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Abstract

Motivation: Modeling of protein family sequence distribution from homologous sequence data recently received
considerable attention, in particular for structure and function predictions, as well as for protein design. In particular,
direct coupling analysis, a method to infer effective pairwise interactions between residues, was shown to capture
important structural constraints and to successfully generate functional protein sequences. Building on this and
other graphical models, we introduce a new framework to assess the quality of the secondary structures of the gen-
erated sequences with respect to reference structures for the family.

Results: We introduce two scoring functions characterizing the likeliness of the secondary structure of a protein se-
quence to match a reference structure, called Dot Product and Pattern Matching. We test these scores on published
experimental protein mutagenesis and design dataset, and show improvement in the detection of nonfunctional
sequences. We also show that use of these scores help rejecting nonfunctional sequences generated by graphical
models (Restricted Boltzmann Machines) learned from homologous sequence alignments.

Availability and implementation: Data and code available at https://github.com/CyrilMa/ssqa

Contact: cyril.malbranke@ens.fr

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Considerable efforts were devoted over the past decade to the modeling
of protein families from homologous sequence data, taking advantage
of the tens of millions of available sequences in databases such as
UniProt (The UniProt Consortium, 2019) or PFAM (Bateman et al.,
2002). Among sequence-based models, graphical models, in particular
direct coupling analysis (DCA), emerged as simple and effective
Bayesian inference approaches capturing essential statistical properties
of residues in sequence data, such as their conservation and pairwise
correlations, see Cocco et al. (2018) for a review. DCA outputs a set of
statistical pairwise couplings, which are informative about the contact
map of the single or multiple folds (Malinverni et al., 2015; Weigt et al.,
2009) characterizing the family, or about the protein interactions with
its partners (Bitbol et al., 2016). In addition, DCA defines a likelihood
over the sequence space, which can be used to predict the effects of
mutations to a natural sequence in comparison to mutagenesis experi-
ments (Figliuzzi et al., 2016; Hopf et al., 2017), or can be sampled to de-
sign de novo synthetic proteins, whose viability can be assessed in vivo
(Russ et al., 2020).

Despite these successes it remains unclear what aspects of the struc-
tural, functional and evolutionary constraints acting on protein

sequences are adequately captured by such sequence-based models, and,
conversely, what features are inappropriately accounted for. Here, we
introduce a method to assess the compatibility of these models with the
secondary structure elements common to the family. The goal of our
secondary-structure quality assessment (SSQA) method is twofold. First,
we may use SSQA to a posteriori test the validity of sequence-based
model predictions, as failure to preserve the secondary structure of a
protein is likely to result in a loss of its functionalities. Second, SSQA
can be used to guide protein design by helping the production of sequen-
ces with adequate secondary structures.

SSQA aims at estimating the similarity between the putative
secondary structure associated to a given sequence and a reference
structure associated to the protein family. This task is analogous to
(tertiary)-structure quality assessment, which has received sustained
attention in the past years (Baldassarre et al., 2021; Derevyanko
et al., 2018). Our focus on secondary structure is motivated by
several reasons. Secondary structure is known to be largely con-
served in protein families (Fig. 1), and is therefore a reliable signa-
ture of family membership. In addition, state-of-the-art algorithms
for secondary structure predictions, such as JPred4 from
Drozdetskiy et al. (2015), NetSurf0-2.0 from Klausen et al. (2018),
Wang et al. (2016) or Asgari et al. (2019) reach very high accuracy
levels (85–90%). The availability of computationally fast and
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reliable tools is necessary to the implementation of our quality as-
sessment approach.

Our paper is organized as follows. We briefly review graphic-

al models, in particular Restricted Boltzmann Machines, an un-

supervised learning framework that encompasses DCA by

including high-order couplings between residues in Section 2.1,
as well as secondary structure inference algorithms in Section

2.2. SSQA with its different formulations are presented in Section

3. Results on the ability of SSQA to improve functionality/activ-
ity prediction are reported in Sections 4.1 and 4.2. We then show

how protein data-driven design (Section 4.3) based on Restricted

Boltzmann Machines can be enhanced with SSQA. Conclusive

remarks can be found in Section 5.

