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Abstract

Background:TheQT interval is of high clinical value asQTprolongation can lead toTor-

sades de Pointes (TdP) and sudden cardiac death. Insertable cardiac monitors (ICMs)

have the capability of detecting both absolute and relative changes in QT interval. In

order to determine feasibility for long-term ICM based QT detection, we developed

and validated an algorithm for continuous long-term QT monitoring in patients with

ICM.

Methods: The QT detection algorithm, intended for use in ICMs, is designed to detect

T-waves and determine the beat-to-beat QT and QTc intervals. The algorithm was

developed and validated using real-world ICM data. The performance of the algorithm

was evaluated by comparing the algorithm detected QT interval with the manually

annotatedQT interval using Pearson’s correlation coefficient and Bland Altman plot.

Results:TheQTdetection algorithmwas developed using 144 ICMECGepisodes from

46 patients and obtained a Pearson’s coefficient of 0.89. The validation data set con-

sisted of 136 ICM recorded ECG segments from76 patients with unexplained syncope

and 104 ICM recorded nightly ECG segments from 10 patients with diabetes and Long

QT syndrome. TheQT estimated by the algorithmwas highly correlated with the truth

data with a Pearson’s coefficient of 0.93 (p < .001), with the mean difference between

annotated and algorithm computedQT intervals of−7ms.

Conclusions: Long-termmonitoring of QT intervals using ICM is feasible. Proof of con-

cept development and validation of an ICMQTalgorithm reveals a high degree of accu-

racy between algorithm andmanually derivedQT intervals.
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1 INTRODUCTION

The QT interval measured on the 12-lead electrocardiogram (ECG)

is clinically important as prolongation of this interval correlates with

Abbreviations: AF, Atrial Fibrillation; ICM, Insertable cardiac monitor; PVC, Premature

ventricular complex or contraction; TdP, Torsades de pointes
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abnormalities in cardiac ventricular repolarization and can precede

potentially fatal ventricular cardiac arrhythmias such as polymor-

phic ventricular tachycardia, Torsades de Pointes (TdP) and sudden

cardiac death.1–3 In the clinical setting, measurements of the QT

interval is subject to substantial variability, leading to disparities in

interpretation. This variability in QT interval measurement results

from biological factors, such as diurnal effects, electrolyte variance,
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medications and technical considerations including: environmental

high-frequency noise, signal processing and the variance in signal

acquisition of the electrogram recording. In addition, there is a lack

of consensus among experts regarding standardizing approaches to

measure the QT interval (based on heart rate and arrhythmia) which

results in statistical variance.2,4–5

Factors leading to QT prolongation and TdP are multi-factorial.

Among these, an important risk factor for prolongation of theQT inter-

val is the drug-drug interactions and the use ofQTprolonging drugs.6–7

A QT interval greater than 500 ms has been shown to correlate with

a statistically significant higher risk of TdP.2 Given the clinical impor-

tance of accurately measuring the QT interval, we sought to develop

and validate a proof-of-conceptQT detection algorithm for continuous

monitoring of QT interval in patients receiving an Insertable Cardiac

Monitor (ICM).

2 METHODS

2.1 Algorithm design

The QT detection algorithm is designed to detect T-waves and deter-

mine the QT interval for every ventricular beat in an ICM. Figure 1

shows the general schematic of the 5-step QT detection algorithm: (1)

The ICM electrogram signal is band filtered and rectified. The R-waves

are sensed by using a dual channel sensing scheme. (2) The R-wave

peaks are determined in the rectified signal based on the R-wave sens-

ing and RR intervals are computed. (3) Based on the RR interval, QT

algorithm parameters are computed to define a search window after

the QRS complex. (4) The T-wave location is determined by the algo-

rithmwithin the defined search window. (5) Based on the T-wave loca-

tion, QT interval and QTc intervals are computed for every ventricular

beat.

