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In humans, various dietary and social factors led to the development of

increased brain sizes alongside large adipose tissue stores. Complex

reciprocal signaling mechanisms allow for a fine-tuned interaction between

the two organs to regulate energy homeostasis of the organism. As an

endocrine organ, adipose tissue secretes various hormones, cytokines, and

metabolites that signal energy availability to the central nervous system (CNS).

Vice versa, the CNS is a critical regulator of adipose tissue function through

neural networks that integrate information from the periphery and regulate

sympathetic nerve outflow. This review discusses the various reciprocal

signaling mechanisms in the CNS and adipose tissue to maintain organismal

energy homeostasis. We are focusing on the integration of afferent signals from

the periphery in neuronal populations of the mediobasal hypothalamus as well

as the efferent signals from the CNS to adipose tissue and its implications for

adipose tissue function. Furthermore, we are discussing central mechanisms

that fine-tune the immune system in adipose tissue depots and contribute to

organ homeostasis. Elucidating this complex signaling network that integrates

peripheral signals to generate physiological outputs to maintain the optimal

energy balance of the organism is crucial for understanding the

pathophysiology of obesity and metabolic diseases such as type 2 diabetes.
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Introduction

In most mammalian species, the size of the brain and adipose depots are inversely

correlated, indicating compensatory buffering strategies to protect against starvation

(Navarrete et al., 2011). However, in humans, dietary and social factors have led to

increased brain sizes alongside large adipose tissue stores despite substantial energetic

costs (Navarrete et al., 2011; Heldstab et al., 2016). Adipose depots make up a remarkable

proportion of human body mass, allowing physiological buffering and efficient

partitioning of unutilized calories (Ofenheimer et al., 2020; Liu et al., 2021). The size

of the human brain allows for increased cognitive flexibility, representing an additional

mechanism to keep the energy intake constant and to maintain the body’s energy

requirements (Heldstab et al., 2016). Therefore, a fine-tuned crosstalk between the
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two organs orchestrates the regulation of feeding, energy storage,

and energy expenditure. Adipose depots constitute a dynamic

endocrine organ secreting multiple adipokines into circulation

that signal energy availability to the brain. Furthermore, sensory

innervation of adipose depots allows for the detection of locally

released free fatty acids and adipokines and therefore represents

an additional afferent route from adipose tissue to the central

nervous system (CNS) (Murphy et al., 2013; Garretson et al.,

2016). The CNS integrates these peripheral signals to generate

physiological responses to maintain the optimal energy balance

of the organism.

This review highlights the coordinated reciprocal signaling

between the CNS and white adipose tissue. We are discussing the

integration of afferent signals from the periphery in neuronal

populations of the mediobasal hypothalamus as well as the

efferent signals from the CNS to adipose tissue and its

implications for adipose tissue function. Furthermore, we are

focusing on central mechanisms that regulate resident immune

cell function in adipose tissue depots and subsequently

contribute to organ homeostasis.

Efferent signals from the central
nervous system are crucial regulators
of white adipose tissue function

The brain interacts with white adipose tissue depots through

distinct efferent sympathetic nerves, releasing the catecholamine

norepinephrine (NE) from their nerve terminals. In white

adipose tissue (WAT), sympathetic nerve terminals are located

adjacent to >90% of adipocytes, forming a dense network of

sympathetic arborizations (Jiang et al., 2017). Importantly,

sympathetic outflow to the adipose tissue is the principal

initiator of adipose tissue lipolysis (Fredholm and Karlsson,

1970; Youngstrom and Bartness, 1995; Dodt et al., 2003;

Bartness et al., 2010). Electrical stimulation of sympathetic

nerve fibres in rat epididymal adipose tissue explants resulted

in the rapid release of fatty acids and glycerol into the incubation

medium, which provided some of the first evidence for this

regulation (Correll, 1963). The necessity of WAT sympathetic

nervous system (SNS) innervation for lipolysis was elegantly

demonstrated by direct optogenetic activation of sympathetic

inputs to adipose tissue, which was sufficient to promote a local

lipolytic response and fat mass reduction (Zeng et al., 2015). It is

worth noting that the extent of sympathetic innervation and

outflow differs between the different depots of WAT

(Youngstrom and Bartness, 1995; Brito et al., 2007; Brito

et al., 2008). Furthermore, the rate of extracellular NE

clearance also influences the sympathetic tone. Most NE is

sequestered from the synapse through the solute carrier family

six member 2 (SLC6A2) monoamine transporter expressed on

sympathetic neurons. Pirzgalska et al. (2017) reported a

macrophage subtype capable of dampening the sympathetic

tone in adipose tissue by lowering noradrenaline

bioavailability. These specialized sympathetic neuron-

associated macrophages (SAMs) are able to scavenge

noradrenaline through the transporter Slc6a2 and degrade it

using the enzyme monoamine oxidase A (MAOa) (Camell et al.,

2017). Treating aged mice with an MAOA inhibitor increased

adipose tissue concentrations of norepinephrine (NE) and

restored the aging-related fasting-induced lipolysis defect

(Camell et al., 2017). In addition, genetic ablation of

Slc6a2 was shown to be sufficient to increase NE levels in

serum, which results in improved brown adipose tissue (BAT)

