus indica plant Kaur et al. (2019) 
Dermaseptins HSV-1, HSV-2, HIV-1, and rabies virus Agalychnis and 

Phyllomedusa family 
Bartels et al. (2019) 

Brevinin (1BYa and 1BYc) Ebola virus, HIV-1 and HSV-1 Rana boylii Zohrab et al. (2019) 
Temporin-SHa (SHa) and its 

synthetic analog [K3]SHa. 
HSV-1 North African ranid frog 

Pelophylax saharicus 
Roy et al. (2019) 

Brevinin-2GHk, ZIKV Fejervarya limnocharis Xiong et al. (2021) 
Fejerlectin HIV-1 Fejervarya limnocharis Xiong et al. (2021) 
AR-23 HSV-1, Measles morbillivirus (MeV), Human parainfluenza virus 

(HPIV-2), HCoV-229E, and severe acute respiratory syndrome 
coronavirus (SARS-CoV-2) 

Rana tagoi Chianese et al. (2022)  
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myeloid cells of the mammalian bone marrow (Gombart et al., 2005). 
Cathelicidin LL-37 derived from humans is found to be effective against 
a variety of viruses such as influenza A virus (IAV), HCV, Respiratory 
Syncytial Virus (RSV), dengue virus (DENV) and Venezuelan equine 
encephalitis virus (VEEV) (Ahmed et al., 2019; Alagarasu et al., 2017; 
Harcourt et al., 2016; Matsumura et al., 2016; Tripathi et al., 2014). 
Other human-derived cathelicidins known to exhibit antiviral activity 
are GF-17, BMAP-18, protegrin-1, and SMAP-29 (He et al., 2018; Sousa 
et al., 2017). Defensins are small cationic peptides, which usually consist 
of 18–45 amino acids. The first defensin was discovered in human 
neutrophils. These are generally derived from mast cells and tissues 
involved in host defense (Lehrer and Lu, 2012). Structurally, defensins 
are classified into α, β, and θ-defensins (Lehrer and Lu, 2012; Nguyen 
et al., 2003). Cysteine and arginine residues are abundantly found in all 
three classes of defensins. These three classes differ mainly in the posi-
tion of cysteine residues linked to disulfide bridges (Silverstein et al., 
2007). Human α-defensins are less cationic, more hydrophobic, and are 
shorter compared to human β-defensins (Hoover et al., 2000). Based on 
published data, human defensins possess effective antimicrobial activity 
against HIV-1 and Human Papillomavirus 16 (HPV) infection (Furci 
et al., 2012; Wiens and Smith, 2017). 

2.2. Amphibian-derived antiviral peptides 

AMPs derived from the skin of frogs acquire high antibacterial and 
antiviral properties. These peptides are produced by the granular glands 
and contain hydrophobic and positively charged amino acids. Most of 
these peptides belong to Pipidae family- Hymenochirus, Pseudhyme-
nochirus, Pipa, Silurana, and Xenopus Belaid et al. (2002); Rinaldi 
(2002); Nicolas and Mor (1995)). Three amphibian-derived peptides, 
caerin 1.1, caerin1.9 and maculatin 1.1, showed significant inhibition of 
HIV infection in T cells even at low concentrations. These peptides were 
derived from the Pelodryadidae family and inhibited the transfer of HIV 
from dendritic cells to T-cells. Moreover, they showed antiviral activity 
against murine leukemia virus (MuLV) and Junín virus (JV) (VanCom-
pernolle et al., 2005). Melittin is an amphipathic hexacosapeptide 
extracted from the bee venom and is identified as a therapeutic agent 
against a variety of virus such as IAV, HIV, HSV, herpes simplex virus 
(HSV), JV, RSV, vesicular stomatitis virus (VSV), and tobacco mosaic 
virus (TMV) (Memariani et al., 2020). Also, Magainins from Xenopus 
laevis and Cecropin A from Mythimna separata have been tested against 
HSV-1, HSV-2 and JV. The magainins inhibited HSV-1 and HSV-2 but 