The R-waves are sensed using a dual channel sensing scheme. A sec-

ondary sensing channel was used in addition to the primary sensing

channel to reduceunder sensingof ventricular beats suchaspremature

ventricular complexes (PVCs).8 To distinctly identify the T-wave signal,

theelectrogramsignal is filtered, using apassband filter of6 to20Hz to

enhanceT-waves, and then rectified. To detect the T-wave location, the

algorithm calculates a T-wave search window following the QRS com-

plex. The duration of the search window is determined based on both

the current RR interval and the RR interval of the previous ventricu-

lar beat. For instance, if the previous RR interval is shorter, then the

search window following the current QRS complex will also be shorter.

The search window is functionally designed to optimize T-wave detec-

tion in the timeperiod following the inscriptionof theQRScomplex and

preceding the onset of the P-wave of the subsequent beat. The param-

eters used to define the searchwindow are determined using data ana-

lytic optimization techniques forRR intervals ranging from300 to1400

ms.

Panel A in Figure 1 shows the various parameters computed by the

QTdetection algorithm to determine the searchwindowbased on both

the previous and current RR intervals. Initially, the start and end for the

search window is determined based on the previous RR interval. If the

end of the search window is very close to the R-wave of the next beat,

then the end of the search window is determined based on the cur-

rent RR interval instead to end the search window prior to the P-wave.

In addition, if the current RR interval is greater than the previous RR

interval by 500msor the previous beatwas determined to be distorted

by artifact, then the algorithm determines the search window param-

eters based on the current RR interval. Panel B in Figure 1 shows an

example of an ICM electrogram signal and the corresponding filtered

and rectifiedwaveform. The dotted green lines depict the start and end

of the search window for each beat as calculated by the algorithm. The

solid blue lines depict the locations of the algorithm-detected T-waves

for each beat within the search window.

The sample with the maximum 9-sample median value of the elec-

trogramwithin the searchwindow is selectedby the algorithmas theT-

wave location enabling it to compute the QT interval. Functionally, the

algorithm looks for the sample on the ICM electrogram with the high-

est slew rate in theT-waveand selects this as the correct locationof the

T-wave. TheFramingham (linear correction formula) andBazett formu-

laswere used for calculation of the correctedQT interval (QTc).9,10 The

QTc intervals is computed using the Framingham’s formula11,12 as:

QTc = QT + 0.154 (1 − RR)

TheQTc intervals is computed using the Bazett formula as:

QTc = QT∕
√
RR

2.2 Data and statistical analysis

The QT detection algorithm was developed using automatically

detected episodes by the Reveal XT ICM device in real world patients.

Two different data sets (independent from the development data set)

were used to validate the QT detection algorithm. The algorithm was

validated using: (1) nightly transmitted 10 s ICMelectrogram transmis-

sions from patients with diabetes and Long QT syndrome and (2) 30 s

ICM electrogram transmissions from patient activated episodes from

patients implanted with a Reveal LINQ ICM for unexplained syncope

indication in the month of March of 2014. Real world data from ICM

patients were used from the de-identified Medtronic CareLink data

warehouse. All patients in the de-identified Medtronic CareLink data

warehouse provided consent to use of their device data for research

purposes. The determination of diabetes and Long QT syndrome

was obtained using ICD9/ICD10 diagnostic codes from a merged

database of de-identified Optum electronic health record database

with the Medtronic CareLink data warehouse. Selection of patients

from a real-world data set provided variable T-wave morphologies

reflecting dynamic changes in T-wave sensing due to varying patient

posture (e.g., lying/standing/sitting) over time. The manufacturer’s

recommended anatomical location for the ICMs is placement at the4th

intercostal space at 45 degrees or vertical orientation.

