
Measuring Global Credibility with Application to Local
Sequence Alignment
Bobbie-Jo M. Webb-Robertson1*, Lee Ann McCue1, Charles E. Lawrence2

1 Computational Biology and Bioinformatics, Pacific Northwest National Laboratory, Richland, Washington, United States of America, 2 Department of Applied

Mathematics and the Center of Computational Molecular Biology, Brown University, Providence, Rhode Island, United States of America

Abstract

Computational biology is replete with high-dimensional (high-D) discrete prediction and inference problems, including
sequence alignment, RNA structure prediction, phylogenetic inference, motif finding, prediction of pathways, and model
selection problems in statistical genetics. Even though prediction and inference in these settings are uncertain, little
attention has been focused on the development of global measures of uncertainty. Regardless of the procedure employed
to produce a prediction, when a procedure delivers a single answer, that answer is a point estimate selected from the
solution ensemble, the set of all possible solutions. For high-D discrete space, these ensembles are immense, and thus there
is considerable uncertainty. We recommend the use of Bayesian credibility limits to describe this uncertainty, where a
(12a)%, 0#a#1, credibility limit is the minimum Hamming distance radius of a hyper-sphere containing (12a)% of the
posterior distribution. Because sequence alignment is arguably the most extensively used procedure in computational
biology, we employ it here to make these general concepts more concrete. The maximum similarity estimator (i.e., the
alignment that maximizes the likelihood) and the centroid estimator (i.e., the alignment that minimizes the mean Hamming
distance from the posterior weighted ensemble of alignments) are used to demonstrate the application of Bayesian
credibility limits to alignment estimators. Application of Bayesian credibility limits to the alignment of 20 human/rodent
orthologous sequence pairs and 125 orthologous sequence pairs from six Shewanella species shows that credibility limits of
the alignments of promoter sequences of these species vary widely, and that centroid alignments dependably have tighter
credibility limits than traditional maximum similarity alignments.
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Introduction

The study of genomics, and much of computational molecular

biology, is about the inference or prediction of discrete, high-

dimensional (high-D) unobserved variables, based on observed

data. For example, in RNA secondary structure prediction, the

challenge is to select a specific set of base pairs from a

combinatorially large collection, as a prediction of the secondary

structure of an RNA polymer, given its sequence. Similarly, in

pathway inference, the challenge is to select a set of graph edges to

connect genes or their products (nodes) from a combinatorially

large collection of possible edge sets, based on gene expression or

other data. Model selection problems for studying diseases

stemming from mutlifactorial inheritance are becoming increasing

common in the post-genome era. In these studies, the ultimate

goal is to identify the combinations of genes responsible for

inheritance components of disease etiology based on genetic and/

or other post-genome data. In motif finding, the challenge is to

select a single member of a large ensemble of possible

combinations of motif sites in a set of sequences. Procedures that

select the single best scoring solution, such as maximum similarity,

maximum likelihood, maximum a-posteriori (MAP), or minimum

free energy, dominate nearly all of these problems.

Sequence alignment is a typical example and is arguably the

most important high-D discrete prediction problem for biology.

Because it is the cornerstone capability used by a multitude of

computational biology applications, we employ sequence align-

ment to make these general concepts concrete. Sequence

alignment methods commonly focus on identifying the highest

scoring alignment between two sequences, and assessing the

statistical significance of this alignment [1–7]. Thus, alignment

algorithms, heuristic [5,8–10] (http://www.ncbi.nlm.nih.gov/

BLAST/) and optimization [11] (http://fasta.bioch.virginia.edu/

fasta_www2/) alike, typically report the selected alignment, and a

statistical score that assesses how likely an alignment with a score

as good or better could have emerged by chance, under a specified

null distribution (commonly an E-value). While methods that

assign the significance of alignments under a null distribution

have been well studied, assessments of the uncertainty of a

proposed alignment, defining the confidence in this alignment and

assessing its overall reliability, have received considerably less

attention.

Regardless of the alignment procedure employed, when a single

alignment is chosen for the comparison of two (or more)

sequences, it is a point estimate (or estimating alignment) selected

from a large ensemble of all possible alignments. For example, two
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sequences of length m and n have A m,nð Þ~
Pmin m,nð Þ

k~0

mzn{kð Þ!
k! m{kð Þ! n{kð Þ!

possible local alignments, where k represents the number of

matches in the alignment [11,12]. This number grows rapidly with

the length of the sequences being aligned; for example, two small

sequences of only length 20 generate over 1029 possible local

alignments. The question addressed here is: How, based on the

available data, should we articulate the overall uncertainty of a

selected estimating alignment (how well does it represent the large

ensemble of possible solutions), and thus assess the reliability of this

alignment?

The traditional approach to address the reliability of a single

alignment is to evaluate the optimal alignment in the context of a

set of near-optimal alignments. Near-optimal or suboptimal

alignment analysis involves evaluating residue alignment consis-

tency over the set of defined near-optimal alignments [12–17].

Specifically, the reliability of an alignment position (i,j) is assessed

by comparing the score of the optimal alignment to the score of

this alignment under the constraint that positions i and j do not

align [14,15]. More advanced methods have been proposed that

determine reliability measures between residues aligned to both

residues and gaps [17]. An alternative to computing near-optimal

alignments, involving a single model that assigns probabilities to a

specific residue pair, such as a pair Hidden Markov Model

[7,18,19], can be derived and used to assess the reliability of

individual aligned pairs.

With this in mind, these near-optimal alignment and model-

based methods have offered significant improvements in reliability

for tasks such as structural alignment. However, these methods are

focused on delineating the reliability/uncertainty of the individual

components of an estimated alignment, not the reliability of an

estimated alignment in the context of the entire alignment space.

There are methods to assess the accuracy of an alignment in the

prediction of a ground-truth standard such as an alignment based

on crystal structures [7,18,20–22]. But our focus here is on

assessment of the reliability of an alignment based on its own

characteristics, rather than the assessment of its accuracy in

predicting an established reference. Toward this end, we describe

a procedure for global assessment of the degree to which the

members of the ensemble may depart from a selected estimate.