remained inactive against JV, while Cecropin A has been found to be 
effective against JV (Albiol Matanic and Castilla, 2004). A 13-residue 
peptide, Temporin-SHA (Tb-SHA), known for its antimicrobial proper-
ties due to its alpha-helical structure, is found to interact with the mi-
crobial cytoplasmic membrane and induce pore formation in the 
membrane (Ladram and Nicolas, 2016). A study revealed the antiviral 
properties of Tb-SHA and its synthetic analog, [K3]SHa against HSV-1 in 
human keratinocyte cultures (Roy et al., 2019). Two peptides, 
Brevinin-2GHk (BR2GK) and Fejerlectin, derived from the skin secretion 
of Fejervarya limnocharis, were tested for antiviral properties by Xiong 
and his colleagues. Fejerlectin prevented HIV-1 entry into the host cells 
by inhibiting Env-mediated membrane fusion and BR2GK inhibited 
early and middle stages of Zika virus (ZIKV) (Xiong et al., 2021a; Xiong 
et al., 2021b). Recently, a study revealed that AR-23 could be a potential 
therapeutic drug against various DNA and RNA viruses due to its 
interaction with the viral particle leading to inhibition at early stages. It 
has been found to be effective against HSV-1, measles morbillivirus 
(MeV), human parainfluenza virus (HPIV-2), HCoV-229E, and 
SARS-CoV-2 (Chianese et al., 2022). 

2.3. Plant-derived antiviral peptides 

Plant-derived AMPs are categorized into distinct families based on 
differences in amino acid sequences. They are both positively and 
negatively charged (Pelegrini et al., 2011). They are classified into 
several classes, such as lipid transfer proteins, thionins, defensins, 
chitin-binding proteins, cyclotides, and others (Nawrot et al., 2014). 
Plant-derived AMPs are effective against a broad range of viral in-
fections caused by HCV, Japanese encephalitis virus (JEV), (middle east 
respiratory syndrome coronavirus) MERS-CoV, HPV, IAV, infectious 
bronchitis virus (IBV), DENV, HSV types 1 and 2, HIV-1/2, VSV, cox-
sackie virus B4, RSV, chikungunya virus (CHIKV) Sindbis virus (SINV) 
(Derby et al., 2018; Gordts et al., 2015; Ishag et al., 2016; Kaur et al., 
2019; Levendosky et al., 2015; Liu et al., 2014; Millet et al., 2016; 
Nguyen et al., 2015; Takebe et al., 2013; Xu et al., 2015). Cyclotides, a 
large family of plant-derived disulfide-rich peptides, are exceptionally 
stable and consist of cyclic cystine knot (CCK). Due to their extreme 
stability, they have been used in drug design applications and are known 
to be effective against HIV, DENV, and influenza virus (Craik and Du, 
2017). Plant-derived lectins have predominantly been investigated 
against several viral infections. Some of the most promising 
plant-derived antiviral lectins include Griffithsin, A. elatior lectin, 

Fig. 1. Molecular mechanisms of action of antiviral peptides.  
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chitinase (chi)-like lectin from Tamarind (TCLL), Nicotiana tabacum 
(NICTABA) lectin, Cycloviolacin Y5 and VY1 (Derby et al., 2018; Gordts 
et al., 2015; Kaur et al., 2019; Liu et al., 2014; Xu et al., 2015). 

2.4. Insect-derived antiviral peptides 

Insects use several defense mechanisms against microbial infections, 
including cellular and humoral immune responses. Localized melani-
zation and coagulation, phagocytosis, and secretion of AMPs into the 
hemolymph are the cellular and humoral immune responses used by 
insects to counter infections (Eleftherianos and Revenis, 2011; 
Elrod-Erickson et al., 2000; Ishii et al., 2010). AMPs secreted by insects 
include cecropins, melittins, attacins, lysozymes, defensins, dipteracins, 
drosomycin, and metchikowins (Copley et al., 2007; Mojsoska et al., 
2015; Tashmukhambetov, 2016). C-lysozyme is an example of an 
insect-derived antimicrobial peptide known to be effective against 
nucleopolyhedrovirus (NPV) infection. Lysozymes are enzymes that are 
important for the immune system of the organisms. While lysozymes 
break the peptidoglycan layer of the cell wall in bacteria, they are 
suggested to affect viruses through hydrolyzation of the viral structural 
proteins leading to the production of defective viruses (Chen et al., 
2018). Moreover, gloverin proteins have predominantly been investi-
gated against nucleopolyhedrovirus. They are usually small proteins 
consisting of 200 amino acids and are positively charged due to the 
presence of charged arginine and lysine residues (Moreno-Habel et al., 
2012). 