performance and browning of WAT (Pirzgalska et al., 2017). Of

note, adipocytes express the organic cation transporter 3 (Oct3;

Slc22a3), allowing the clearance of NE (Ayala-Lopez et al., 2015;

Song et al., 2019). This indicates that several cell types are

involved in the regulation of NE bioavailability specifically in

white adipose microenvironments. Collectively, the

bioavailability of catecholamines, such as NE, constitutes a

specific regulatory mechanism in adipose tissue homeostasis.

Stimulation of lipolysis requires the activation of

G-protein–coupled α- and β-adrenoceptors (α- and β-ARs)

on adipocytes (Barbe et al., 1996). The extent of the lipolytic

activity depends on a balance between lipolysis stimulation by

β-ARs (β1–3-AR) and lipolysis inhibition by α2-ARs [for

review see (Evans et al., 2019; Collins, 2022)]. Activating β-
adrenergic receptors leads to dissociation of the receptor-

coupled Gs protein and activation of adenylate cyclase

(AC), which increases intracellular cAMP levels. High

cAMP levels activate protein kinase A (PKA), which

phosphorylates hormone-sensitive lipase (HSL) and

perilipin-A (PLIN1). This initiates a signaling cascade that

leads to the activation of lipases, such as adipose triglyceride

lipase (ATGL) and monoglyceride lipase (MGL) or α/β
hydrolase-domain 6 (ABHD6), allowing triglycerides to be

hydrolyzed sequentially into fatty acids (FA) and glycerol

(Figure 1) (Grabner et al., 2021).

In order to fine-tune adipose lipolytic activity,

neuropeptide Y (NPY), which is co-stored with NE, is

released from sympathetic nerve terminals and inhibits

lipolysis by binding to its receptor NPYR1 (Lundberg et al.,

1990; Labelle et al., 1997; Bradley et al., 2005). NPY receptors

are highly expressed on human adipocytes, and most

abundant in subcutaneous adipose depots (Castan et al.,

1993; Serradeil-Le Gal et al., 2000; Kos et al., 2007). The

release of NPY on the other hand has a considerable

proliferative effect on adipocyte precursors and stimulates

adipogenesis (Kuo et al., 2007; Yang et al., 2008). In this

context, NPY promotes the accumulation and storage of

energy.

Lipolysis increases the availability of free fatty acids which in

turn activate local WAT afferents that mediate acute induction of

thermogenesis in distant BAT depots (Garretson et al., 2016;

Nguyen et al., 2017). This data is strong indication of WAT and
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BAT crosstalk via afferent sensory feedback in order to maintain

thermoregulation.

Efferent signals from the central
nervous system regulate adipose
tissue expansion

In addition to its role as principal regulator of adipose tissue

lipolysis, the SNS is also involved in the regulation of adipose

tissue mass and plasticity. Here, the local release of NE

constitutes an important negative regulator of adipogenesis

(Jones et al., 1992). Surgical local denervation or chemical

sympathectomy of WAT increased adipocyte precursor cell

proliferation and accelerated preadipocyte differentiation

(Cousin et al., 1993; Bowers et al., 2004; Foster and Bartness,

2006). However, surgical denervation of nerve bundles results in

a mixed denervation of sensory and sympathetic nerve fibres that

impacts the interpretation of these findings. Furthermore,

transgenic mice with a deficiency of the neuronal

transcription factor Nscl-2 displayed reduced nerve density in

white adipose depots and this reduction in innervation was

accompanied by an increase in numbers of preadipocytes

(Ruschke et al., 2009). Conversely, sensory denervation

(through local microinjections of capsaicin) did not affect

preadipocyte proliferation and differentiation (Foster and

Bartness, 2006). The inhibitory effect of NE on the

proliferation of WAT adipose progenitor cell populations is

likely mediated through β1-adrenergic receptors (β1-ARs).
Schneider et al. (2018) demonstrated that the selective β1-AR
agonist dobutamine diminished preadipocyte proliferation.

Interestingly, the activation of the parasympathetic nervous

system (PSNS) may play an opposing role to that of the SNS.