The introduction of probabilistic alignment methods [23–26]

established the notion of sequence alignment as an inference

procedure. For example, optimization-based alignment routines

often search for the single alignment that is most probable among

all those in the entire space of alignments. It is not surprising, given

the immense size of the alignment space, that the most probable

alignments, and thus all individual alignments, often have very

small probabilities. This finding raises three questions:

(1) In discrete spaces, how strongly does the available data

recommend a single chosen estimate?

(2) When the data provide weak evidence for any single estimate,

what criteria can be used to judge the credibility of an

estimate, and what are reasonable limits in the degree of

variation within the ensemble from this estimate that are

consistent with the data?

(3) How can we identify the single estimate that best represents

the ensemble of alignments and that is consistent with the

data?

We suggest the following answers to these questions:

(1) The strength of the recommendation of the data for any

specific estimate is equal to its posterior probability under the

assumed probabilistic model.

(2) A credibility limit is the radius of the smallest hyper-sphere

around a proposed estimate that contains a specified

proportion of the probability mass of the posterior distribu-

tion, where the radius is measured by the number of elements

by which two solutions differ. The size of this limit

characterizes an estimate’s credibility.

(3) The estimate with the minimum credibility limit best

represents the ensemble.

To address these questions and test our proposed answers,

we employ a Bayesian probabilistic approach. In the Methods

section, we review some concepts on probabilistic alignments and

distance measures, and then consider the distribution of the

distances of the alignments in an ensemble from a proposed

estimating alignment, including the quantiles and expected value

of this distribution. We use the quantiles to identify credibility

limits. The identification of credibility limits begs the question:

What procedures can be developed to identify alignments with

tight credibility limits? In an effort to achieve this goal, we employ

statistical decision theory to find an estimation procedure that

identifies the estimates with the minimum average distance from

the posterior weighted ensemble; that is, the centroid. Centroid

estimators, which were recently described by Carvalho and

Lawrence [27], look promising to yield tight credibility limits

because they minimize an average Hamming distance. Further-

more, we show that since popular procedures that select an

estimate because it scores better than any other single solution

(e.g., maximum likelihood, maximum similarity, maximum a-

posteriori Viterbi solutions) are optimal under a zero/one-loss

function, there is no principled reason to expect them to have tight

credibility limits and, thus, to have high credibility. Below we

compare the credibility limits for centroid alignments to those for

maximum similarity alignments.

Author Summary

Sequence alignment is the cornerstone capability used by
a multitude of computational biology applications, such as
phylogeny reconstruction and identification of common
regulatory mechanisms. Sequence alignment methods
typically seek a high-scoring alignment between a pair of
sequences, and assign a statistical significance to this
single alignment. However, because a single alignment of
two (or more) sequences is a point estimate, it may not be
representative of the entire set (ensemble) of possible
alignments of those sequences; thus, there may be
considerable uncertainty associated with any one align-
ment among an immense ensemble of possibilities. To
address the uncertainty of a proposed alignment, we used
a Bayesian probabilistic approach to assess an alignment’s
reliability in the context of the entire ensemble of possible
alignments. Our approach performs a global assessment of
the degree to which the members of the ensemble depart
from a selected alignment, thereby determining a credi-
bility limit. In an evaluation of the popular maximum
similarity alignment and the centroid alignment (i.e., the
alignment that is in the center of the posterior distribution
of alignments), we find that the centroid yields tighter
credibility limits (on average) than the maximum similarity
alignment. Beyond the usual interest in putting error limits
on point estimates, our findings of substantial variability in
credibility limits of alignments argue for wider adoption of
these limits, so the degree of error is delineated prior to
the subsequent use of the alignments.

Global Credibility in Sequence Alignment
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Methods

A statistical model that yields a probability distribution over an

ensemble of solutions is essential for the characterization of

uncertainty. Specifically, we are interested in using the data, in

combination with any parameters that have been specified, to assign

‘‘posterior’’ probabilities to the members of the ensemble. We call

these posterior probabilities because they are assigned after

considering the implications of the data, the posterior weighted

ensemble. Because in high-D settings it is often impossible to

characterize the entire immense ensemble of solutions, it is common

practice to employ representative samples from the posterior

distributions to draw inferences or make predictions [28].

Probabilistic Alignment
A probabilistic alignment model from which samples can be

drawn can be described as follows. An alignment describes a set of

aligned residues and associated insertion and deletion events. For a

pair of sequences, R 1ð Þ~ R
1ð Þ

1 ,L,R
1ð Þ

I

n o
and R 2ð Þ~ R

2ð Þ
1 ,L,R

2ð Þ
J

n o
,

let A be a matrix that characterizes an alignment whose (i,j)-entry is

defined as:

Ai,j~
1 if R

1ð Þ
i is aligned with R

2ð Þ
j

0 otherwise

(
; i~1, . . . ,I and j~1, . . . ,J:

Without loss of generality, let I#J. Because a residue cannot

align with more than one other residue, two constraints must

be satisfied,
P

i

Ai,jƒ1 and
P

j

Ai,jƒ1. In addition, the alignment

co-linearity constraint requires that Ai,j+Ak,l#1, i#k, l#j. Let H
be a matrix of residue pair similarities, such as one of

the BLOSUM [29] or PAM [30] scoring matrices, and let

L= (lo, le) be the probability of opening and extending a gap,

respectively.

Most sequence alignment methods optimize an objective function

that can be described, based on a probabilistic model, as a log-

likelihood [31,32]. In traditional (frequentist) statistics, only the

observed data, here R(1) and R(2), are seen as random variables, and

the remaining terms are deterministic variables with perhaps

unknown values. In maximum likelihood estimation, the values of

these unknowns, which maximize the likelihood, are the maximum

likelihood estimates. Typically, the user must set specific parameter

values for the scoring matrix H0 and gap probabilities L0 to find the

most probable alignment A* over all possible alignments:

max
A

log P R 1ð Þ,R 2ð Þ A,H0
��� �

zlog P A L0
��� �n o

: ð1Þ

This alignment is guaranteed to be the alignment that has the largest

probability over all possible alignments, and with appropriate re-

parameterization, it can also be shown to be the maximum similarity

(MS) alignment [19].

