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ABSTRACT In 10–15% of cancers, telomere length is maintained by a telomerase-independent, recombi-
nation-mediated pathway called alternative lengthening of telomeres (ALT). ALT mechanisms were first
seen, and have been best studied, in telomerase-null Saccharomyces cerevisiae cells called “survivors”.
There are two main types of survivors. Type I survivors amplify Y9 subtelomeric elements while type II
survivors, similar to the majority of human ALT cells, amplify the terminal telomeric repeats. Both types
of survivors require Rad52, a key homologous recombination protein, and Pol32, a non-essential subunit of
DNA polymerase d. A number of additional proteins have been reported to be important for either type I or
type II survivor formation, but it is still unclear how these two pathways maintain telomeres. In this study, we
performed a genome-wide screen to identify novel genes that are important for the formation of type II
ALT-like survivors. We identified 23 genes that disrupt type II survivor formation when deleted. 17 of these
genes had not been previously reported to do so. Several of these genes (DUN1, CCR4, and MOT2) are
known to be involved in the regulation of dNTP levels. We find that dNTP levels are elevated early after
telomerase inactivation and that this increase favors the formation of type II survivors.
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Eukaryotic chromosomes have specialized structures at their termini
called telomeres. Telomeres prevent natural chromosome ends from
being recognized andprocessed asDNAdouble-strandbreaks inneedof
repair (Jain and Cooper 2010). Due to incomplete DNA replication and
nucleolytic degradation, telomeres shorten with each round of cell di-
vision. Telomere shortening is reversed by the action of telomerase, a
specialized reverse transcriptase that extends telomeres (Greider and

Blackburn 1985). However, most human somatic cells do not express
sufficient levels of telomerase to prevent telomere shortening, which
has been implicated in human aging (López-Otin et al. 2013). The
downregulation of telomerase early during human development has
been proposed to function as a barrier to tumorigenesis because cancers
cells need to maintain their telomeres to avoid replicative senescence or
apoptosis induced by telomere erosion (Hanahan and Weinberg 2011).
Most cancer cells overcome this barrier by reactivating telomerase, but
10–15% of cancers employ a telomerase-independent pathway known
as alternative lengthening of telomeres (ALT) (Sobinoff and Pickett
2017).

In the budding yeast Saccharomyces cerevisiae, telomerase is con-
stitutively expressed, allowing the maintenance of telomeres 300 6
75 bp in length (Wellinger and Zakian 2012). The core components
of telomerase in S. cerevisiae are a protein catalytic component (Est2)
and an RNA subunit (TLC1) (Lingner et al. 1997; Singer and Gottschling
1994). Abrogating telomerase function, for example by deleting either
EST2 or TLC1, will cause telomere attrition and, eventually, cell cycle
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arrest and replicative senescence. A small subset of cells can overcome
senescence and become what are called “survivors” (Lundblad and
Blackburn 1993), using telomerase-independent telomere mainte-
nance mechanisms as in ALT cancer cells.

There are twomain types of S. cerevisiae survivors: type I and type II.
Type I survivors exhibit amplification of the subtelomeric Y9 elements;
in contrast, type II survivors amplify the terminal (TG1-3)n telomeric
sequences (Lundblad and Blackburn 1993; Teng and Zakian 1999).
Type I and type II survivors require Rad52-dependent homologous
recombination (HR) and the DNA polymerase d subunit Pol32, which
is required for break-induced replication (BIR), suggesting that both
survivor pathways occur through recombination-dependent DNA rep-
lication (Lundblad and Blackburn 1993; Lydeard et al. 2007). The Pif1
helicase is also important for the generation of type I and type II
survivors (Dewar and Lydall 2010), likely due to its role in BIR (Saini
et al. 2013; Wilson et al. 2013). There are two BIR pathways: one is
Rad51-dependent and one is independent of Rad51, but requires the
MRX complex (consisting of Mre11, Rad50, and Xrs2) and Rad59
(Anand et al. 2013). Similarly, the formation of type I survivors is
dependent on Rad51 (and Rad54 and Rad57, which function in the
same pathway as Rad51), whereas type II survivors require the MRX
complex and Rad59 (Teng et al. 2000; Chen et al. 2001), suggesting that
type I and type II survivors maintain telomeres via Rad51-dependent
and Rad51-independent BIR, respectively.