Here, reduced melanocortin signaling due to increased vagal

activity within the splanchnic compartment actively facilitates

adipose tissue expansion (Holland et al., 2019). Importantly, a

lack of parasympathetic innervation in the WAT has been

reported and therefore further research is needed to determine

how the brain-melanocortin-vagus efferent axis regulates fat

mass gain (Giordano et al., 2006).

Central integration of adipose tissue
signals

Retrograde tracing experiments have revealed numerous

brain areas that are polysynaptically connected to adipose

tissue. This includes several nuclei in the mediobasal

hypothalamus, such as the arcuate nucleus (ARC), the

ventromedial hypothalamus (VMH), the dorsomedial

FIGURE 1
Sympathetic regulation of adipose tissue lipolysis. Sympathetic and sensory innervation of human adipose tissue. Sympathetic nerve fibres that
travel from the CNS to innervate adipose tissue (purple) and sensory nerve fibres that relay information from adipose tissue to the CNS (green) are
shown. Release of noradrenaline (NE) from efferent sympathetic fibres leads to the activation of β-adrenergic receptors and the subsequent
dissociation of the receptor-coupled Gs protein leads to activation of adenylate cyclase (AC), which increases intracellular cAMP levels. High
cAMP levels activate protein kinase A (PKA), phosphorylating hormone-sensitive lipase (HSL) and perilipin-A (PLIN1). This initiates the activation of a
set of lipases, such as adipose triglyceride lipase (ATGL) and monoglyceride lipase (MGL) or α/β hydrolase-domain 6 (ABHD6), allowing for
consecutive hydrolysis of TGs into fatty acids (FA) and glycerol. Increased lipolysis in turn activates WAT afferent sensory nerve endings, which are
able to sense local FA and leptin concentrations (Garretson et al., 2016). Created with BioRender.com.
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hypothalamus (DMH), the lateral hypothalamus (LH) and the

paraventricular nucleus of the hypothalamus (PVH) (Bamshad

et al., 1998; Ryu and Bartness, 2014). These nuclei contain several

functionally distinct neuronal populations that adapt integrative

physiology to the organismal energy state (Aponte et al., 2011;

Brandt et al., 2018; Chen et al., 2015; Sutton and Krashes, 2020;

van den Top et al., 2004; Zhan et al., 2013). These neurons

express high levels of receptors that allow for the integration of

peripheral metabolic feedback signals within the CNS in order to

generate physiological output (Jais and Bruning, 2022). This

output is conveyed as sympathetic outflow to adipose tissue

(and other peripheral organs) (Guilherme et al., 2019).

The most well-defined neurocircuit in the context of

integrative physiology is the melanocortin system, which

consists of the functionally antagonistic anorexigenic

proopiomelanocortin (POMC)-expressing neurons and the

orexigenic agouti-related peptide (AgRP)-expressing neurons

in the arcuate nucleus (ARC) of the mediobasal hypothalamus

(Gautron et al., 2015). POMC neurons are activated by energy

surplus and inhibit food intake after prolonged periods of feeding

(Aponte et al., 2011). These neurons release the melanocortin α-
melanocyte-stimulating hormone (α-MSH) into the

paraventricular nucleus (PVH) where it binds to the

melanocortin receptor 4 (MC4R), resulting in reduced food

intake and increased energy expenditure (Cone, 2006; Zhan

et al., 2013; Krashes et al., 2016). AgRP neurons are located

adjacent to the third ventricle in close proximity to the median

eminence (ME), allowing them to sense peripheral metabolic

signals. A negative energy balance increases AgRP neuronal

excitability, which is rapidly suppressed upon the initiation of

feeding (Hahn et al., 1998; Aponte et al., 2011; Betley et al., 2015).

Mechanistically, AgRP acts as an inverse agonist for the

melanocortin receptor 4 (MC4R) that competes with α-MSH

released from POMC neurons for binding sites on the MC4R

(Haskell-Luevano and Monck, 2001). AgRP neurons also release

neuropeptide Y (NPY) as well as the inhibitory neurotransmitter

gamma-aminobutyric acid (GABA), and the promotion of

feeding depends on both NPY and GABA release from these

cells (Tong et al., 2008; Krashes et al., 2013).

Importantly, both AgRP and POMC neurons express

receptors for leptin, insulin and other energy-state

communicating hormones and are therefore subject to

feedback regulation (Belgardt and Bruning, 2010; Varela and

Horvath, 2012; Vogt and Bruning, 2013; Biglari et al., 2021; Deem

et al., 2022).