To capture the entire alignment space in a probabilistic

manner, the problem of alignment can be formulated as a

Bayesian inference problem [19,23,26]. The Bayesian Algorithm

for Local Sequence Alignment (BALSA) [24] describes such a

probability model, the full joint distribution of all alignments, as

the product of the likelihood and priors:

Joint~ Likelihoodf g � Priorsf g,

P R 1ð Þ,R 2ð Þ,A,H,L
� �

~ P R 1ð Þ,R 2ð Þ A,H0
��� �

P A L0
��� �n o

P H0,L0
� �� �

:

Recursion can be employed to marginalize (i.e., sum out) over all

possible alignments to obtain the marginal probability of the data

in the two sequences, given only the defined scoring matrix, H0,

and gap penalties, L0:

P R 1ð Þ,R 2ð Þ H0
�� ,L0

� �
~
X

A

P R 1ð Þ,R 2ð Þ A,H0
��� �

P A L0
��� �

:

The required sums are completed in an analogous manner to the

Smith-Waterman recursion by essentially replacing the maximum

function with a summation. The alignment parameters H and L
can also be defined as random variables and marginalized over

using Markov chain Monte Carlo (MCMC) sampling methods. In

this application, to mirror common alignment practice, a specific

scoring matrix (PAM 110) and gap-penalty parameters (gap

opening = 214 and gap extension = 22) were selected as generic

parameters used by sequence alignment algorithms. Now the

probability of any single alignment can be computed as a posterior

probability using the following Bayes formula:

P A� R 1ð Þ,R 2ð Þ��� �
~

P R 1ð Þ,R 2ð Þ A�
�� ,H0

� �
P A� L0

��� �
P
A

P R 1ð Þ,R 2ð Þ A,H0
��� �

P A L0
��� � : ð2Þ

Equation 2 is a ratio of the likelihood of the data and the

alignment A* to the sum of these joint likelihoods over all

alignments. It approaches a value of 1 when a single alignment

dominates all others.

Given that the number of possible alignments for even small

biopolymer sequences is immense, it is not feasible to calculate the

probability of all alignments in a brute force manner. However, we

can almost always use the recursive relationships that are

fundamental to dynamic programming (DP) to draw guaranteed

representative samples from the solution ensemble [19]. Because

of the power of the recursions, such sampling procedures require

no burn-in period to ensure that the samples are drawn from the

equilibrium distribution, and these samples are independent of one

another. Briefly, these algorithms use modified versions of the two

fundamental steps of DP: the forward and back-trace recursions.

In DP, the forward recursion finds the optimal value of the

objective function (e.g., the best total alignment score) by using

optimal solutions of subproblems to recursively build up to the best

total score. In the sampling algorithm, we instead use an analogous

recursion to build up to the sum over the entire ensemble of

solutions. This sum finds the normalizing constant that assures that

probabilities sum to one. In the back-trace step, instead of finding

the solution that yields the optimal value of the objective function,

we use an analogous recursion to sample solutions in proportion to

their posterior probabilities. An important unappreciated fact is

that for large ensembles, the accuracy of estimates based on a

sample depends on the sample size only, and not on the size of the

population [23]. Thus, a representative sample (i.e., a sample

drawn in proportion to the probabilities of the unknowns) of even

modest size, say 1000, can yield accurate estimates of unknowns,

even if this sample is drawn from an ensemble of immense size. As

we illustrate below, representative samples can be used to estimate

credibility limits and define an ensemble centroid (EC) solution.

Credibility Limits and Means Distance
In this section, we describe procedures for finding credibility

limits and mean distances for the sequence alignment problem.

We begin by examining the distribution function of the distances

of the ensemble members from a proposed estimate. Basic to this

perspective are two concepts: 1) given the available data, the

Global Credibility in Sequence Alignment
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solution space is inherently uncertain; and 2) a proposed estimate

is a point estimate (i.e., a single member of the ensemble) that is

intended to represent the entire ensemble [33].

A simple measure of the difference between two members of a

discrete ensemble (e.g., two possible alignments of a pair of

sequences) is the Hamming distance. For two alignments, A(k) and

A(m), of a pair of sequences, R(1) and R(2), of length I and J, the

Hamming distance is simply the number of aligned positions that

differ between A(k) and A(m), D(A(k), A(m)). For alignments, this distance

is simply the sum of the differences in two binary matrices of size

(I6J). When ensemble members are binary objects, the Hamming

distances are also equal to distances on other scales [34]:

D A kð Þ,A mð Þ
� �

~
XI

i~1

XJ

j~1

A
kð Þ

ij {A
mð Þ

ij

��� ���~XI

i~1

XJ

j~1

A
kð Þ

ij {A
mð Þ

ij

� �2

: ð3Þ

Using the metric in Equation 3, the distance between any proposed

estimating alignment and the ensemble of alignments can be

computed regardless of how one selects the estimating alignment. In

this report, we compare the results of using two different estimating

alignments: AM, the MS alignment, and AC, the EC alignment.

Specifically, let Di = D(Ai, Ax) be the distance of the ith member,

Ai, of the ensemble from a proposed estimating alignment, Ax,

where X is a categorical variable indicating the estimator (XM[M,

C]). We then rank the ensemble members by their distances from

Ax, and let ~DD i½ �~ D 1½ �,D 2½ �,L,D N½ �
� �

be the order statistics of these

distances (i.e., the distances of the ensemble members from the

estimating alignment) with the indices permuted to reflect their

order in the distance ranking [35]. The distribution function of the

distances is:

P D i½ �ƒd 1{að Þ Ax,H0,L0
��� �

~
i½ �

N
~ 1{að Þ, i~1,L,N, ð4Þ

where d(12a) is the (12a)th quantile. Now the credibility limit at

(12a) is d(12a). While higher-order DP recursions can be used to

obtain these limits, they can also be quite reasonably estimated

from a representative sample of even modest size by the following

algorithm [35]:

(1) Draw a representative sample of size p, say p = 1000, elements

by sampling from their posterior distribution, as illustrated for

sequence alignment by Webb et al. [24].