The episodes in the development and validation data sets were

randomly selected to ensure that the data set was representative

of real-world differences. Both the data sets were randomly cho-

sen even before the designing process began for the development
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F IGURE 1 General schematic of theQT detection algorithm [Color figure can be viewed at wileyonlinelibrary.com]

of the QT algorithm to ensure that there was no bias in the selec-

tion of the data. The data set included representation of normal sinus

rhythms, both tachycardia and bradycardia events, and other cardiac

arrhythmias (e.g., Atrial Fibrillation [AF], PVCs) to validate theQT algo-

rithm performance over a spectrum of heart rates and assess QT inter-

val precision irrespective of the RR interval. Moreover, the data sets

included nightly transmission as well as patient activated episodes

to ensure that the ICM algorithm accurately detects T-waves dur-

ing both the day and night when the patient is assuming different

physical positions (standing/sitting/lying) and thus influencing T-wave

morphology.

For both data sets, manual annotations to detect T-waves were per-

formed by a single reviewer whowas blinded to device detections with

a confirmation review performed by a second blinded reviewer for dif-

ficult cases. Annotations were assigned to distinguish between nor-

mal beats and signals distorted by baseline artifact. Distorted signals
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as determined by manual annotation are excluded from the QT anal-

ysis. The QT intervals obtained from the QT detection algorithm was

compared to the QT interval computed from manually annotated T-

waves to evaluate the performance of the algorithm. A 12-beatmedian

ofQT intervalswas considered for evaluating theperformance. Toeval-

uate the interobserver variability in the manual QT annotations, adju-

dication of all ICM electrograms in the validation dataset were per-

formed by two independent reviewers who were blinded to device

detections. The interobserver variability was computed as the average

of the difference between theQT annotations of both the reviewers.

The performance of the QT detection algorithm was evaluated by

comparing QT intervals detected by the algorithm and QT from man-

ual annotations using the Pearson’s correlation coefficient and the

Bland Altman plot. Pearson’s correlation coefficient is a measure of

the strength of a linear association between two variables. For the

Bland-Altman plot, the differences between the two measurements

were plotted against the averages of the twomeasurements. Theupper

and lower limits of agreements were computed as themean difference

± 1.96 times the standard deviation of the differences.

To evaluate the correlation of QT intervals between surface ECG

and corresponding ICM ECG, a separate dataset of 25 patients who

had both ICM ECG and 2-lead surface ECG data available simultane-

ouslywas chosen.13 A60-s ICMand surfaceECGsnippetwas randomly

chosen from each patient for manual annotation. Manual annotations

were performed to annotate QT intervals for every beat from both the

LINQ ICM and surface ECG for all patients in this dataset. This dataset

provided over 1500 beats for analysis from ICM ECG and surface ECG

data. Performance was evaluated between (1) QT interval annotations

from surface ECG and ICMECG data, (2) QT interval annotations from

surface ECG and algorithm detected QT intervals, and (3) QT anno-

tations from ICM ECG and algorithm detected QT intervals. For all

the three analysis, the performance was evaluated by determining the

Pearson’s correlation coefficient. The mean of the difference between

the QT intervals between the two datasets was also computed as an

additional performancemetric.

3 RESULTS

The QT detection algorithm was developed using 144 ICM ECG

episodes from46patientswhich hadT-waveswith differentmorpholo-

gies. Figure 2A shows the correlation plot between the QT interval

computed from manual annotations and QT interval computed from

the algorithm results for the ICM ECG development data set. The QT

estimated by the algorithm from the ICMECGdata set correlatedwith

the annotated QT intervals with a Pearson’s correlation coefficient of

0.89 (p value <.001). Figure 2B depicts the Bland-Altman plot for the

ICMECG development data set.

The validation data set consisted of 104 nightly ECG episodes (each

10 s) stored in LINQ devices from patients with diabetes and Long

QT syndrome and 136 patient activated episodes (30 s ECG snippets)

from patients implanted with an ICM for unexplained syncope indica-

tion. The validation data set had over 6200 beats from 86 patients for

analysis. The data set with patient activated episodes consisted of 76

patients with ICM implanted for unexplained syncope. The mean age

at implant was 66 years. Gender information was available in only 19

of the 76 patients with eight of 19 patients in this data set were iden-

tified asmale. The data set with nightly transmitted episodes consisted

of 10 patients with ICMwith a mean age of implant of 65 years. All 10

patients had Long QT syndrome and type two diabetes. The primary

indication for ICM implant was unexplained syncope for five patients.