3. Antiviral peptides: mechanism of action 

Despite having enormous diversity in their primary structure, anti-
microbial peptides are characterized by a preponderance of positively 
charged amino acids lysine and arginine (Lei et al., 2019). They are also 

known as cationic host defense peptides (Brown and Hancock, 2006). 
Peptides tend to adopt different conformations depending upon envi-
ronmental conditions. While AMPs adopt disordered conformations in 
solutions, they attain ordered structures with high α-helix content in 
membrane-mimicking environments (Vermeer et al., 2012; Teixeira 
et al., 2012). AMPs are considered effective antimicrobial agents due to 
their low propensity in the development of antimicrobial resistance. 
Unlike antibiotics, which target cellular activities (e.g., synthesis of 
proteins, DNA, or cell walls), these peptides bind to the lipopolysac-
charide coating of the cell membrane. The entry of a virus into the host 
cells involves a series of steps including viral protein maturation, some 
non-specific interactions, endocytosis, conformational changes in the 
fusion protein, and viral membrane fusion [Fig. 1]. 

Antiviral AMPs deactivate enveloped RNA and DNA viruses through 
their integration with the viral envelope or the host cell membrane 
(Narayana and Chen, 2015; Taylor et al., 2005). They specifically target 
the lipids of the viral membrane and block their fusion and entry into the 
host cell. For instance, C5A and MP7-NH2 are the AMPs found to be 
effective against enveloped viruses such as HCV and RSV (Cheng et al., 
2008; Sample et al., 2013). Various cationic amphiphilic AMPs bind to 
the viral membranes and lead to the formation of pores. In addition to 
disrupting viral envelopes and blocking viral receptors, certain antiviral 
AMPs can prevent viral particles from entering host cells by possessing 
unique mammalian cell receptors which can competitively interact with 
viral particles [Fig.1] (Vigant et al., 2015). Such interactions lead to the 
stabilization or destabilization of the viral particles, thus preventing the 
interaction. A well-known example of such a receptor is heparan sulfate 
proteoglycans (HSPG), which are essential for attaching HSV viral par-
ticles to the host cell surface. The antiviral peptide interferes with the 
HSPG-virus interaction (Cagno et al., 2019). Since several AMPs have 
been used to inhibit viruses, they could potentially be used as a candi-
date against SARS-CoV-2 (Kurpe et al., 2020). The antiviral peptides 

Fig. 2. SARS-CoV-2 (a) genomic organization and (b) structure.  
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restrict virus infection either through inhibition of virus attachment to 
the host cell, destruction of virus envelope, or inhibition of virus repli-
cation. Various research groups are trying to exploit the mechanism of 
inhibiting virus attachment to the host cell for the development of an 
effective treatment method against SARS-CoV-2. 

4. AMPs against SARS-CoV-2 infection 

The Coronaviridae Study Group (CSG) has classified SARS-CoV-2 as a 
member of Coronaviridae family (CSG, 2020). Seven known coronavi-
ruses are known to infect humans and cause mild to severe symptoms. 
Four of these viruses (229E, NL63, OC43, and HKU1) cause common 
cold infection, while the other three coronaviruses (MERS-CoV, 
SARS-CoV and SARS-CoV-2) cause severe respiratory illness and even 
death. SARS-CoV-2 has a 30 kbp single stranded-RNA with 9860 amino 
acids encoding structural and non-structural proteins (Huang et al., 
2020). ORF1a and ORF1b encode for 16 non-structural proteins 
(Nsp1–16) [Fig. 2a]. These proteins are involved in viral replication and 
transcription. S, E, M, and N genes encode the structural proteins - spike, 
envelope, membrane, and nucleocapsid, respectively [Fig. 2b] (Mariano 
et al., 2020; Al-Qaaneh et al., 2021; Schütz et al., 2020). Spike protein 
(S-protein) contains 1273 amino acids and plays a vital role in the viral 
attachment and fusion to the host cell membrane. This protein has two 
subunits – S1 and S2. The S1 subunit is responsible for binding to 
angiotensin-converting enzyme 2 (ACE2) receptor of the host cell and 
the S2 helps in the fusion of the virus to the cell membrane. The S1 
subunit consists of two domains – N-terminal domain (NTD) and 
C-terminal domain (CTD). C-terminal domain of S1 subunit has a 
receptor-binding domain (RBD) which binds to the ACE2 receptor (He 
et al., 2020; Huang et al., 2020; Walls et al., 2020). S2 subunit contains 
fusion protein (FP), heptapeptide repeat sequence 1(HR1), heptapeptide 
repeat sequence 1 (HR2), transmembrane domain (TM) and cytoplasmic 
domain (CT) [Fig. 2a]. 