Leptin signaling in the mediobasal
hypothalamus

The discovery of leptin revealed a central mechanism of

how adipose tissue communicates with the CNS (Zhang et al.,

1994; Halaas et al., 1995; Montague et al., 1997). Leptin is a

hormone primarily released by WAT proportional to the size

of fat stores and central leptin signaling is an essential

regulator of lipid storage (Frederich et al., 1995; Klein

et al., 1996; Fruhbeck et al., 1998). The lipolytic effects of

leptin are mediated by neuronal pathways as evidenced by the

fact that selective denervation within WAT depots prevents

the lipolysis-increasing effects of leptin (Buettner et al., 2008;

Zeng et al., 2015). Several studies have identified POMC

neurons in the ARC as potential regulators of lipolysis

(Kaushik et al., 2012; Shin et al., 2017; Gomez-Valades

et al., 2021). For example, the loss of autophagy in POMC

neurons decreases α-melanocyte-stimulating hormone

(MSH) levels, which in turn leads to impaired lipolysis

(Kaushik et al., 2012). Leptin directly activates POMC

neurons through the leptin receptor (LEPR) (Cowley et al.,

2001; Balthasar et al., 2004). In addition, leptin reduces the

inhibitory tone of presynaptic GABAergic neurons to

postsynaptic POMC neurons (Vong et al., 2011).

Mechanistically, leptin signaling in the mediobasal

hypothalamus increases adipose tissue lipolysis by post-

translational regulation of hormone-sensitive lipase (HSL)

in adipocytes (Buettner et al., 2008). In this regard, several

nuclei of the mediobasal hypothalamus, such as the ARC,

VMH, DMH, LH, and PVH are mediating leptin action on

SNS activity (Rahmouni and Morgan, 2007; Simonds et al.,

2012; Harlan and Rahmouni, 2013; Shi et al., 2020).

Moreover, leptin-stimulated central PI3K signaling

regulates energy expenditure through activation of SNS

activity to WAT leading to browning of adipocytes and

increased energy expenditure (Plum et al., 2007).

Sympathetic nerve fibers in white adipose tissue establish

neuro-adipose junctions, thereby allowing for the local

regulation of lipolysis (Zeng et al., 2015). Leptin also

regulates the plasticity of the sympathetic innervation of

adipose tissue. Here, a population of BDNF-expressing

neurons in the paraventricular nucleus of the

hypothalamus (BDNFPVH) dynamically regulates the

sympathetic innervation downstream of leptin-sensitive

AGRP and POMC neurons in the ARC (Wang et al., 2020).

De novo lipogenesis, the process of converting

carbohydrates into fatty acids, is regulated by hypothalamic

leptin signaling as demonstrated by acute infusion of leptin

into the mediobasal hypothalamus, which potently suppresses

key de novo lipogenic enzymes (Buettner et al., 2008).

Interestingly, de novo lipogenesis in adipocytes might

provide regulatory feedback for sympathetic neuronal

activity as the suppression of the key lipogenic enzyme

fatty acid synthase (FASN) in white adipocytes enhances

sympathetic activity (Guilherme et al., 2017). Furthermore,

leptin regulates its own expression in adipocytes through a

SNS-dependent mechanism that requires NE. Acute treatment

of mice with β3-adrenoceptor agonists suppresses leptin

secretion from adipocytes through a β3-adrenergic receptor
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(β3-AR)–cAMP-dependent mechanism (Trayhurn et al.,

1996). Conversely, systemic inhibition of catecholamine

synthesis in rats increased plasma leptin levels by 15-fold

(Sivitz et al., 1999).

Insulin signaling in the mediobasal
hypothalamus

Another important signaling molecule in the CNS-adipose

crosstalk involving melanocortin neurons is insulin. Insulin is an

anabolic peptide hormone secreted by β-cells of the pancreas and
insulin signaling in the mediobasal hypothalamus dampens

sympathetic nerve activity to adipose tissue, suppresses lipolysis

and allows for increased adipose tissue retention of fatty acids

(Scherer et al., 2011; Shin et al., 2017). Furthermore, this reduction

in lipolysis reduces hepatic glucose production by limiting the flux

of energy substrates necessary for gluconeogenesis (Scherer et al.,

2011). Importantly, genetic disruption of the insulin receptor (IR)

on POMC neurons resulted in impaired suppression of adipose

tissue lipolysis (Shin et al., 2017). However, POMC neurons are a

heterogeneous cell population (Dodd et al., 2018; Biglari et al.,

2021). The phosphatase TCPTPmediates insulins effects on POMC

neurons as elevated expression of the phosphatase TCPTP in

POMC neurons represses insulin signaling. Conversely, a

decreased expression of TCPTP enhances insulin signaling and

therefore the proportion of POMC neurons activated by insulin

(Dodd et al., 2018). However, the effects of POMC-specific TCPTP

expression on the regulation of lipolysis are still unknown.