(2) Rank these alignments by their distance, Di = D(Ai, Ax), from

the estimate Ax.

(3) Now d̂(12a), the (12a)th quantile in this sample is our estimator

of d(12a).

The expected value of Di is

EAi
Dið Þ~

1

N

XN

n~1

D Ax,Anð ÞP D Ax,Anð Þð Þ

~
1

N

XN

n~1

X
i,j

D Ax
i,j ,An,i,j

� �
P An,i,j

� �

~
X

i,j[ Ax
i,j

~1f g
qi,jz

X
i,j[ Ax

i,j
~0f g

pi,j ,

ð5Þ

where An,i,j is 1 if i aligns with j in the nth member of the sample,

and zero otherwise; qi,j is the marginal probability that An,i,j = 0;

and pi,j is the marginal probability that An,i,j = 1. The required

marginal probabilities can be estimated based on a sample, or

when DP is available, they can be obtained using the forward- and

back-trace algorithm described by Durbin et al. [19].

Normalized Credibility Limit
Hamming distances will, in general, be dependent on the

lengths of the ensemble members. For example, in alignment,

longer sequences will tend to return larger distances simply

because the alignment matrix is larger. Thus, normalization is in

order. For this normalization, we employ a normalization factor

that uses maximum realized alignment lengths. Specifically, when

calculating a credibility limit, the length of the estimating

alignment (LE) is known, and the maximum length of an

alignment in the ensemble is the length of the shorter of the two

sequences (I). Thus, the maximum Hamming distances between

an estimating alignment and the longest member of the ensemble

is (LE+I). However, in our studies, we found that using this sum as

a normalizing factor was misleading for cases in which the

posterior space of alignments tended to be dominated by shorter

local alignments. For example, the local alignments of the

randomly shuffled sequences described in the Results section (see

Figure 1) were dominated by short alignments. As a result, using

(LE+I) as the normalizing constant in this case produced

normalized distances that were not close to one, even when there

were no base pairs in common between a sampled alignment and

the estimating alignment. To adjust these differences, we used the

length of the longest sampled alignment, LS, as the second term in

our normalizing sum, and the normalizing distance between the

estimating alignment Ax and the ith alignment in the sample is

ND Ax,A
sð Þ

i

� �
~D Ax,A

sð Þ
i

� �.
LEzLSð Þ where S indicates the set

of sampled alignments. Using this normalization factor yields

normalizing distances with values between zero and one. A perfect

match would yield an ND score of zero, and in the case where the

longest sampled alignment has no base pairings in common with

the estimating alignment, the ND score would be one. We define

the credibility of the alignment at (12a) to be ND(12a).

Centroid Alignment Estimators
Maximum similarity alignments, and the associated Viterbi

alignments, have been the dominant alignment procedures for

decades. In these procedures, an alignment output is typically the

single alignment that has the maximum probability over all

possible alignments. However, having the largest probability does

not indicate that it represents the alignment space described by the

billions (or more) possible alignments, except in the unusual event

that this single alignment alone has high probability. In fact, the

most probable alignment, the MS alignment, often has very small

probability. For example, in this study, the probabilities of the MS

alignments ranged from 10237 to 102249 for the alignments of the

human/rodent pairs of gene and promoter sequences. Because it is

the most probable alignment for a pair of sequences, all other

alignments for that pair can be no more probable than the MS

alignment. Thus, from a Bayesian prospective, any individual

alignment represents the data only weakly at best.

As Carvalho and Lawrence [27] point out, procedures that

identify the single, highest scoring alignment are optimal under a

zero/one loss function. Accordingly, after the highest scoring

alignments have been identified, all other alignments have a

penalty of one (i.e., are all equally unimportant); thus, if no single

alignment has a high probability mass then the expected loss will

be large. As a result, with zero/one loss there is no reason for the

optimal alignment to be positioned near any other member of the

ensemble of alignments, therefore failing to garner support from

any other member of the ensemble.

Global Credibility in Sequence Alignment
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In contrast, centroid alignments garner information from the

complete ensemble of alignments, because these alignments

minimize the expected Hamming distance from the complete

posterior weighted ensemble of alignments. Centroid alignments

correspond directly to the reliable alignments of Miyazawa with a

cut off 0.5 [26]. Reliable alignments are further described by

Durbin et al. [19] and are elaborated on by Holmes and Durbin

[34]. Furthermore, because these alignments minimize the average

Hamming distance, we expect that they may yield tighter

credibility limits than MS alignments. The alignment that is the

centroid of the entire ensemble of alignments is called the EC

alignment. These alignments meet the exclusive pairing and

colinearity constraints of the alignment problem, but they do not

necessarily meet the common requirement that a gap in one

sequence cannot be followed by a gap in the other sequence. We

compare the credibility limits of MS alignments and EC

alignments below.

Results

To assess the credibility measures and estimators described

above, we examine the local alignments of sequences from (1) 20

orthologous genes between human and rodent, and (2) 24

orthologous genes between six species of Shewanella. All sequence

pairs were evaluated using BALSA [24] with a PAM 110 scoring

matrix, gap penalties of 214 and 22 for opening and extending a

gap, respectively, and a sample size of 1000 to compute the

estimated alignment distributions, credibility limits, and EC

alignments.