Type II survivors resemble the majority of human ALT cells in that
both are characterized by long and heterogeneous-sized telomere length
(Teng and Zakian 1999; Bryan et al. 1995; Bryan et al. 1997), extra-
chromosomal circular DNA containing telomeric sequence (Larrivée
andWellinger 2006; Cesare and Griffith 2004; Henson et al. 2009), and
telomere maintenance by Rad51-independent BIR requiring the MRX
(or MRN—Mre11, Rad50, Nbs1—in humans) complex (Teng et al.
2000; Chen et al. 2001; Dilley et al. 2016; Jiang et al. 2005; Zhong et al.
2007).

Sgs1 and Exo1, which are needed for processive resection of DNA
ends (Mimitou and Symington 2008; Zhu et al. 2008), are also impor-
tant for type II survivor formation (Huang et al. 2001; Johnson et al.
2001; Maringele and Lydall 2004; Bertuch and Lundblad 2004).
Consistent with the importance of end resection for type II survivor
formation, the sgs1-D664Δ mutation (Bernstein et al. 2009; Bernstein
et al. 2013), which is competent for recombination repair but defective
in resection, also prevents the formation of type II survivors (Hardy
et al. 2014). Similarly, type II survivor formation is hindered by the
deletion of FUN30, which encodes a chromatin remodeler that pro-
motes end resection (Costelloe et al. 2012). BLM, a human homolog of
Sgs1, has also been implicated in facilitating telomere maintenance in
ALT cells (Stavropoulos et al. 2002).

Several additional proteins have also been implicated in the forma-
tion of type II survivors. These include the Tel1 andMec1DNAdamage
checkpoint kinases: in the absence of either Mec1 or Tel1, type II
survivor formation is impaired, and is completely abolished in mec1D
tel1D double mutants (Tsai et al. 2002). Furthermore, the RNA poly-
merase II degradation factor Def1, the B-type cyclin Clb2, the tRNA
modification protein Sua5, and Mdt4/Pin4, which interacts with the
DNA damage kinase Rad53, are also important for type II survivor
formation (Chen et al. 2005; Grandin and Charbonneau 2003; Meng
et al. 2010; Pike and Heierhorst 2007). An analysis of 280 genes known
to alter telomere length homeostasis when deleted further identified
22 genes that are important for type II survivor formation, including
genes encoding members of the nonsense mediated decay pathway, the
DNA repair protein Rad6, and the KEOPS complex (Hu et al. 2013).
However, it is still unclear how most of these proteins function in the

formation of type II survivors, and whether there are more proteins
involved in this process.

In this study, we performed a genome-wide screen to identify novel
genes that are important for the formation of type II survivors. We
identified 23 genes, 17 of which were not previously reported to be
involved in typeII survivor formation.Severalof thesegenesare involved
in the regulation of intracellular deoxyribonucleoside triphosphate
(dNTP) levels. We show that dNTP levels are increased early after
inactivationof telomerase, and that this increase is important togenerate
type II survivors.

MATERIALS AND METHODS

Yeast strains and growth conditions
Standard yeast media and growth conditions were used (Treco and
Lundblad 2001; Sherman 2002). With the exception of MCY610 and
the yeast knockout (YKO) collection (Giaever et al. 2002), all yeast
strains used in this study are RAD5 derivatives of W303 (Thomas
and Rothstein 1989; Zhao et al. 1998) and are listed in Table 1.
MCY610 has a hybrid BY4741 and W303 genetic background. Gener-
ation of survivors on agar plates and in liquid culture was performed as
previously described (van Mourik et al. 2016).