Sensing of free fatty acids in the
mediobasal hypothalamus

Various cell types in the mediobasal hypothalamus are

capable of sensing circulating fatty acids. Tanycytes,

specialized ependymal glia cells that line the wall of the third

ventricle near the ARC, sense free fatty acids and subsequently

regulate WAT lipolysis through hypothalamic FGF21 signaling

(Geller et al., 2019). Importantly, long-chain fatty acids (LCFA)

such as oleic acid (OA) are able to excite a subset of POMC

neurons directly through inhibition of ATP-activated potassium

(KATP) channels (Jo et al., 2009). Moreover, central

administration of a MC4R antagonist abolished the

(anorexigenic) actions of OA (Schwinkendorf et al., 2011).

These findings indicate that the melanocortin system acts as a

signaling hub for regulating WAT lipolysis. Indeed, SNS outflow

neurons to WAT express melanocortin-4 receptor (MC4R)

mRNA (Song et al., 2005). Pharmacological activation of

MC3/4R in the CNS stimulates lipolysis independent of food

intake (Nogueiras et al., 2007). Furthermore, central infusion

with MC3/4R agonists provokes differential sympathetic drives

to various adipose tissue depots (Brito et al., 2007).

It is worth noting that peripheral signals are relayed not only

via the circulation, but also through sensory innervation of

adipose depots. Sensory nerve endings allow for the detection

of local leptin levels directly in the adipose tissue depot (Fishman

and Dark, 1987; Niijima, 1998, 1999). Therefore, the integration

of information from leptin reaching the brain via the circulation

and information about individual adipose tissue depots leptin

levels via sensory fibers might help to adjust the sympathetic tone

from the CNS in an adipose tissue depot-specific manner.

In conclusion, these data clearly highlight the importance of

the melanocortin system in the CNS-adipose crosstalk. Further

efforts are needed however to understand the deregulation of

these signaling networks during the development of leptin and

insulin resistance.

Resident immune cells contribute to
adipose tissue homeostasis through
multiple mechanisms

Immune mechanisms in the adipose tissue have been widely

studied within the onset of obesity and insulin resistance (Pekala

et al., 1983; Wellen and Hotamisligil, 2003; Lumeng et al., 2007a;

Lumeng et al., 2007b). Nevertheless, adipose tissue contains resident

immune cells that maintain organ homeostasis. Adipose tissue

macrophages (ATMs) are the most abundant immune cell type,

which occupy up to 10% of stromal cells under a steady-state and are

usually uniformly distributed (Weisberg et al., 2003). ATMs help

maintain adipose tissue homeostasis by controlling key signaling

pathways involved in adipogenesis, lipogenesis, lipolysis, and lipid

uptake (Kosteli et al., 2010; Bilkovski et al., 2011; Nguyen et al., 2011;

Brunner et al., 2020; Chen et al., 2021). In addition, ATMs play a

critical role in the vascular homeostasis of the organ as an adequate

blood flow is essential for adipose tissue expansion and metabolic

functions. This was demonstrated by co-culturing macrophages and

adipocytes, which lead to increased expression of VEGFA and other

pro-angiogenic factors (Yadav et al., 2020). Interestingly, VEGFA

exerts potent neurotrophic and synaptotrophic effects as well

(Sondell et al., 1999; Pelletier et al., 2015; Calvo et al., 2018).

However, the role of VEGFA in regulating adipose tissue

innervation has not been explored to date. In addition, the

comparison of adipose tissue obtained from wildtype and ATM-

depleted mice revealed that ATMs play a pivotal role in suppressing

the expression of pro-inflammatory cytokines (Chen et al., 2021).

Bi-directional crosstalk between adipose
tissue-resident immune cells and nerve
fibres

Extensive crosstalk between the SNS and resident ATMs

regulates adipose tissue homeostasis and the activation of β-
adrenergic signaling is a powerful regulator of adipose tissue
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function. Adrenergic receptors are expressed in macrophages,

particularly β2-adrenergic receptors (β2-AR) (Pavlov et al., 2018;
Petkevicius et al., 2021). ATMs from mice treated with

CL316,243 (a β-adrenergic agonist) increased beige

adipogenesis significantly (Lee et al., 2016). This process

entails triggering the death of unilocular white adipocytes,

clearance of dead cells, and the recruitment of UCP1+

adipocyte progenitors and further differentiation (Lee et al.,

2016). Moreover, β2-AR stimulation was also shown to be

essential for maintaining low TNFα expression levels in ATMs

in lean mice and for M2 macrophage polarization (Grailer et al.,

2014; Tang et al., 2015). Interestingly, Petkevicius et al. (2021)

have recently shown that macrophage β2-AR activation is

dispensable for the development of metabolic inflammation.