Credibility Limits for Human/Rodent Pairs
The 20 orthologous genes for human/rodent are specifically up-

regulated in human skeletal muscle tissue, and their upstream

sequences have been used in previous studies to locate cis-

regulatory modules [36]. The coding regions of the 20 human/

rodent orthologous gene pairs were evaluated, as were the 20

sequence pairs that represent up to 3 kb of sequence upstream of

the orthologous gene pairs. All sequence pairs were masked using

RepeatMasker (http://www.repeatmasker.org/). For the local

alignments of the 20 gene pairs and the 20 intergenic regions,

we examined the credibility limits associated with two estimating

alignments: the MS, and the EC. Specifically, we examined the

95% quantiles of the normalized distances (ND), computed based

on the distances between these estimating alignments from the

1000 sampled alignments from the posterior alignment distribu-

tion. Figure 1 shows a scatter plot of the MS 95% credibility limits

(MS ND95) versus the EC 95% credibility limits (EC ND95) for the

local alignments of the genes and the intergenic regions. For

contrast, the genes were randomly shuffled, and 95% credibility

limits were defined for these non-related sequence pair alignments.

First, notice that the credibility limits for the gene sequence

alignments are small, and the difference between the EC and MS

is negligible. These genes are so highly conserved that the majority

of the posterior distribution falls along a small set of paths with

high probability, thus creating high correlation between the EC

and MS. Alternatively, when the gene sequences are shuffled, the

hyper-sphere surrounding 95% of the posterior distribution is very

large because the probability of aligning any two residues is

essentially random. This results in extremely large credibility limits

with high deviation in the distance of the ensemble from the EC

and MS. The intergenic regions are less conserved than the genes

and, thus, are intermediate between these two extremes. Notice

that the credibility limits are often surprisingly large, with

normalized distances over 50% for 18 of the 20 MS alignments,

and for 17 of the 20 EC alignments. This indicates that we have

confidence in less than half the predicted aligned base pairs. As the

plot shows, there is considerable variation in the credibility limits

over the 20 examples when either the EC or MS limit is used. The

credibility limits for the EC range from 29% of maximal to nearly

91%, while the MS limits range from 37% to almost 100% of

maximal. This result highlights the need to report credibility limits

for every sequence pair. We also see that for all but one of the

sequence pairs, the MS credibility limits are greater than those for

the EC. Furthermore, for 11 of the 20 upstream sequence pairs,

the MS credibility limits were more than 600 base pairs larger

than EC credibility limits. Thus while the differences in Figure 1

look modest, the MS credibility limits are often hundreds of base

pairs larger than those of the EC estimators.

Taken together, the differences between the 20 MS normalized

distances and 20 EC normalized distances in Figure 1 are

significantly different (i.e., p,0.001, Wilcoxon Signed Rank test

[37]). To offer further insight, we chose four alignments from the

20 to examine in more detail (Table 1); the results for all 20 pairs

are in Table S1. In Figure 2, we show histograms of the distance of

the 1000 sampled alignments from the two estimating alignments

(MS, EC); in addition, the 95% quantile (ND95) for the EC and MS

are shown as bars, and the values are given in Table 1. As Figure 1

indicates, pair (A) has the tightest credibility limits of all the

promoter sequences. These tighter limits are a reflection of the fact

that the ensemble of alignments is relatively close to the estimators;

the 95th percentile alignment differs from the EC estimator by 270

of a possible 1556 base pairs that could potentially differ

(ND95 = 0.29), while the MS is about 20% larger with an

ND95 = 0.37. Of the 20 promoter sequence pairs, there are 11 in

which the two credibility limits are markedly different (i.e., by

more than 0.05). Figure 2D is another illustration of the

characteristics of these 11 pairs for which the MS credibility

limits are substantially larger than those of the EC, although for

pair (D) the distance distributions have very little overlap, as well

Figure 1. Plot of ND95 values for the EC versus the MS of 20
pairwise sequence alignments. The ND95 values associated with the
20 highly conserved gene sequences are represented as green circles.
The sequence alignments that represent alignment of random, un-
related, sequences are represented as black triangles. In blue squares
are the ND95 values for the intergenic sequences upstream of the
coding genes. The four example alignment ND distributions displayed
in Figure 2 are indicated by a letter next to the corresponding square.
doi:10.1371/journal.pcbi.1000077.g001

Global Credibility in Sequence Alignment

PLoS Computational Biology | www.ploscompbiol.org 5 May 2008 | Volume 4 | Issue 5 | e1000077



as large credibility limits. Figure 2C is representative of the

remaining nine pairs, in which the posterior surface is quite flat,

and the two credibility limits differ by less than 0.05. For the

sequence pair shown in Figure 2C, the credibility limits for both

estimators are large. Because the EC alignment is the nearest

alignment to the mean [34], the large size of this limit for the EC

alignment indicates that the alignments in the posterior distribu-

tion are widely dispersed over the ensemble. Also notice that in (B)

and (C), the two distributions overlap substantially and have high

ND95 values; for example, the alignment in Figure 2B shows a

ND95 = 0.72 for the EC, and ND95 = 0.77 for the MS alignment.

Because the centroid estimator is the closest feasible alignment to

the mean, for this sequence pair the mean and the mode are close,

as is typical of symmetric distributions [27].

Credibility Limits for Shewanella
We also examined the credibility limits for the MS and EC

estimators for local alignments of orthologous pairs of intergenic

regions (up to 500 bp upstream of orthologous genes) from six

species of Shewanella for which full genome sequence data are

available: 1) S. denitrificans OS217 (DENI), 2) S. loihica PV-4 (SPV4),

3) S. oneidensis MR-1 (SONE), 4) S. putrefaciens CN-32 (CN32), 5)

Shewanella sp. MR-4 (SMR4), and 6) Shewanella sp. MR-7 (SMR7).

We chose SMR4 as our base species, aligning orthologous

sequences from each of the other five to the region from SMR4.

Starting with SMR4, the species in order of increasing

evolutionary distance are SMR4.SMR7.SONE.CN32.

SPV4,DENI. As before, we examined the 95% quantiles of the

normalized distances, computed based on the distances between

the estimating alignments and the sampled ensemble of alignments

drawn from the posterior alignment distribution. Figure 3 shows a

scatter plot of the MS ND95 versus the EC ND95 values for each of

24 randomly selected orthologous regions, for the pairwise

comparison of SMR4 to each of the five species at varying

evolutionary distances (120 total comparisons).