SGA screening procedure
The est2Δ and rad51Δ deletions were introduced into the strains of the
YKO collection using synthetic genetic array (SGA) methodology
(Tong and Boone 2006). TheMATa can1ΔSTE2pr-Sp_his5 est2ΔnatMX
his3 leu2 lyp1Δ RAD5 rad51DURA3 TRP1 ura3 query strain for the
screen was derived from the sporulation of MCY610. The pinning steps
were performed using a ROTOR HDA (Singer Instruments, Somerset,
UK) with a 384-density format. The final est2ΔnatMX rad51ΔURA3
xxxΔkanMX triple mutants (where xxxΔkanMX represents a deletion
of a gene from the YKO collection) were quadruplicated (i.e., the plate
density was increased to 1536), and the resulting four colonies per strain
were individually streaked on YPD plates, followed by incubation at 30�
for 3 days. The strains were re-streaked 5-6 times until senescence was
observed and survivors were formed, or until senescence was observed
but no survivors formed.

Telomere Southern blot
Yeast genomic DNA was isolated using a Wizard Genomic DNA
Purification Kit (Promega), digested with XhoI, separated on a 1%
(w/v) agarose gel, and transferred to a Hybond-N+ membrane
(GE Healthcare). The membrane was hybridized to a telomere-
specific (59-CACCACACCCACACACCACACCCACA-39) digoxygenin-
labeled probe.

Measurement of dNTP levels
dNTP levels were measured as previously described (Watt et al. 2016).

Data and reagent availability
Strains are available upon request. The authors affirm that all data
necessary for confirming the conclusionsof the article arepresentwithin
the article, figures, and tables.

RESULTS AND DISCUSSION

Screening for novel genes that are important for type II
survivor formation
To identify genes that are important for type II survivor formation, we
screened the yeast knockout (YKO) collection for gene deletions that
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impair the ability of est2Δ rad51Δ strains to form type II survivors. We
used synthetic genetic array (SGA) methodology (Tong and Boone
2006) to create a library of MATa est2Δ rad51Δ xxxΔ mutants, where
xxxΔ is a deletion of a nonessential gene from the YKO collection
(Figure 1). Deletion of RAD51 prevents type I survivor formation
(Teng et al. 2000; Chen et al. 2001), allowing us to screen for genes
important for type II survivor formation. Each est2Δ rad51Δ xxxΔ triple
mutant was quadruplicated by replica-pinning, and each replicate was
then serially propagated on agar plates to follow senescence and survi-
vor formation (i.e., each est2Δ rad51Δ xxxΔ strain was tested four times
for its ability to form survivors). 32 triple mutants failed to form sur-
vivors in all four replicates, 100 failed to form survivors in three of the
four replicates, and 403 failed to form survivors in two of the replicates.

All 132 that failed to form survivors in at least three of the four
replicates, plus 40 randomly selected that failed to form survivors in two
of the four replicates, were further tested by repeating the serial
propagation procedure with multiple isolates of single mutants (est2D),
double mutants (est2D rad51D, est2D xxxD, rad51D xxxD) and triple
mutants (est2D rad51D xxxD) obtained by tetrad dissection of sporu-
lated diploids. This allowed us to compare the phenotypic growth be-
tween the selected mutants (e.g., to ensure that loss of viability upon
serial propagation was not the result of a synthetic genetic interaction
between rad51Δ and xxxΔ) and to validate the hits. In this second test,
26 triple mutants failed to form survivors in .50% of the multiple
isolates. Only one mutant of these 26 was from the 40 that failed to
form survivors in two of four replicates in the original screen, so we did

n Table 1 Yeast strains used in this study

Strain name Relevant genotype Source

MCY610 MATa/a can1ΔSTE2pr-HIS3/can1ΔSTE2pr-Sp_his5 lyp1Δ/lyp1Δ
rad51DURA3 /RAD51 est2ΔnatMX/EST2 TRP1/trp1-1 ADE2/ADE2
his3Δ1/his3 leu2Δ0/leu2 ura3Δ0/ura3 RAD5/rad5-535