2 Background

2.1 Graphical models for sequence distributions and

Restricted Boltzmann Machines
We will consider hereafter protein sequence distributions PðxÞ
expressed by graphical models, where x ¼ fxig denotes the sequence

of amino acids. A well-known example of graphical model is the so-

called DCA, for which

P xð Þ ¼ 1

Z
e�EDCAðxÞ with Z ¼

X
x0

e�EDCAðx0Þ ; (1)

and the energy function is

EDCAðxÞ ¼ �
X

i

giðxiÞ �
X
i< j

Jijðxi; xjÞ : (2)

The set of parameters giðxÞ and Jijðx; yÞ are inferred so that the 1-
and 2-point statistics, revealing conservation and coevolution in

homologous sequence data match the ones of the model distribution.

DCA was shown to be successful for extracting structural informa-
tion about the 3D conformation of the protein and for designing

new functional proteins through the sampling of PðxÞ (see Russ

et al., 2005, 2020).
In this work, we will consider another class of graphical models

called Restricted Boltzman Machine (RBM, see Salakhutdinov
(2008) for an overview), which encompass DCA and may also ex-

press interactions of order � 3 between residues in the sequence.

RBM was recently shown to be powerful to model amino-acid se-
quence distributions (Bravi et al., 2020; Tubiana et al., 2019).

Briefly speaking, RBM is joint probabilistic models on bipartite

graphs, with one layer carrying the sequences x and another layer,

the representations h ¼ fhlg. The energy function for x, h is

ERBMðx;h; WÞ ¼ �
X

i

gðxiÞ þ
X

l

UðhlÞ �
X
i;l

WilðxiÞhl : (3)

This energy defines the joint distribution of sequences and

representations

P x;hð Þ ¼ 1

Z
e�ERBMðx;hÞ : (4)

The interactions W and the potential g acting on the input units
are similar to position weight matrices, and are learned through
maximization of the marginal distribution PðxÞ of the sequences x in
the training dataset. To do this, methods such as Persistent
Contrastive Divergence (PCD) can be used (see Tieleman, 2008;
Tubiana et al., 2019). The potentials acting on the hidden model U
are chosen to be quadratic: UðhlÞ ¼ 1

2 h2
l. Note that it is possible to

learn the potentials U (see Tubiana et al., 2019), an option that was
not retained here.

The joint probability in (4) also allows one to define the condi-
tional probabilities PðxjhÞ and PðhjxÞ. Due to the bipartite nature of
the interaction graph, these conditional probabilities are factorized,
which makes sampling fast and easy. With our choice of a quadratic
potential over the representation units, we get the following condi-
tional probabilities for, respectively, representational and sequence
units:

PðhljxÞ ¼
1ffiffiffiffiffiffi
2p
p exp � 1

2
ðhl �

X
i

WilðxiÞÞ2
" #

; (5)

PðxijhÞ ¼ softmax½giðxiÞ þ
X

l

WilðxiÞhl�: (6)

Alternating sampling of the representation and the sequence

layers provide an efficient Gibbs procedure to sample PðxÞ, see
Algorithm 1.