The two species SMR4 and SMR7 are very closely related, having

been isolated from samples taken at different depths (5 m and 60 m,

respectively) from a single location (latitude and longitude) in the

Black Sea [38]. Thus, it is not surprising that even the intergenic

regions are highly conserved and that the EC and MS exhibit tight

credibility limits. Among the comparisons to species at increasing

evolutionary distance, we observe increasing credibility limits. In

fact, for many of the SMR4-DENI sequence pairs, the credibility

limits are no better than expected for randomly shuffled sequence.

While, on average, the credibility limits of a pair of species increase

with increasing evolutionary distance, the figure also shows that the

credibility limits of the alignments for a given pair of species vary

greatly. For example, even though the credibility limits of most

SMR4-DENI pairs are large (.0.8), there are sequence pairs from

these two species that have credibility limits ,0.3. The fact that there

is wide variability in credibility limits for all of these pairs of species,

except SMR4-SMR7, highlights the importance of assessing the

reliability (credibility limits) of nearly all alignments. For example,

there is a pair of SMR4-CN32 sequences whose alignment is very

reliable (EC ND95 and MS ND95,0.05), but there are also three pairs

whose alignments cannot be trusted (EC ND95 and MS ND95.0.6),

and the remainder are scattered over the full range in between.

We further evaluated the findings shown in Figure 3 in the

context of a single gene’s orthologous upstream sequences. Often

in evaluating promoter sequences across species it is unknown a

priori which sequences it would be most beneficial to align. The

tight credibility limits shown in Figure 4A and 4B indicate that

when evaluating the promoter region of SMR4_0576, we would

have confidence in the alignments with the orthologous region

from SONE and CN32 (also with SRM7, data not shown). This is

not the case for the orthologous regions from SPV4 and DENI.

The high ND95 values for the EC and MS alignments indicate that

alignment of SPV4 or DENI sequences would not contribute to a

meaningful evaluation of the SMR4_0576 promoter region.

Unfortunately, not all alignments of promoter regions from

SMR4 with the promoter sequences of orthologous genes in

SONE and CN32 are reliable. For example, as Figure 5 shows, the

posterior distribution of the alignments of the SMR4_ 1557

promoter region with its CN32 ortholog is substantially more

widespread and variable than the posterior distribution of

alignments for the promoter region of SMR4_0576 with its

orthologous region in CN32.

These findings of large differences in the reliability of alignments

within species pairs have had a substantial practical impact on our

studies of phylogenetic motif finding using these Shewanella species.

Specifically, alignment of orthologous promoters can substantially

increase the power of motif finding, if the alignments can be

trusted. However, the findings shown in Figure 5 indicate that

reliance on a single genome-wide measure of species distances is

very frequently insufficient to assure that alignments of promoters

from species pairs can be trusted. Thus, we are using credibility

limits on a gene-by-gene and species-by-species basis to make

decisions about which alignments can be trusted.

Centroid Alignment Heat Map
The use of heat maps or other means to visually illustrate

confidence in the individual alignment of individual pairs of bases

must accommodate a different feature for centroid alignments.

Specifically, EC alignments have a feature not present in standard

alignments, in that they allow stretches of sequence in the middle

of an alignment to remain unaligned in a manner analogous to

those regions at the ends of local alignments. That is, a residue in

one sequence that cannot be reliably aligned with any single residue

in the other sequence is excluded from the centroid alignment.

Aligning any such residues to any bases in the other sequence

would only increase the average distance of the centroid alignment

from the posterior distribution of alignments. In addition, with

probabilistic alignment, we return marginal probabilities of all

residue pairs. Therefore, to display all the features of this

alignment, we employ 1) a traditional dash to represent gaps, 2)

a dot to represent residues that cannot be reliably aligned and are

thus ignored in the alignment, and 3) a gradient color scheme (i.e.,

a heat map) to show the base pair alignment probabilities, where

red indicates high probability for that residue pair, green indicates

probabilities nearing 50%, and the ignored region is grayed out to

further differentiate those residues for which the variability in

alignments is too great to permit marginal pair probabilities of 0.5

or greater. Figure 6 gives an example of the heat map alignment

Table 1. Gene, ND95, P-Quantile information on examples
highlighted in Figures 1 and 2.

RefSeq Gene Identifier ND95

Human Rodent EC MS

(A) NM_001885.1 NM_012935.2 0.291 0.373

(B) NM_000080.2 NM_009603.1 0.716 0.773

(C) NM_001042.2 NM_012751.1 0.587 0.647

(D) NM_003186.3 NM_011526.4 0.674 0.771

doi:10.1371/journal.pcbi.1000077.t001
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display for a human/rodent intergenic sequence pair (the region

upstream of the MYL2 gene). The red-to-green coloring of aligned

regions allows quick distinction of areas of alignment of high versus

low confidence.

Discussion

Because prediction and estimation involve making inferences

about unknown quantities based on the available data, they are

inevitably uncertain. Thus, when a specific value is reported as a

point estimate, it is common in many fields to simultaneously

report a confidence limit or a credibility limit, which is the

Bayesian analog. Such limits are all too often absent in

computational biology. Here, to promote their broader adoption,

we describe a method for estimating credibility limits and illustrate

these concepts using sequence alignment. These credibility limits

are derived from the empirical distribution function of the

Hamming distance from the estimator to the members of the

ensemble of solutions, or more accurately, a representative sample

of the ensemble of solutions. The 95% credibility limit of a

proposed estimate describes the posterior distribution by indicat-

ing the normalized Hamming distance containing 95% of the

probability mass of the posterior distribution. The existence of

these limits begs the question: What estimation procedure will

yield tight credibility limits? We advocate the use of recently

developed centroid estimators that minimize the expected

Hamming distance to address this question.