This study

CCY6 MATa/a est2DURA3/EST2 Clémence Claussin
CCY16 MATa/a est2DURA3/EST2 rad52DnatMX/RAD52 Claussin and

Chang 2016
YPM7 MATa/a est2DURA3/EST2 rad51DnatMX/RAD51 rad50DkanMX/RAD50 This study
YPM8 MATa/a est2DURA3/EST2 rad51DnatMX/RAD51 rad59DkanMX/RAD59 This study
YPM9 MATa/a est2DURA3/EST2 rad51DnatMX/RAD51 This study
YPM10 MATa/a est2DURA3/EST2 rad51DnatMX/RAD51 nmd2DkanMX/NMD2 This study
YPM11 MATa/a est2DURA3/EST2 rad51DnatMX/RAD51 rgi1DkanMX/RGI1 This study
YPM12 MATa/a est2DURA3/EST2 rad51DnatMX/RAD51 dun1DTRP1/DUN1 sml1DHIS3/SML1 This study
YPM17 MATa/a est2DURA3/EST2 rad51DnatMX/RAD51 clb2DkanMX/CLB2 This study
YPM20 MATa/a est2DURA3/EST2 rad51DnatMX/RAD51 vps25DkanMX/VPS25 This study
YPM21 MATa/a est2DURA3/EST2 rad51DnatMX/RAD51 lsm1DkanMX/LSM1 This study
YPM29 MATa/a est2DURA3/EST2 rad51DnatMX/RAD51 rmi1DkanMX/RMI1 This study
YPM30 MATa/a est2DURA3/EST2 rad51DnatMX/RAD51 spt20DkanMX/SPT20 This study
YPM31 MATa/a est2DURA3/EST2 rad51DnatMX/RAD51 cdc55DkanMX/CDC55 This study
YPM32 MATa/a est2DURA3/EST2 rad51DnatMX/RAD51 chk1DkanMX/CHK1 This study
YPM33 MATa/a est2DURA3/EST2 rad51DnatMX/RAD51 pph3DkanMX/PPH3 This study
YPM34 MATa/a est2DURA3/EST2 rad51DnatMX/RAD51 mot2DkanMX/MOT2 This study
YPM35 MATa/a est2DURA3/EST2 rad51DnatMX/RAD51 rpn4DkanMX/RPN4 This study
YPM36 MATa/a est2DURA3/EST2 rad51DnatMX/RAD51 ylr358cDkanMX/YLR358C This study
YPM37 MATa/a est2DURA3/EST2 rad51DnatMX/RAD51 rrm3DkanMX/RRM3 This study
YPM38 MATa/a est2DURA3/EST2 rad51DnatMX/RAD51 tsc3DkanMX/TSC3 This study
YPM39 MATa/a est2DURA3/EST2 rad51DnatMX/RAD51 pxp1DkanMX/PXP1 This study
YPM40 MATa/a est2DURA3/EST2 rad51DnatMX/RAD51 mtc7DkanMX/MTC7 This study
YPM41 MATa/a est2DURA3/EST2 rad51DnatMX/RAD51 doa4DkanMX/DOA4 This study
YPM42 MATa/a est2DURA3/EST2 rad51DnatMX/RAD51 cik1DkanMX/CIK1 This study
YPM43 MATa/a est2DURA3/EST2 rad51DnatMX/RAD51 ure2DkanMX/URE2 This study
YPM44 MATa/a est2DURA3/EST2 rad51DnatMX/RAD51 vma22DkanMX/VMA22 This study
YPM45 MATa/a est2DURA3/EST2 rad51DnatMX/RAD51 rpl8bDkanMX/RPL8B This study
YPM48 MATa/a est2DURA3/EST2 rad51DnatMX/RAD51 ylr235cDkanMX/YLR235C This study
YPM51 MATa/a est2DURA3/EST2 rad51DnatMX/RAD51 ccr4DkanMX/CCR4 This study
YPM55 MATa est2DURA3 type II survivor This study
YPM56 MATa est2DURA3 type II survivor This study
MCY775 MATa/a est2DURA3/EST2 dun1DTRP1/DUN1 sml1DHIS3/SML1 This study
MCY783 MATa est2DURA3 type II survivor This study
MCY784 MATa est2DURA3 type II survivor This study
MCY785 MATa est2DURA3 sml1ΔHIS3 type II survivor This study
MCY786 MATa est2DURA3 sml1ΔHIS3 type II survivor This study
MCY788 MATa est2DURA3 dun1ΔTRP1 sml1ΔHIS3 type II survivor This study
YPM60 MATa est2DURA3 type II survivor This study
YPM61 MATa est2DURA3 dun1ΔTRP1 type II survivor This study
YPM62 MATa est2DURA3 dun1ΔTRP1 type II survivor This study
YPM63 MATa est2DURA3 dun1ΔTRP1 type II survivor This study
YPM64 MATa est2DURA3 dun1ΔTRP1 sml1ΔHIS3 type II survivor This study
YPM65 MATa est2DURA3 dun1ΔTRP1 sml1ΔHIS3 type II survivor This study