Two patients were implanted for AF Ablation monitoring and Crypto-

genic stroke, Suspected AF and Ventricular tachycardia were the rea-

son for ICM implant in the remaining three patients.

Figure 2C shows the correlation plot between the QT interval com-

puted from manual annotations and QT interval computed from the

algorithm results for the ICM ECG validation data set. The QT esti-

mated by the algorithm from the ICM ECG data set were highly cor-

related with the manually annotated QT intervals with a Pearson’s

correlation coefficient of 0.93 (p value <.001). Figure 2D depicts the

Bland-Altman plot for the ICM ECG validation data set. The mean of

the difference between manually annotated and algorithm computed

QT intervals was −7 ms and the lower and upper limits of agreement

were −38 and 23 ms respectively. A mean of bias of −7 ms shows

that the algorithm detectedQT, on an average, overestimates theman-

ually annotated QT by 7 ms. This overestimate may be due to dif-

ference in the method of T-wave detection. The manual annotation

method detects the peak amplitude of the T-wave whereas the algo-

rithm detects the highest slew of the T-wave. T-wave detection utiliz-

ing the slew rate method generally places the T-wave location slightly

later compared to the peak amplitude of the T-wave. Since the ICM

electrogram data is sampled at 256 Hz, the sampling resolution of the

ICM signal is approximately 4 ms. Additionally, the QTc intervals were

computed using both Bazett and Framingham rate correction formu-

las. The QTc estimated by the algorithm from the ICM ECG data set

using the Bazett and Framingham formulas correlated with the man-

ually annotatedQT intervals with a Pearson’s correlation coefficient of

0.92 and 0.90 (p value <.001) respectively. The mean of the difference

between manually annotated and algorithm computed QTc intervals

using Bazett and Framingham formulaswere−8.5 and−7.3ms respec-

tively.

Figure 3 shows examples in which the QT algorithm was able to

accurately detect different types of T-waves with different phasic ori-

entations,morphologies (Figures 3AandB) and poor T-wave signal Fig-

ure 3C, and in presence of rapid and variable heart rates Figures 3D–F)

. These examples also include variable RR intervals. By optimizing the

search window duration for RR interval, the algorithm was able to

adapt to dynamic beat-to-beat RR interval variations and accurately

detect T-waves for varying RR intervals while avoiding detection of the

P-wave as the T-wave. Specifically, Figures 3E and 3F shows examples

of episodes with AF where T-waves are accurately detected despite

beat-to-beat changes in the RR intervals. Figure 3G and 3H shows

prototypical ICM electrogram transmission for which the difference

between the annotatedQT intervals and theQT estimated by the algo-

rithm was greater than 25 ms, thus overestimating the QT interval

compared to the manual annotation. In several of these events, the
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F IGURE 2 (a) Correlation plot between theQT interval computed frommanual annotations andQT interval computed from algorithm results
for ICMECG development data set. (b) Bland Altman plot for the ICMECG development data set. (c) Correlation plot between theQT interval
computed frommanual annotations andQT interval computed from algorithm results for ICMECG validation data set. (d) Bland Altman plot for
the ICMECG validation data set [Color figure can be viewed at wileyonlinelibrary.com]

algorithm detected the T-wave in a different location when compared

to the manual annotation, however the algorithm determined T-wave

location is noted to be consistently shorter or longer. Thus, relative

changes inQT interval can still bemeasured in these cases even though

the difference is comparatively larger in these files. There were some

outlier cases where the difference between annotated and algorithm

detected QT intervals were more than 75mswith the reason for these

cases being small T-waves and presence of noise around the detected

T-wave.

To further evaluate the performance of the algorithm when mea-

suring QT interval in patients with AF, the algorithm was evaluated

separately on patient files which were identified to have AF or atrial

tachycardia. In the seven episodes from six patients which had AF,

the QT estimated by the algorithm correlated with the annotated

QT intervals with a Pearson’s correlation coefficient of 0.92. The

mean of the difference between manually annotated and algorithm

computed QT intervals was −9.3 ms in this data set with AF. The

results in patients with AF were very similar compared to the overall

results.