While it is reasonable to expect centroid estimators to produce

tighter credibility limits, it is not a guaranteed product of this

procedure, because the centroid is the estimator that minimizes

the average differences from the posterior ensemble, while the

credibility limits are based on a quantile. Nevertheless, our finding

of tighter credibility limits for EC alignments compared to MS

alignments should come as no surprise, since the well-known zero/

one loss risk associated with the latter estimators provides no

principled reason to expect that such estimators will be near the

center of the posterior distribution of alignments. On the other

hand, centroid alignments, which are the alignment nearest to the

multivariate mean of the posterior distribution, are centered in the

posterior distribution [27].

Figure 2. Histograms of the distances of the sampled alignments from the EC and MS. In (A) the centroid and optimal alignments are
similar and represent the distribution well, but in (B) and (C), despite a similar centroid and optimal alignment, neither represent the overall
alignment distribution. In (D) it is observed that the centroid and optimal deviate significantly from each other, and that the centroid is a much better
representation of the alignment space.
doi:10.1371/journal.pcbi.1000077.g002
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Performance
Our findings of 1) high variability in the credibility limits in the

alignments of promoter sequences of 20 human/rodent sequence

pairs and 2) similar high variability among 4 of the 5 pairs of

Shewanella species highlight the need for assessing the overall

reliability of sequence alignments. Without such limits, there is little

to distinguish alignments that vary greatly from one another in their

reliability. Furthermore, our findings indicate that centroid estima-

tors have promising potential to improve sequence alignment. For

example, for over half of the human/rodent non-coding sequence

pairs (each of ,3000 bases) in our sample, the EC and MS

alignments differ by more than 600 base pairs, and similar relative

differences are observed in Shewanella alignments. While we report

here on the credibility of nucleotide sequence alignments, they are

equally applicable and valuable for protein sequence alignments.

In some discrete high-D inference problems, the posterior

ensemble of solutions may not only be asymmetric, but also it may

be multimodal, as has been reported for RNA secondary structures

[39]. Since, in such a case no single point estimate can reasonably

represent the posterior ensemble, class-specific estimates, with one

for each distinct class, will be required. In these cases, samples

associated with each class can be used to find credibility limits for

the class estimates, and the overall credibility limits around these

class-specific estimates can be identified based on distances to the

nearest class estimate.

As mentioned above, the probabilistic model used is a Smith-

Waterman recursive DP algorithm whose Viterbi alignment

corresponded exactly to the MS alignment reported here. Thus,

differences in credibility limits reported here are solely the result of

the differences in the estimation procedures. In addition, the

alignment that minimizes expected Hamming distance loss and

also follows the requirement concerning adjacent gaps in the two

sequences are available using a DP algorithm [19,34]. However

this alignment can only increase the average Hamming distance

above that of the centroid.

While we believe this evidence supports reconsideration of the

maximum scoring alignment paradigm, stronger evidence for

reconsideration has been in the literature for over a decade. In

1995, Miyazawa [26] was the first to report what we now call

centroid alignments [27]. In addition to his very insightful

development of reliable alignments, he showed that these

alignments are superior, using x-ray crystal structures of proteins

as ground truth. Figure 7 (reproduced from Miyazawa’s work [26],

with permission of the author and Oxford Journals) shows that

structural predictions based on reliable (centroid) alignments quite

consistently produce lower root mean squared deviations than

those based on maximum similarity alignments. Thus, from a

practical biological prospective, there is already clear evidence in

the literature that centroid alignments can be applied with

advantage in the prediction of protein structures.

Time Complexity
We also note that the time complexity of algorithms for obtaining

centroid alignments and credibility limits is not different from those

of more traditional optimization based methods. When recursions

can be employed to obtain optimal solutions via DP, analogous

recursions are frequently available for associated probabilistic

models, and stochastic back-trace procedures can be employed to

draw samples from the posterior ensemble of solutions [19]. In

general, the time complexity for drawing these samples will be the

Figure 3. Plot of ND95 values for the EC versus the MS of 120 pairwise sequence alignments (24 comparisons for each of the five
species in the legend to SMR4). The four example alignment ND distributions displayed in Figure 4 are indicated by a letter next to the
corresponding symbol.
doi:10.1371/journal.pcbi.1000077.g003
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same as that of the associated DP algorithm, and is set by the forward

step of these algorithms. For example, in local sequence alignment,

the most computationally intensive step is the forward-recursive step.

For two sequences of length n and m, the time complexity is O(n*m)

for both the optimization and Bayesian algorithms. Running times to

obtain credibility limits in a recursive setting will generally be longer

than times required to obtain optimal estimates because a back-trace

step must be executed only once to obtain the optimal, while it must

be employed multiple times to draw samples. However, this

sampling will not generally greatly increase overall running times,

because back-trace recursions are usually of a lower time complexity

than their forward steps. For example, for local alignments the time

complexity of the back-trace recursions is only O(min(n,m)). For

problems not open to recursive solutions, MCMC algorithms are

commonly employed, using procedures like simulated annealing.

Credibility limits and centroids also can be obtained using MCMC

sampling with run times that may be less than those for optimizations

[27].

Caveats
Some caveats are appropriate. In settings in which uncertainty

is low, such as shown for the alignments of coding regions of

human/rodent sequence pairs in Figure 1 and the promoter

sequence pairs of very closely related species like Shewanella sp.

MR-4 and MR-7 in Figure 3, credibility limits will likely be tight

and not vary greatly among examples. Nevertheless, it would be

reassuring to document this low variability by reporting credibility

limits. While we have given principled arguments supporting our

belief that centroid solutions should dependably have tighter

credibility limits than optimization estimators, this advantage

cannot be guaranteed. However, this trend was observed in both

the human/rodent pairs and the Shewanella pairs. In our on-going

work with Shewanella, we have found 1329 orthologous genes that

were present in all six species and computed the 95% credibility

limits for both the MS and EC, for all the promoters from SMR4

aligned with the orthologous sequences from each of the

remaining 5 strains. The EC ND95 credibility limits were smaller

than the MS ND95 limits in 6078 (91.55%) of these 6645 sequence

pairs (i.e., p,1e-100, Wilcoxon Signed Rank test [37]).