Volume 8 August 2018 | dNTPs Affect Survivor Formation | 2553

http://www.yeastgenome.org/locus/S000004310/overview
http://www.yeastgenome.org/locus/S000000897/overview
http://www.yeastgenome.org/locus/S000004310/overview
http://www.yeastgenome.org/locus/S000000897/overview
http://www.yeastgenome.org/locus/S000000897/overview
http://www.yeastgenome.org/locus/S000004310/overview
http://www.yeastgenome.org/locus/S000000897/overview
http://www.yeastgenome.org/locus/S000004310/overview
http://www.yeastgenome.org/locus/S000000897/overview
http://www.yeastgenome.org/locus/S000004310/overview
http://www.yeastgenome.org/locus/S000004310/overview
http://www.yeastgenome.org/locus/S000000897/overview
http://www.yeastgenome.org/locus/S000004310/overview
http://www.yeastgenome.org/locus/S000000897/overview
http://www.yeastgenome.org/locus/S000004310/overview
http://www.yeastgenome.org/locus/S000000897/overview
http://www.yeastgenome.org/locus/S000000897/overview


not test any additional genes from this group. Importantly, the 26 in-
cluded strains with a deletion of RAD52, RAD50, RAD59, SGS1, CLB2,
or NMD2, which are all known to be required for type II survivor

formation (Lundblad and Blackburn 1993; Teng et al. 2000; Chen et al.
2001; Huang et al. 2001; Johnson et al. 2001; Grandin and Charbonneau
2003; Hu et al. 2013), as well as RMI1 and YLR235C (which overlaps the

Figure 1 Screening approach for identifying
genes important for type II survivor forma-
tion. A MATa est2Δ rad51Δ query strain was
crossed to an ordered array of MATa viable
yeast deletion mutants to generate an array
of est2Δ rad51Δ xxxΔ triple mutants via SGA
methodology. The triple mutant strains were
then quadruplicated by replica-pinning onto
fresh agar plates. The resulting four colonies
of each est2Δ rad51Δ xxxΔ triple mutant was
then serially propagated up to six times on
sectored YPD plates.