2.2 Secondary structure: definition and inference
Secondary structure is the three-dimensional form taken by a protein
on local scales. The two main secondary structural motifs are a-heli-
ces (with H-bonds between amino acids that are 3–4 residue apart
along the sequence) and b-sheets (multiple strands connected by at
least 3 H-bonds). We thus represent the secondary structure of a pro-
tein by a sequence of a 3-class classification following the primary
structure (chain of residues): a-helix, b-strands, or ‘coil’ if the residue
is part of a disordered segment or an irregular structure. We will
also consider more detailed classifications involving eight classes, see
Kabsch and Sander (1983). This classification includes three

Fig. 1. Profiles of predicted secondary structures (a-helix, b-strand or coil, see probability values on the right color scale) computed with NetSurfP2 (Klausen et al., 2018) for

three sequences of the betalactamase family (PF00144, aligned sequences: YFEW_ECOLI/43-414, P74474_SYNY3/27-387, P94288_BACCE/53-388). Alignment (induced

from the PFAM alignment) between the three sequences had a length of 398. For the sake of clarity, only positions 275–375 of the alignments are shown. White positions cor-

respond to gaps in the alignment. Note the similarities between the three secondary structures

Algorithm 1 Gibbs sampling through RBM

1: function SAMPLING RBM(X, N)

2: Pick xð0Þ in the set of natural sequences (NAT)

3: for n 2 ½1;N� do

4: Sample hðnÞ following PðhðnÞjxðn�1ÞÞ
5: Sample xðnÞ following PðxðnÞjhðnÞÞ
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subclasses for a� helix (3-turn helix, 4-turn helix and 5-turn helix),
two subclasses for b� strand (isolated b-bridge or extended strands)
and three subclasses for coil (turn, bend or other).

Hereafter, we consider models, denoted byM, allowing us to es-
timate the probability for each site i in a sequence x to be part of a
secondary-structure class, e.g. a-helix, b-strand or coil. These models
can be very simple (based on statistics of amino acids), but most suc-
cessful algorithms now rely on Deep Learning, including one-dimen-
sional convolutional or recurrent neural networks, in particular
LSTM (Hochreiter and Schmidhuber, 1997). Many of these models
are proposed in the literature (Asgari et al., 2019; Klausen et al.,
2018). The most competitive algorithms enrich the sequence of
amino acids x with hidden Markov model (HMM-er) profiles com-
puted from homologous sequences.

In the present work, we focused on M1, an adapted network
based on NetSurfP2-0 from Klausen et al. (2018). Our implementa-
tion trained on 10.384 sequences with MMseqs profiles reaches
85% accuracy on validation set of 500 sequences, 84.1% accuracy
on TS115 dataset (Yang et al., 2018) and 83.5% accuracy on CB513
dataset (Cuff and Barton, 1999) with a relatively light architecture.
For training and validation, we used training and testing datasets
from Klausen et al. (2018). Both models relied on HMM profiles
built through HHsuite (Steinegger et al., 2019).

In Figure 1, we show the probability maps computed with M1

for three sequences of the betalactamase family (PFAM family
PF00144). Observation of these profiles on various sequences and
families suggests that aligned residues are likely to be part of the
same secondary-structure class. In addition, sequences from the
same family are likely to have very similar structures, following one
or several patterns. As we show in Supplementary Section S2, errors
in predictions are often encountered at the boundary between two
distinct classes in the secondary structure (border errors) or when
errors are made in the prediction, true labels often have a likelihood
that is not negligible (weak errors). These two kind or errors made
by predictors are common and we may then want to build a score
that is robust to it.

3 Material and methods

In this section, we propose two ways of assessing the quality of the
secondary structure (with respect to a reference secondary structure).
Both rely on building a bag of local features from a protein sequence
focused on secondary structure. Dot Product (DP) defines a bag of
many raw features (one for each residue of a sequence), quickly com-
puted and fully relying on alignments of the sequences. Pattern
Matching (PM) produces a bag of few refined features (number of
secondary structure motifs in the sequence), that require more com-
putation time (quadratic in sequence length) and does not necessarily
rely on alignments. Given the refinement of the PM features we ex-
pect that use of the corresponding features will require less (expen-
sive) annotation data than DP.

3.1 Conditional distribution of secondary structures
Let x be a protein sequence of length n. Its secondary structure s is a
string of length n taking value in Hn ¼ fa� helix; b� strand; coilgn,
with si ¼ a� helix; b� strand; coil if the residue i is part of, respect-
ively, an a-helix, a b-strand, a disorganized segment (‘coil’). In the
next part, we will also use the DSSP (Kabsch and Sander, 1983) clas-
sification with eight classes of secondary structure motifs.