In our comparison of centroid alignments to MS alignments, we

focused on the alignment of individual pairs of sequences.

However, we did not address how these two estimators would

compare if we had available multiple pairs of sequences all drawn

from a model with a single common ‘‘true’’ alignment. In the

Figure 4. Histograms of the distances of the sampled alignments from the EC and MS for the intergenic regions upstream of the
gene SMR4_0576. SMR4_0576 alignment distribution with its orthologous sequence from (A) SONE, (B) CN32, (C) SPV4, and (D) DENI.
doi:10.1371/journal.pcbi.1000077.g004
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context of sequence alignment, such a situation would not be

observed in nature because we know of no families of biological

sequence pairs for which one can be confident that sequence pairs

within this family all follow the same ‘‘true’’ alignment. For

example, even for sequence pairs drawn from orthologous regions

from clearly related species, alignments are likely to differ. This

same absence of replicates, all of which are sampled from the same

‘‘true’’ value of the unknown, is expected for many, but not

necessarily all, high-D discrete biological inference problems. Even

when obtaining a large number of such biological replicates is

possible in principle, such as a large number of biological

replicates in a microarray study, obtaining them in practice is

often prohibitively expensive. However, with advances in

technology, this limitation may be overcome. When a substantial

number of such replicate observations are available, the

asymptotic properties of maximum likelihood estimates, such as

consistency and asymptotic unbiasedness, can be brought to bare.

In such cases, as sample size increases, the MS estimator will

approach the true value, and the bias will tend toward zero. This

reduction in bias might well counter-balance the higher variability

(high credibility limits) reported here for individual sequence pairs.

The findings reported in this paper are for pairwise alignments.

When multiple alignments are employed, we expect credibility

limits to narrow because of the increased size of the data sets;

however, we caution that the alignment space grows rapidly with

increasing sequences in an alignment. Therefore, these limits may

Figure 5. Histograms of the distances of the sampled alignments from the EC and MS for the intergenic regions upstream of
orthologous genes from SMR4 and CN32. (A) Alignment distribution for the regions upstream of the orthologous genes SMR4_0576 and
CN32_3301 and (B) alignment distribution for the orthologous regions upstream of the arginine decarboxylase (speA) genes SMR4_1557 and
CN32_1647.
doi:10.1371/journal.pcbi.1000077.g005

Figure 6. Heat-map alignment representation of the EC. Sequence indices are given on the left and the color gradient associated with aligned
residue probabilities is given on the right. Sequence regions that have no aligned pairs with a probability greater than 0.5 are ignored by the
alignment, grayed out, and aligned with a dot to differentiate these from insertion/deletion events that utilize a dash.
doi:10.1371/journal.pcbi.1000077.g006
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or may not shrink as quickly as expected. Furthermore, it is

important to keep in mind that the credibility limits reported here

are sampling estimates of true 95% quantiles, but with samples of

1000 the error bars on these estimates are 95%61.35%. All the

estimates in this work are based on a local probabilistic alignment

model. While local alignment is the most common procedure,

other probabilistic alignment procedures, or local alignments with

other parameter settings [25,26], may give varying results. As is

common practice, all alignments here are given for a fixed set of

parameters. Alignment parameters also can be estimated from the

data; perhaps with such an approach, credibility limits could be

smaller and more consistent, although this may not be the case

because uncertainty of the parameter estimates would be

introduced into the procedure.

Conclusions
Beyond the usual interest in putting error limits on point

estimates, our findings of substantial variability in credibility limits

of alignments argues for wider adoption of these limits, so that the

degree of error is delineated prior to the subsequent use of the

alignments. From a practical prospective, when credibility

alignments are tight, those using these alignments in subsequent

procedures can be confident in the input alignments and know the

limited degree to which input alignment may vary. The absence of

such limits may well lead to a false sense of confidence in

subsequent findings, especially when credibility limits are wide,

and/or seriously limit an investigator’s ability to determine the

source of difficulties or inconsistencies in subsequent procedures

that depend on these unreliable alignments. In practice, knowing

early in a study that alignments required for subsequent results are

unreliable (i.e., have high credibility limits) might well lead an

investigator to reconsider his/her plans. For example, in studies of

phylogenetic tree reconstruction when it is known that input

alignments are reliable, investigators’ conclusions about phyloge-

netic relationships will be bolstered; whereas, prior knowledge that

input alignments are unreliable will motivate serious investigators

to revise their study design or, after the fact, permit reviewers to

raise legitimate questions about the studies conclusions.

While the results presented here concern only sequence

alignment, the procedures described are generally applicable to

point estimates for high-D discrete spaces; this includes many major

inference problems in computational biology, such as pathway

prediction in systems biology, the prediction of phylogenetic trees,

the reconstruction of ancestral states, the delineation of alternate

splice forms, and prediction of RNA secondary structures. For any of

these problems, the algorithm given in the Methods section

‘‘Credibility limits and means distance’’ can be employed to obtain

ND95 values for any proposed estimate given a procedure for

drawing samples from the posterior distribution. We caution that

while the Hamming distance will be appropriate in many of these

areas, it may not be as appropriate in some of these settings.

Regardless of the distance measure used, the proposed procedure

will return credibility limits for an estimator when a representative

sample can be obtained. We believe the use of confidence or

credibility limits is long overdue throughout the full spectrum of

discrete high-D inference problems encountered in computational

biology. These limits have a number of valuable uses, including

gauging the degree by which solutions might depart from their

estimated value, appraising the overall credibility of a prediction, and

comparing the performance of alternative estimators in cases where

a ‘‘gold standard’’ is not available.

Supporting Information

Table S1 Gene, ND95, and P-Quantile information on all 20

sequence pairs.

Found at: doi:10.1371/journal.pcbi.1000077.s001 (0.04 MB

DOC)
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