However, nerve-associated macrophages can be found in

several tissues throughout the body, where they are involved

in regulation of metabolic homeostasis potentially utilizing

different signaling mechanisms [for review see (Kolter et al.,

2020)]. Therefore, further studies on the function of nerve-

associated macrophages in metabolic homeostasis are required.

Furthermore, β2-AR stimulation in macrophages promotes

thermogenesis via the production and secretion of acetylcholine,

which acts on adipocytes via acetylcholine receptors, stimulating

the PKA pathway and subsequently inducing thermogenic gene

expression (Figure 2A) (Knights et al., 2021; Meng et al., 2021).

In addition, cholinergic signaling in macrophages through

the alpha-7 nicotinic acetylcholine receptor plays an anti-

inflammatory role by inhibiting TNFα release (Wang et al.,

2003). TNFα has long been implicated in development of

insulin resistance (Hotamisligil et al., 1993), and reduced

TNFα activity improves systemic insulin resistance (Togashi

et al., 2002). Exposure to low-dose TNFα impairs central

insulin and leptin signaling (Romanatto et al., 2007).

Furthermore, TNFα induces the expression of PTP1B in the

ARC through NF-κB activation (Zabolotny et al., 2008). This

represses insulin signaling and therefore lowers the proportion of

POMC neurons activated by insulin.

Furthermore, through the secretion of the cytokine

Slit3 upon cold exposure ATMs exert a modulatory function

in the sympathetic innervation of adipose tissue. Slit3 promotes

sympathetic nerve growth via the Slit-ROBO pathway, and

additionally stimulates the synthesis and release of NE, which

in turn promotes thermogenesis (Figure 2B) (Wang et al., 2021).

A subset of macrophages, cold-induced neuroimmune cells

FIGURE 2
Sympathetic regulation of adipose tissue macrophages. (A) Beta-2 adrenergic receptor (β2-AR) stimulation in macrophages promotes the
production and secretion of acetylcholine, which acts on adipocytes via acetylcholine receptors, stimulating thermogenesis through the PKA
pathway and consequently inducing thermogenic gene expression (Knights et al., 2021; Meng et al., 2021). Additionally, β2-AR stimulation is essential
for maintaining low tumor necrosis factor -alpha (TNFα) levels (Wang et al., 2003). (B) After cold stimulation M2macrophages secrete cytokine
Slit3, which promotes sympathetic nerve growth pathway, and stimulates the synthesis and release of norepinephrine (NE), subsequently inducing
thermogenesis (Wang et al., 2021). Specialized sympathetic neuron-associated macrophages (SAMs) scavenge noradrenaline through the
transporter Slc6a2 and degrade it using the enzymemonoamine oxidase A (MAOa). Thereby regulating local adipose tissue availability of NE (Camell
et al., 2017; Pirzgalska et al., 2017). (C) A subset of macrophages belonging to the cold-induced neuroimmune cells (CINCs) and M2 macrophages
secrete neurotrophic factors such as brain-derived neurotrophic factor (BDNF) upon cold exposure, promoting adipocyte nerve growth
(Blaszkiewicz et al., 2022; Xie et al., 2022). (D) Neuropeptide Y (NPY) modulates inflammatory response in macrophages. NPY supplementation in
lean mice leads to a decreased number of M1 adipose tissue macrophages (ATMs) (Singer et al., 2013). Deficiency of NPY1 receptor increases the
secretion of TNFα andmonocyte chemoattractant protein-1 (MCP-1) under inflammatory conditions (Macia et al., 2012). Neuropeptide FF receptor 2
(NPFFR2) is predominantly expressed in ATMs compared to other macrophage populations. In ATMs neuropeptide FF (NPFF) increases arginase 1,
interleukin (Il-) 10, and Il-4 receptor expression (Waqas et al., 2017). Created with BioRender.com.
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(CINCs), are recruited to the tissue in response to cold

stimulation and have shown to coordinate gene expression

involved in nerve survival and plasticity (Blaszkiewicz et al.,

2022). These cells secrete neurotrophic factors such as brain-

derived neurotrophic factor (BDNF), which has been shown to

exert an important role in WAT innervation (Blaszkiewicz et al.,

2020; Wang et al., 2020) (Figure 2C). For instance, the knockout

of BNDF in myeloid lineage cells in mice leads to decreased

innervation of inguinal subcutaneous WAT depots (Blaszkiewicz

et al., 2020). In addition, the TrkB receptor (a receptor with high

binding affinity for BDNF) was shown to be expressed on sensory

and sympathetic nerve fibers in subcutaneous WAT

(Blaszkiewicz et al., 2022). Moreover, hypothalamic BDNF

overexpression in DIO and lean mice lead to an up-regulation

of β-ARs and UCP-1 in the WAT (Cao et al., 2009; Cao et al.,

2011). Whereas heterozygous BDNF knockout mice (mice with

approximately 40% less BDNF protein than wild type control

animals) showed a selective suppression of β-ARs in WAT (Cao

et al., 2011).