During fusion, S-protein is activated through its cleavage into S1 and 
S2 subunits. This cleavage is mediated by TMPRSS2 and furin proteases 
of the host cell (Rani et al., 2022). Multiple furin cleavage sites have 
been found in highly pathogenic influenza viruses and SARS-CoV-2 
(Hasan et al., 2020). Therefore, multiple furin cleavage sites could be 
a possible reason for the pathogenicity of SARS-CoV-2 (Kido et al., 2012; 
Heurich et al., 2014; Limburg et al., 2019). After cleavage, FP protein 

binds and fuses to the host cell membrane bringing HR1 closer to the 
host membrane. Next, HR1 and HR2 form a fusion core and trigger cell 
membrane fusion [Fig. 3]. (Eckert and Kim, 2001; Harrison, 2015; Millet 
and Whittaker, 2018). Inside the host cell, viral RNA is translated to 
polyproteins using the host ribosomes. Viral 3 C-like protease (3CLPro) 
and papain like protease (PLpro) cleave polyproteins into Nsps that are 
required for transcription, replication, and packaging. 

RDV is the first drug approved by the FDA for COVID-19 treatment. It 
was discovered as an effective therapeutic drug for Ebola virus in 2017 
(Siegel et al., 2017). It is a phosphonamidite prodrug which forms 
triphosphate to target viral RNA dependent RNA polymerase (RdRp) 
enzyme which is required for viral replication and delayed chain 
termination in SARS-CoV, MERS-CoV and SARS-CoV-2 (Gordon et al., 
2020). Lopinavir-ritonavir (protease inhibitors) combination therapy 
was proposed for COVID-19 treatment as it inhibits 3CLPro of 
SARS-CoV-2. However, it did not show any significant effects on 
COVID-19 patients during clinical trials (Cao et al., 2020a, 2020b; and 
Patel et al., 2021). Hence, there is a continuous need for the develop-
ment of effective therapeutic solutions against SARS-CoV-2. 

Researchers have been trying to exploit a variety of mechanisms for 
the development of antiviral peptides against SARS-CoV-2 such as tar-
geting the viral envelope, S-glycoprotein, endosomal acidification in-
hibition and shielding the cell receptors for the host [Fig. 3] (Mahendran 
et al., 2020). Targeting S-protein, a potential strategy for drug devel-
opment, has been studied by several research groups (He et al., 2020; 
Huang et al., 2020; Walls et al., 2020). Peptides binding to RBD of S1 
subunit reduce the binding affinity of S1 to ACE2 receptor of the host 
cell, thereby preventing the spread of virus (Kurpe et al., 2020). A α5β1 
integrin binding peptide ATN161 extracted from extracellular matrix 
fibronectin, disrupt spike protein and ACE2 interaction by binding to 
α5β1 attached to S-protein RBD and reduce viral infection (Beddingfield 
et al., 2021). A lipopeptide, EK1C4 is an example of an effective inhib-
itor against SARS-CoV-2. A molecule of cholesterol was covalently 
attached to EK1, an HR-targeting inhibitor, to induce solubility and 
activity. It targets HR1 viral protein and inhibits viral and host mem-
brane fusion. Due to the identical nature of HR2 of SARS-CoV-1and 
SARS-CoV-2, 2019-nCov1-HR2P peptide derived from SAR-CoV-1 
showed significant result in inhibiting viral infection against 
SARS-CoV-2 (Xia et al., 2020a, 2020b; Zhang et al., 2020). A study 
showed the cloaking of binding sites of ACE2 by human defensin-5 

Fig. 3. Mechanism of action of antiviral peptides developed against SARS-CoV-2.  
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(HD-5), demonstrating innate defense mechanisms of intestinal epithe-
lium against SARS-CoV-2 (Wang et al., 2020). Cathelicidin LL37 has also 
been shown to inhibit SARS-CoV-2 pseudo-virion infection by binding to 
the RBD of S1 subunits and ACE2 (Wang et al., 2021). Lactoferrin is an 
antimicrobial peptide known to be effective against SARS-CoV and is 
suggested to be a potential option due to its affordability, environmental 
safety, and efficiency (Campione et al., 2021). 