Example of a long-termmonitoringQT trend that an ICM could pro-

vide is shown inFigure4. Figure4Ashows theQTcdetectedby thealgo-

rithm over 714 days using 10 s ICM electrograms transmitted nightly

fromapatientwith implanted ICMwithbothdiabetes andLongQTsyn-

drome. The 10-day moving average QTc intervals show a lot of day-to-

day variability. Figure 4B shows an example of another patient from the

same data set with 313 nightly transmitted episodes with the 10-day

moving average QTc intervals showing lesser variability. In an actual

implementation, QT intervals can be estimated using all beats dur-

ing a day and aggregated QT intervals can be generated for different

time periods during the day. The interobserver variability was found

to be 4.38 ms which was computed as the average of the difference

between theQTannotations performed for every beat in the validation

dataset by two independent reviewers which revealed good interob-

server agreement. The sampling rate of the ICM ECG signal which was

used for annotationwas 256Hz thus providing 3.9ms as the resolution

of theQTmeasurements.

On the separate dataset with 25 patients with both ICM ECG and

2-lead surface ECG data available simultaneously, the manually anno-

tated QT intervals computed from surface ECGwere highly correlated

with the corresponding manually annotated QT intervals from ICM

ECG with a Pearson’s correlation coefficient of 0.85 (p value <.001).

It was often easier to annotate QT intervals in ICM ECG compared to

surface ECG. Themean of the difference betweenmanually annotated

surface ECG and ICM ECG QT intervals was found to be 6.3 ms. The

QT intervals detected by the algorithm were found to be highly cor-

related with the corresponding manually annotated QT intervals from

ICM ECG (Pearson’s correlation coefficient of 0.96, p <.001; mean dif-

ference of 7.4 ms) as well as manually annotated QT intervals from
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F IGURE 3 Examples of ECG strips from the development and validation data set depicting T-waves with different morphologies and
orientations at different RR intervals with bothmanual annotations and the corresponding algorithm detections. The redmarkers depict the
device detected R-wavemarkers. The greenmarkers depict the T-wave location as determined frommanual annotation and the bluemarkers
depicts the T-wave location as determined by theQT detection algorithm [Color figure can be viewed at wileyonlinelibrary.com]

surface ECG (Pearson’s correlation coefficient of 0.71, p <.001; mean

difference of 16.3ms).

4 DISCUSSION

The study is aimed at developing and validating a proof-of-concept

algorithm for continuous long-term derivation of QT intervals using

an ICM. The Pearson’s correlation coefficient of 0.93 between the QT

estimated by the algorithm and the manually annotated QT intervals

shows a statistically high correlation. The development and validation

data sets were chosen in such a way to include several different types

of T-waves at different morphologies and orientation to ensure that

the algorithm can detect these T-waves. In addition to this, the data

set included both nightly transmitted ICM electrograms and daytime

patient activated ICM electrograms ensuring that the algorithm can

detect T-waves accurately during bothdaytimeandnighttime. Thehigh

correlation coefficient shows that the algorithm is capable of detect-

ing both short- and long-term QT variations accurately. These data

may ultimately impact decision in clinical management as QT variation

occurs with dynamic changes in physiologic conditions, metabolism,

and dosing of medications such as insulin and antiarrhythmic drugs.
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F IGURE 4 Examples of long-termmonitoring QTc trend in a patient with (a) 714 nightly transmitted ICMECG episodes. (b) 313 nightly
transmitted ICMECG episodes. The red plot depicts the 10-daymoving averageQTc interval [Color figure can be viewed at wileyonlinelibrary.com]