Neuropeptide Y regulates the function of
ATMs

NPY potently influences metabolic function in peripheral

tissue and has been shown to play a role in the inflammatory

response modulation of ATMs (Ruohonen et al., 2008; Singer

et al., 2013). ATMs express Y1, Y2, and Y5 receptors and the

in vitro blockade of these receptors enhances the expression of

pro-inflammatory genes (Singer et al., 2013). The Y1 receptor

expression in immune cells of adipose tissue depots was critical

in controlling inflammation and insulin resistance in obesity

(Figure 2D) (Macia et al., 2012). In this study, the authors

investigated periovarian adipose depots from female mice.

Moreover, in vivo NPY supplementation decreased

M1 proinflammatory macrophages in lean mice (Singer

et al., 2013). Park et al. (2021) demonstrated that NPY

secreted by macrophages also upregulates adipogenic and

lipogenic gene expression profiles. Nevertheless, obese mice

show higher levels of circulating NPY, and increased

expression of NPY and NPY 2-receptor (NPY2R) mRNA in

subcutaneous adipose tissue, indicating that circulating NPY

originates from adipose tissue (Kuo et al., 2007). Additionally,

Kuo et al. reported that stress in mice leads to the release of

NPY from sympathetic nerve fibres in WAT and activation of

NPY2R, which stimulates macrophage infiltration and a

metabolic syndrome-like condition (Kuo et al., 2007). NPY

function is believed to be determined by site-specific NPY and

NPY receptor expression. In lean animals, NPY is expressed in

non-ATMs, such as adipocytes, as well as ATMs. However,

during obesity NPY expression is significantly induced in

ATMs (Schwarz et al., 1994; Kos et al., 2007; Singer et al.,

2013). However, the contribution of NPY release from

sympathetic nerve endings to the total adipose tissue NPY

levels has not been investigated to date. Hence, further studies

are needed to clarify the exact role of adipose tissue-specific

NPY in obesity and insulin resistance development.

Neuropeptide FF effects on adipose tissue

Furthermore, neuropeptide FF (NPFF) has been shown to

decrease food intake in mice and inhibit adipocyte

development (Murase et al., 1996; Herrera-Herrera and

Salazar-Olivo, 2008; Ruohonen et al., 2008). NPFF is

potentially released from nerve endings in adipose tissue,

although this has not been demonstrated so far (van

Harmelen et al., 2010). This neuropeptide shows potent

effects in the regulation of ATM function. In isolated

ATMs, NPFF treatment increased arginase 1, IL-10, and IL-

4R expression and in mice NPFF treatment improved glucose

tolerance and insulin sensitivity (Figure 2D) (Waqas et al.,

2017). Neuropeptide FF receptor 2 (NPFFR2) is

predominantly expressed in ATMs compared to other

macrophage populations (Waqas et al., 2017). Moreover,

sustained exposure to NPFF can increase ATMs numbers

more effectively than IL-4, a cytokine known to induce

M2 activation (Waqas et al., 2017). Interestingly,

hypothalamic NPFF signaling through the

NPFFR2 receptor plays a key role in mediating diet-

induced adaptative thermogenesis as evidenced by an

impaired BAT response in Npffr2 knockout mice (Zhang

et al., 2018).

Melanocortins also play an important anti-inflammatory role

through the activation of melanocortin receptors (MCRs)

expressed in adipose tissue resident immune cells (Wang et al.,

2019). Several in vivo and in vitro studies have shown anti-

inflammatory effects mediated by melanocortin agonists acting

on macrophages (Wang et al., 2019). For example, Getting et al.

(1999) reported that MC3/4R activation in peritoneal

macrophages reduces the release of pro-inflammatory cytokines.

In addition, α-melanocyte-stimulating hormone (α-MSH) was

shown to inhibit the production of nitric oxide and NF-κB
nuclear translocation in cultured macrophages (Star et al., 1995;

Rajora et al., 1996; Mandrika et al., 2001). Activation of POMC

neurons in the ARC and the anterior pituitary leads to the release

of α-MSH into the circulation and subsequent activation of MCRs

in the adipose tissue (Elias et al., 2000; Cowley et al., 2001).