TMPRSS2 and furin protease cleave surface spike protein into S1 and 
S2 subunits, which is a crucial step for the entry of SARS-CoV-2 to host 
cells. Aprotinin, a TMPRSS2 inhibitor isolated from bovine lung, and 
synthetic mimetic peptides MI-432 and MI-1900, showed significant 
suppression in S-protein activation and viral multiplication in Calu-3 
human airway cells. Similar results were observed for the synthetic 
peptide MI-1851, a furin inhibitor, in Calu-3 cells. A combination 
therapy of MI-1851 and MI-432 reduced viral multiplication signifi-
cantly at lower dose in Calu-3 cells in contrast to single inhibitor 
treatment (Bestle et al., 2020). Previously, mouse β-defensin-4 derived, 
P9 peptide, showed significant reduction in infection caused by 
SARS-CoV, MERS CoV, and influenza virus (Zhao et al., 2016). Recently, 
P9 and two potent peptides derived from mouse β-defensin-4 have been 
found to be effective therapeutic agents for COVID-19 treatment. P9R 
peptide has shown effective results in mice against lethal A (H1N1) 
pdm09 virus without inducing drug resistance in MDCK cells (Zhao 
et al., 2020). A synthetic peptide, brilacidin, inhibits SARS-CoV-2 
infection through the inhibition of viral entry and disruption of viral 
integrity in Vero and Calu-3 cells. Moreover, its combination with RDV 
has a synergistic effect against SARS-CoV-2 (Bakovic et al., 2020). The 
AMP’s cathelicidin LL-37 and defensins reportedly take part in active 
viral defense. Additionally, two promising miniproteins-AHB1 and 
AHB2 were designed based on RBD binding motif using de-novo 
sequencing. Later, LCB1-LCB8 peptides were designed based on a similar 

strategy, and LCB1-LCB3 showed neutralization effect against 
SARS-CoV-2 (Cao et al., 2020a, 2020b). In 2020, the SARS BLOCK™ 
peptide scaffold was designed to mimic the RBD binding motif to inhibit 
virus entry to host cell and infection. This peptide inhibitor also displays 
an antibody neutralizing binding motif to induce immune response and 
acts as a therapeutic as well as immune stimulant peptide (Watson et al., 
2020). Recently, researchers have discussed the potential of 
human-derived AMPs released by human mesenchymal stem cells 
(hMSC) in initiating pulmonary defense mechanisms against COVID-19. 
The hMSC-derived AMPs have possibly modulated cytokine storm in 
terminally ill COVID patients and led to effective therapeutic treatment 
(Ghosh and Weinberg, 2021). In a similar study antiviral traits of 
defensins have been highlighted in viral inhibition by binding to virion, 
modulating host cell receptor with intracellular signaling disruptions 
and alteration of immune responses by interacting with chemokine re-
ceptors and toll-like receptors (TLRs). The natural defensive mecha-
nisms against invading viruses such as CoV-2 likely depend upon 
meticulous physical activity, which is similar to the immunity of athletes 
against pathogenic microorganisms offered by high concentrations of 
serum defensins (Laneri et al., 2021). Researchers have assessed one of 
the latest insights into the anti-corona virus activity of AMP DP7. This 
study revealed that drug-targeted sites of CoV-2 are divided into two 
categories, namely viral protease and others including CoV-2 S-protein, 
ACE-2 receptor, and a transmembrane protease. The researchers effec-
tively demonstrated that DP7 prevented SARS-CoV/CoV-2 S-protein 
binding of ACE2–293 T cells. In addition, DP7 inhibited the 
protein-mediated host cell-cell fusion and inhibited SARS-CoV-2-Mpro 
(or 3CLpro). The 3CLPro plays an important role in CoV-2 viral repli-
cation and recently has been observed as a possible target of plant sec-
ondary metabolites and AMPs (Zhang et al., 2021; Mody et al., 2021; Jo 
et al., 2020). This could provide a revolutionary basis for AMP-based 

Table 2 
Antiviral peptides developed against SARS-CoV-2.  