n Table 2 Genes identified that are important for type II survivor formation

Gene

Fraction of est2Δ rad51Δ xxxΔ that are able to form survivors

Referencein BY4741 backgrounda in W303 background

CCR4b 0/10 (0%)
CDC55 0/12 (0%) 2/9 (22%)
CHK1 5/14 (36%) 2/10 (20%)
CLB2 2/14 (14%) Grandin and Charbonneau 2003
DOA4 5/14 (36%) 3/10 (30%)
DUN1 2/12 (17%) 1/25 (4%)
LSM1 5/14 (36%) 0/7 (0%)
MOT2 0/10 (0%) 1/4 (25%)
NMD2 0/12 (0%) Hu et al. 2013
PPH3 2/12 (17%) 2/10 (20%)
RAD50 2/10 (20%) Chen et al. 2001
RAD52 0/11 (0%) Lundblad and Blackburn 1993
RAD59 4/11 (36%) Chen et al. 2001
RGI1 0/4 (0%) 2/10 (20%)
RMI1 1/7 (14%) 0/10 (0%)
RPL8B 1/8 (13%) 2/10 (20%)
RPN4 1/9 (11%) 3/10 (30%)
RRM3 4/12 (33%) 3/10 (30%)
SGS1 0/11 (0%) Huang et al. 2001; Johnson et al. 2001
SPT20 0/5 (0%) 0/10 (0%)
VMA22 1/10 (10%) 3/10 (30%)
YLR235C 1/16 (6%) 0/10 (0%)
YLR358C 1/5 (20%) 4/9 (44%)
a
These est2Δ rad51Δ xxxΔ triple mutants were obtained either from the original screen, where four isolates were generated using SGA methodology, or by tetrad
dissection of sporulated diploids.

b
CCR4 was not identified in the original screen, but was tested in the W303 background due to its functional connection with MOT2.
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TOP3 open reading frame so that deletion of YLR235C likely results in a
top3 hypomorph). Like Sgs1, Top3 is also required for type II survivor
formation (Tsai et al. 2006). Sgs1, Top3, and Rmi1 form an evolutionarily
conserved complex (Chang et al. 2005; Mullen et al. 2005), so not sur-
prisingly, we find that Rmi1 is also important for type II survivor
formation.

To further validate that these genes are important for type II survivor
formation, we knocked out each gene in an est2Δ/EST2 rad51Δ/RAD51
diploid strain of a different genetic background (W303). Once again, we
generated haploid meiotic progeny from these diploid strains and se-
rially propagated multiple isolates of each genotype on agar plates to
monitor senescence and survivor formation. Overall, 23 genes were
identified that are important in type II survivor formation, and of
those, 17 genes were not previously reported to be involved in survivor
formation (Table 2).

Genes involved in the regulation of dNTP pools are
important for type II survivor formation
We noticed that two of the identified genes, DUN1 and MOT2, are
involved in the regulation of dNTP levels. Dun1 is a DNA damage
checkpoint kinase that phosphorylates and inhibits Sml1, Crt1, and
Dif1, three negative regulators of ribonucleotide reductase (RNR)
(Zhao and Rothstein 2002; Huang et al. 1998; Lee et al. 2008). The
RNR complex catalyzes the rate limiting step in dNTP synthesis (Hofer
et al. 2012). Mot2 (also known as Not4) is part of the Ccr4-Not com-
plex, a key regulator of eukaryotic gene expression that is required for
transcriptional induction of RNR genes in response to DNA damage or
replication stress (Mulder et al. 2005). Ccr4 and Dun1 cooperate to
regulate the Crt1-dependent inhibition of the RNR genes in response to
DNA replication stress (Woolstencroft et al. 2006). Although CCR4
was not identified in our screen, we found that est2Δ rad51Δ ccr4Δ
triple mutants were unable to form survivors (Table 2).

The finding that both Dun1 and the Ccr4-Not complex are impor-
tant for generating type II survivors suggests that the ability to upregulate
intracellular dNTP levels is important for the formation of type II survi-
vors. If so, the compromised ability of cells lackingDun1 or the Ccr4-Not
complex to form type II survivors should be suppressed by increasing
dNTP levels. To test this hypothesis, we examined whether a deletion of
SML1 could suppress the defect in survivor formation of est2Δ rad51Δ