However, the POMC gene is expressed in various immune cells

(residing within the adipose tissue compartment) as well (Lyons

and Blalock, 1997; Blalock, 1999). These local effects of adipose

tissue-derived peptide products of the POMC gene need further

investigation. Of note, in both mouse and human preadipocytes α-
MSH inhibits proliferation and in adipocytes it decreases the

expression and secretion of leptin (Smith et al., 2003; Hoggard

et al., 2004).
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It is clear that ATMs impact the innervation of adipose tissue in

numerous ways and vice versa the adipose tissue innervation directly

impacts ATM functions via neurotransmitter release.

Furthermore, several other adipose tissue immune cell types are

subject to sympathetic regulation. For instance, group 2 innate

lymphoid cells (ILC2) were recently shown to be indirectly

regulated by the SNS (Figure 3A). Activation of β2-ARs on

mesenchymal stromal cells (MSC) leads to the secretion of glial-

derived neurotrophic factor (GDNF) from these cells (Cardoso et al.,

2021). Subsequently, GDNF acts on ILC2 cells via the

neuroregulatory receptor RET, which ultimately leads to an

increased cytokine secretion [such as interleukin (IL-)5, IL-13

and Met-enkephalin], thereby regulating adipocyte function and

energy expenditure (Cardoso et al., 2021). Mice with RET receptor

gain-of-function display improved glucose tolerance, decreased

adipocyte size and increased UCP1 expression (Cardoso et al.,

2021). Notably, sympathetic tone is required for ILC2 cells, since

sympathetic denervation results in significantly suppressed

ILC2 function (Ding et al., 2016).

The neurotransmitter acetylcholine (ACh) is an important

contributor to immune cell function [for review see (Fujii et al.,

2017) and (Cox et al., 2020)] and B cells and T cells are important

(non-neuronal) acetylcholine-producing cells upon acute cold

exposure in the inguinal WAT (Figure 3B) (Jun et al., 2018).

Mice with hematopoietic ablation of the gene encoding for choline

acetyltransferase (the rate-limiting enzyme that mediates the

biosynthesis of acetylcholine) show thermogenic defects.

Furthermore, the expression of the beige-fat-specific cholinergic

receptor alpha two subunit (Chrna2) correlated with the local

acetylcholine production and its activation was shown to be

mediated in a paracrine manner (Jun et al., 2018). Furthermore,

T cells, specifically yδ T cells, play a key role in the maintenance of

sympathetic innervation of adipose tissue by driving the expression

of TGFβ1 in adipocytes via the IL-17F effector cytokine (Hu et al.,

2020). TGFβ1 possesses neurotrophic activity and promotes

sympathetic innervation (Hu et al., 2020). Collectively, these

data indicate that immune cells in adipose tissue closely

associate with the SNS to maintain tissue homeostasis.

FIGURE 3
Sympathetic regulation of immune cells in adipose tissue. (A) Sympathetic outflow acts on β2-AR of mesenchymal cells (MSC), which release
glial-derived neurotrophic factor (GDNF). GDNF in turn activates group 2 innate lymphoid cells (ILC2) cells via the receptor RET. Activated ILC2 cells
secrete interleukin (IL-)5, IL-13 cytokines and Met-enkephalin (Met-enk) and subsequently regulate adipocyte function and energy expenditure
(Cardoso et al., 2021). (B) B cells and T cells release acetylcholine upon acute cold exposure in inguinal white adipose tissue (Jun et al., 2018).
Furthermore, Gamma delta (yδ) T cells maintain sympathetic innervation of adipose tissue by driving the expression of transforming growth factor
beta-1 (TGFβ1) in adipocytes via the IL-17F effector cytokine (Hu et al., 2020). Created with BioRender.com.
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Concluding remarks

Understanding the complex signaling networks that

integrate energy availability signals from adipose tissue in

the CNS to generate physiological outputs is crucial for

understanding the pathophysiology of obesity and

metabolic diseases such as type 2 diabetes. The findings

discussed in this review clearly highlight the importance of

the melanocortin system in the CNS-adipose crosstalk.

However, specific neuronal populations in the mediobasal

hypothalamus modify the activity of melanocortin neurons.

Defining the exact molecular nature of these regulatory

neurons has proven challenging. Owing to their structural

and functional diversity, our current understanding of the

neurocircuits involved in the control of adipose tissue is still

limited. Recent technical advances in neuroscience have led to

the possibility of identifying and characterizing the

neurocircuits involved in the control of adipose tissue

homeostasis. Identifying druggable targets on these specific

neuronal populations is a prerequisite for developing novel

interventions and therapeutic approaches for obesity and

associated metabolic diseases.
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