Let us consider a model M for secondary structure inference
from an amino-acid sequence. Given a sequence x, M returns a
probability vector for each residue, that we can define as Px 2
½0; 1�n�3 where Px

i;ŝ ¼ Pðsi ¼ ŝjx;MÞ with
P

ŝ Pðsi ¼ ŝjx;MÞ ¼ 1.
We may then introduce ‘ for any secondary structure s inHn;

‘xðsÞ ¼
Y

i

Px
i;si
¼
Y

i

Pðsijx;MÞ: (7)

In an approximation in which secondary-structure symbols are
independent, ‘xðsÞ represents the probability that x has secondary
structure s, Pðsjx;MÞ. Distribution in (7) neglects the presence of

correlations between sites, and will be used for the sake of mathem-
atical tractability.

3.2 DP features
Let us consider for each i the probability vector of the secondary
structure at residue i, Px

i ¼ Pðsi ¼ •jxÞ. We compare the distribution
of probabilities of two sequences x and x0 at residue i through

DPiðx;x0Þ ¼
ðPx

i jP
x0

i Þ
jjPx

i jj2 � jjP
x0

i jj2
; (8)

where ð�j�Þ denotes the DP between two vectors, and jj � jj2 the L2

norm: jjxjj2 ¼ ð
P

j x2
j Þ

1
2. DPi is a similarity measure between the two

secondary structures associated to the sequences x and x0, equivalent
to the cosine of the angle between their two associated vectors. The
higher it is the more likely their secondary structures will coincide
on site i, with DPiðx; x0Þ ¼ 1() Px

i ¼ Px0

i . Low values of DP result,
on the contrary, from discrepancies between the local predicted sec-
ondary structures, e.g. DPiðx1;x0Þ � 0:105 for Px1

i ¼ ð0:1;0:8;0:1Þ
and Px0

i ¼ ð0:1; 0:1; 0:8Þ.
It is also possible to extend the definition of DP above to com-

pare one sequence, say, x1, to a set of sequences, say, X0 (including
N sequences):

DPiðx;X0Þ ¼
1
N

P
x02X0

ðPx
i jP

x0

i Þ
jjPx

i jj2 � jj 1
N

P
x02X0

Px0

i jj2
(9)

Since the reference sequence, x0, or set of sequences, X0, are
fixed in practice, we now on simplify the notation DPiðx;X0Þ or
DPiðx; x0Þ to DPiðxÞ. These features will be later referred to as the
DP features.

3.3 PM features
We develop the framework PM to compare the output of the second-
ary structure predictor and a pattern, which we define as a deter-
mined finite sequence of secondary structure elements (3 class or 8
class, see Section 2.2) of undetermined length and position in the
amino-acid sequence. Concretely, the protein sequences following
the same pattern have the same succession of structure elements but
these elements can vary in their lengths and in the positions they cor-
respond to on the amino-acid sequences (see Fig. 2, IV for a visual
example). Formally, a pattern r is defined as an ordered set of ele-
ments called motifs: r ¼ ðCkÞk2½1;K� where Ck is a secondary-structure
class (a� helix; b� strand or coil for 3-state classification).

We want to assess whether the predicted structure s ¼ ðsiÞi2½1;n�
of a sequence follows the expected pattern r. We define ðtkÞk2½0;K�
where tk represent the position of the end of the motif Ck (defining
the transition from motif Ck to motif Ckþ1 for k 2 ½1;K� 1� or the
beginning of the motif C1 for k¼0 and the end of the last motif CK

for k¼K). A structure s 2 fa� helix; b� strand; coilgn is said to
match the pattern r if there exists ðtkÞk2½0;K� such that

1. The pattern covers the whole sequence, i.e. t0 ¼ 0, tK¼ n.

2. Each motif of the pattern exists: 8k; ðtkþ1 � tkÞ � 1.

3. Each motif covers the expected secondary structure: for i such as

tk�1 � i < tk, we have si¼Ck.