dun1Δ cells. Sml1 inhibits RNR by binding to Rnr1, the large subunit of
RNR (Zhao et al. 1998; Chabes et al. 1999). Cells lacking Dun1 have a
twofold decrease in dNTP levels, but sml1Δ and dun1Δ sml1Δ mutants
both have a 2.5-fold increase in dNTP levels (Fasullo et al. 2010; Zhao
et al. 1998; Gupta et al. 2013). An est2Δ/EST2 rad51Δ/RAD51 dun1Δ/
DUN1 sml1Δ/SML1 diploid was sporulated to generate haploid meiotic
progeny, which were serially propagated in liquid medium to monitor
senescence and survivor formation.We find that deletion of SML1 largely
suppresses the dun1Δ type II survivor formation defect (Figure 2),
suggesting that decreased dNTP levels hinder the formation of type II
survivors.

dNTP pools are upregulated in telomerase-null pre-
senescent cells and in type II survivors
To confirm our hypothesis that dNTP levels are important for type II
survivor formation, we measured dNTP pools in pre-senescent cells
(approximately 35generations after the loss of telomerase) and in type II
survivors (Figure 3A). Survivor type was determined by a telomere
Southern blot (Figure 3B). We find that dNTP levels are increased in
pre-senescent est2Δ cells and remain elevated in type II survivors.
Deletion of DUN1 abolishes this increase, a phenotype that is sup-
pressed by an additional deletion of SML1. These observations suggest
that telomere shortening in telomerase-negative cells triggers an in-
crease in dNTP levels that facilitates the generation of type II survivors.
Interestingly, an est2Δ dun1Δ mutant can still form type II survivors,
albeit at a reduced efficiency. This indicates that while an increase in
dNTP levels promotes the initial formation of type II survivors, it is not
needed for maintenance of the survivors.

The elevation in dNTP levels occurs relatively early after telo-
merase inactivation (ETI; within�35 population doublings after the
generation of est2Δ haploid meiotic progeny), well before a majority
of cells become senescent. Consistent with this observation, the
DNA damage response and expression of RNR3 is induced in ETI
cells (IJpma and Greider 2003; Xie et al. 2015). In addition, a recent
study has shown that ETI cells experience replication stress, result-
ing in a dependence on the DNA damage response for viability that
is alleviated by elevating dNTP pools via a deletion of SML1 (Jay
et al. 2016). Taken together, these findings indicate that replica-
tion stress occurs in the absence of telomerase, leading to an

Figure 2 Deletion of SML1 sup-
presses the type II survivor forma-
tion defect of a est2Δ rad51Δ dun1Δ
strain. (A) Senescence and survivor
formation were monitored in liquid
culture by serial passaging of indi-
vidual isolates of est2Δ rad51Δ
dun1Δ (n = 19, red lines) and
est2Δ rad51Δ dun1Δ sml1Δ (n =
20, blue lines), derived from the
sporulation of YPM12. (B) Percent-
age of est2Δ rad51Δ dunΔ and
est2Δ rad51Δ dun1Δ sml1Δ cul-
tures from panel A that were able
to form survivors. Error bars repre-
sent exact binomial 95% confidence
intervals; p-value was determined us-
ing Fisher’s exact test.
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upregulation of dNTP levels that promotes the formation of type II
survivors. Interestingly, we find that dNTP levels stay elevated in
type II survivors (Figure 3), despite these cells looking similar to
telomerase-positive wild-type cells in terms of growth rate as well as
telomere movement and localization (Teng and Zakian 1999;
Straatman and Louis 2007). This observation may be due to the fact
that dNTP levels are elevated during BIR (Deem et al. 2011), which
is required both to prevent accelerated senescence in pre-senescent
cells and for telomere elongation in survivors (Fallet et al. 2014;
Lydeard et al. 2007).

In summary, this work has identified novel genes important for the
formation of type II survivors.We show that dNTP levels increase early
after the loss of telomerase, promoting the formationof type II survivors.
However, the increased dNTP levels are not required for the mainte-
nance of type II survivors. Given the similarities between type II
survivors and human ALT cancer cells, these findings may help us
design more effective strategies to combat cancers that use ALT to
maintain telomeres.
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