The QT detection algorithm defined in this study represents an

innovative first-generation diagnostic for QT monitoring. Our study

represents, to our knowledge, the first proof-of-concept demonstra-

tion of T-wave detection using an ICM algorithm. Additional enhance-

ments and validation of the algorithm are on-going and reflect perfor-

mance in real world patients. Enhanced versions of the algorithm may

include a robust noise detection feature to improve signal fidelity and

minimize extraneous noise. Furthermore, a confidence level metric can

also be computed in real-time to convey the level of confidence in the

accuracy of the detected T-waves. Improving the sampling frequency

of the ECG signal can also improve the accuracy of the QT interval

estimatedby the algorithm.Additionally, investigatingT-waveduration

and morphological alternans or other forms of repolarization abnor-

malities are being considered.

Presently, QT interval monitoring is performedmanually in the hos-

pital setting. There is no currently approved continuous long-term

analysis available forQT intervalmonitoring. Under this current rubric,

patients undergoing anti-arrhythmic medication dosing must be inpa-

tient hospitalized for several days for QT interval monitoring. An ICM

capable of monitoring QT continuously may help reduce such hos-

pitalizations and can provide continuous QT and QTc trends to the

physicians. Continuous QT interval ICM monitoring also promises to

assist physicians in correlating QT changes with occurrences of car-

diac arrhythmias and modifying the drug dosages accordingly to mini-

mize toxic effects of drug inducedQT interval prolongation.Monitoring

changes inQT interval using an ICMcanprovide important information

to physicians that can reflect real-time dynamic changes in physiologic

states such as serum glucose and insulin. Clinical studies have noted
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a correlation between QT changes, diabetes and cardiac death.14–17

Acute hyperglycemia and hypoglycemia events have also been associ-

ated with significant increases of QTc and QTc dispersion, a predictor

of arrhythmia risk and sudden death.16,17

QT monitoring using an ICM could also play an important role in

obtaining drug approvals as assessment of QT prolongation and TdP

is a key criterion for drug safety and approval. An ICM capable of

long-term QT interval monitoring would provide invaluable informa-

tion monitoring patients receiving novel drug treatment with known

QT prolonging drugs as has been observed in the recent COVID-19

pandemic.

5 LIMITATIONS

The primary limitation of the study was the relatively small size of the

development and validation data sets. The ICM has the capability to

monitor continuously for over 3 years of follow-up, thus the data pre-

sented for validation may not cover for all kinds of T-wave morpholo-

gies the QT algorithmmay be subjected to in real-world use. For exam-

ple, performance of theQT detection algorithm should be further eval-

uatedwhen theunderlying rhythm isAFor in subjectswhohavebundle

branch block. Further, the QT algorithm is designed to detect the high-

est slew of the T-wave which is in between the peak and the end of the

T-wave, and thus is different fromhow theQT interval is clinically com-

puted which is till the end of the T-wave. But since the algorithm con-

sistently detects the T-wave at the same location, it is still expected to

capture relative variation inQT intervals. But the algorithm is expected

to underestimate the QT interval compared to the clinically computed

QT interval. The algorithm was developed and validated with ECG sig-

nals collected at 128 Hz and up sampled to 256 Hz, thus providing

effective resolution of the measurement in the range from 4 to 8ms. A

higher resolution is ideal, however thatwill lead to higher battery drain

in an ICM and hence is a limiting factor in the accuracy of themeasure-

ment. Also, comparing manually annotated points with the algorithm

results and measuring results with a resolution of 4 to 8 ms could lead

to discrepancies. Small variations in the location of manual annotation

can lead to a 10 to 15 ms difference with the algorithm results. The

QT annotation and testing was based on ECG measurement using a 4

cm dipole. Further investigations are required to evaluate differences

between QT measurements determined by 12-lead surface ECG ver-

sus ICM electrograms.

6 CONCLUSION

An algorithm for continuous long-term monitoring of QT inter-

vals in an implantable cardiac monitor was developed and vali-

dated. The QT intervals detected by the algorithm were highly cor-

related with manually derived QT intervals. Continuous long-term

monitoring of QT intervals is feasible using an implantable cardiac

monitor.
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