Name Target Protein Source Sequence derived from Mechanism References 

DS9 S1 subunit Synthetic peptide Dermaseptin Impedes S1 binding to ACE2 
receptor and regulates virus entry 

Sekar et al. 
(2022) 

AHB1 S-protein De-novo designed ACE2 Inhibits RBD binding to ACE2 Cao et al. (2020) 
LCB1 S-protein RBD De-novo designed Based on ACE2 binding to RBD Inhibits RBD binding to ACE2 
LCB3 S-protein RBD Inhibits RBD binding to ACE2 
SARS- 

BLOCK 
RBD binding site of ACE2 
receptor 

Synthetic peptide inhibitor that 
mimics S-protein RBD 

S-protein RBD Inhibits S-protein binding to ACE2 
and stimulate immune response 

Watson et al. 
(2020) 

HD5 ACE2 Intestinal Paneth cells Human defensin family peptide Cloaking of binding of ACE2 and 
inhibits entry to the host cell 

Wang et al. 
(2020) 

LL37 Carboxypeptidase domain of 
ACE2 and S protein RBD 

Neutrophils and epithelial cells Human cathelicidin family 
peptide 

Inhibits the binding of RBD to 
ACE2 receptor 

Wang et al. 
(2021) 

Lactoferrin Innate immunity and S- 
protein 

Exocrine glands and neutrophils Bovine lactoferrin (identical to 
human lectoferrin) 

Prevents virus entry and anti- 
inflammatory and restore iron 
homeostasis 

Campione et al. 
(2021) 

Birlacidin Not available (NA) Synthetic nonpeptidic mimetic 
polymer 

Host defense protein magainin Inhibits virus entry and 
significantly effective in 
combination with remdesivir. 

Bakovic et al. 
(2020) 

EK1C4 HR1 Cholesterol molecule conjugated to 
the EK1 peptide (a modified OC43- 
HR2P peptide) 

HR2 of OC43 Inhibits S-protein mediated 
membrane fusion 

Xia et al. (2020) 

2019-nCoV- 
HR2P 

HR1 Synthetic peptide derived from 
2019-nCoV-HR2P 

HR2 of SARS-CoV2/ 2019 
nCoV (both sequences are 
identical) 

Inhibits S-protein mediated 
membrane fusion 

ATN-161 ACE2 receptor and S-protein 
RBD 

Extracellular matrix component 
fibronectin 

Fibronectin Binds to integrin α5β1 and dirupt 
the interaction between ACE2 and 
S-protein RBD 

Beddingfield 
et al. (2021) 

Aprotinin TMPRSS2 Bovine lung Aprotinin Prevents proteolytic activation Bestle et al. 
(2020) MI-432 Peptide mimetic inhibitors of 

TMPRSS2 
Protease inhibitor 
(peptidomimetic) 

Prevents proteolytic activation 

MI-1900 Peptide mimetic inhibitors of 
TMPRSS2 

Prevents proteolytic activation 

P9 Cathepsin L Synthetic peptide based on mouse 
β-defensin-4 

Mouse β-defensin-4 Inhibition of endosomal 
acidification 

Zhao et al. 
(2020) P9R 

8P9R 
MI-1851 Furin Peptide mimetic inhibitors of Furin Protease inhibitor 

(peptidomimetic) 
Inhibits proteolytic cleavage of S- 
protein into S1 and S2 subunits 

Bestle et al. 
(2020)  
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drug development against coronavirus infections. In yet another recent 
study bioengineered AMPs - glycocin F and lactococcine G derived from 
two probiotic bacterial strains Lactococcus lactis and Lactobacillus plan-
tarum respectively were assessed as possible drugs for COVID-19. The 
study revealed that both glycocin F and Lactococcine G possess high 
binding affinities towards viral proteins and hence further experimental 
analyses against COVID-19 shall be performed (Balmeh et al., 2021). 
Recently, 8 alpha-helical peptides were tested to identify a potential 
therapeutic scaffold which can compete with S1 for the RBD binding site 
of the ACE2 receptor. This study revealed that S1-Dermaseptin-S9 
(S1-DS9) complex could be a potential therapeutic peptide complex 
for SARS-CoV-2 treatment. It binds to S1 subunit of S-protein and pre-
vent S1 binding to ACE2 receptor and inhibit virus entry to host cell 
(Sekar et al., 2022). Table 2 contains a list of antiviral peptides devel-
oped against SARS-CoV-2. 

5. Conclusion 

This review discusses the potential use of AMPs as antiviral peptides 
against SARS-CoV-2. Since AMPs are less susceptible to antimicrobial 
resistance, they have emerged as an effective strategy against microbes 
to tackle the problem of ADR. Successful use of AMPs against various 
pathogens has revealed its possible therapeutic interventions against 
antimicrobial resistance. Therefore, the potential application of anti-
microbial peptides is required to be explored. AMPs have been suc-
cessfully developed against several pathogenic viruses, including but not 
limited to HIV, DENV, IAV, IBV, HCV, HPV, HBV. The modes of action of 
antiviral peptides have been described in this review article and how 
they could be exploited to target SARS-CoV-2. Currently, a significant 
amount of effort is being devoted towards the development of antiviral 
peptides against SARS-CoV-2. Improvement of peptides is also achieved 
through de-novo designing and synthesizing them synthetically, 
considering their properties and target proteins (Sekar et al., 2022; Cao 
et al., 2020a, 2020b; Watson et al., 2020; Bakovic et al., 2020). In 
conclusion, AMPs are the future of therapeutics and an important area of 
research, especially during the emergence of the COVID-19 pandemic, 
which has affected millions of lives. 
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Krzyżewski, J., Zwierzchowski, L., Bagnicka, E., 2012. Cathelicidins: family of 
antimicrobial peptides. A review. Mol. Biol. Rep. 39, 10957–10970. 

Kurpe, S.R., Grishin, S.Y., Surin, A.K., Panfilov, A.V., Slizen, M.V., Chowdhury, S.D., 
Galzitskaya, O.V., 2020. Antimicrobial and amyloidogenic activity of peptides. Can 
antimicrobial peptides be used against sars-cov-2? Int. J. Mol. Sci. 21, 9552. 

Ladokhin, A.S., Selsted, M.E., White, S.H., 1999. CD spectra of indolicidin antimicrobial 
peptides suggest turns, not polyproline helix. Biochemistry 38, 12313–12319. 

Ladram, A., Nicolas, P., 2016. Antimicrobial peptides from frog skin: Biodiversity and 
therapeutic promises. Front. Biosci. 21, 1341–1371. https://doi.org/10.2741/446. 

Laneri, S., Brancaccio, M., Mennitti, C., De Biasi, M.G., Pero, M.E., Pisanelli, G., 
Scudiero, O., Pero, R., 2021. Antimicrobial peptides and physical activity: a great 
hope against COVID 19. Jun 30 Microorganisms 9 (7), 1415. https://doi.org/ 
10.3390/microorganisms9071415. PMID: 34209064; PMCID: PMC8304224.  

Lehrer, R.I., Lu, W., 2012. α-Defensins in human innate immunity. Immunol. Rev. 245, 
84–112. 

Lei, J., Sun, L., Huang, S., Zhu, C., Li, P., He, J., Mackey, V., Coy, D.H., He, Q., 2019. The 
antimicrobial peptides and their potential clinical applications. Am. J. Transl. Res. 
11, 3919–3931. 

Levendosky, K., Mizenina, O., Martinelli, E., Jean-Pierre, N., Kizima, L., Rodriguez, A., 
Kleinbeck, K., Bonnaire, T., Robbiani, M., Zydowsky, T.M., O’Keefe, B.R., Fernández- 
Romero, J.A., 2015. Griffithsin and carrageenan combination to target herpes 
simplex virus 2 and human papillomavirus. Antimicrob. Agents Chemother. 59, 
7290–7298. 

Limburg, H., Harbig, A., Bestle, D., Stein, D.A., Moulton, H.M., Jaeger, J., Janga, H., 
Hardes, K., Koepke, J., Schulte, L., Koczulla, A.R., Schmeck, B., Klenk, H.D., 
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