We hereafter denote by R the set of secondary structures s that
match pattern r. We will define Matchðx; rÞ the probability of an
amino-acid sequence x having a structure that matches r:

Matchðx; rÞ ¼
X
s2R

PðsjxÞ: (10)

Brute force computation of Matchðx; rÞ is not possible, as the
size of R grows exponentially with the length n of the sequence.
However, it can be calculated in polynomial time, using the distribu-
tion defined in Equation (7).

To do so, we make use of the HMM framework. A HMM is a
statistical model in which a system follows or is modeled as a
Markov process over a set of hidden (not observable) states. Here,
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these hidden states are the stretches of motifs, T ¼ ððtk�1; tkÞÞk. In
addition to this Markov process, there is another process generating
observable symbols Y ¼ ðykÞk, where the probability of yk depends
only on ðtk�1; tkÞ.

We consider the following Markov model:
Hidden states: ðtk�1; tkÞ, where tk�1 and tk are such that the motif

rk of class Ck is in the interval of sites ½tk�1; tk � 1�.
Observation states: yk 2 f0; 1g where yk¼1 if the motif of

index k verifies the third matching condition and yk¼0 other-
wise. Given tk, tk�1, Ck we have yk¼1 with probability
p ¼

Q
i2½tk�1 ;tk�1� pðsi ¼ CkjxÞ.

In the context of this Markov process, x has a structure matching
pattern r if 8kyk ¼ 1. The computation of Matchðx; rÞ can then be
done through the sum-product algorithm (Kschischang et al., 2001),
a dynamic programming method for marginalizing the hidden states
running in quadratic time and similar to the celebrated Viterbi algo-
rithm. More details about the method are available in
Supplementary Section S1. We then obtain Matchðx; rÞ and, for each
k, Pðtkjx; rÞ and Pðtk; tkþ1jx; rÞ. We define, for each k, the length of
the motif rk in the secondary structure, lk ¼ tk � tk�1, and compute
its probability

pðlk ¼ ljx; rÞ ¼
X

tk�1 �n�l

Pðtk�1; tk ¼ tk�1 þ ljx; rÞ: (11)

From this we compute our local PM features, which are the
expected lengths of secondary structure motifs

PMkðxÞ ¼
X

lk

lk pðlkjx; rÞ : (12)

3.4 Reduction and full pipeline
We then reduce the bag of features (issued from DP or PM) into a
single score able to quantify the quality of the secondary structure.
Two approaches are possible, depending on the availability of anno-
tated data.

The first method relies on supervised learning. If experimental
measures of the goodness (fitness) of proteins are available, working
with PM and/or DP features, it is possible to feed these features into
a classifier or a regressor for learning with the experimental meas-
ures as target. The classifier/regressor used should be adapted to the
size of the dataset available. Experimentally, we saw that a Logistic/

Linear Regression already performs well but for big enough dataset
a Random Forest with 200 trees (from scikit-learn library, Pedregosa
et al., 2011) yielded better results even though we noticed over-
fitting on the training set (see Section 4.1 and Supplementary Section
S3 for more details).

If experimental data are not available we have to rely on ‘un-
supervised’ methods. We compute a single score DP from DP fea-
tures, DPðxÞ ¼ miniDPiðxÞ or DPðxÞ ¼

P
i DPiðxÞ, and for PM,

PMðxÞ ¼ minkPMkðxÞ or PMðxÞ ¼
P

k PMkðxÞ. It is possible to lin-
early combine both DP and PM into a single score. We empirically
see when optimization was possible that SSQAðxÞ ¼ DPðxÞ þ PMðxÞ
is usually close to be the optimal linear combination of the score.

After reduction, the pipeline is complete, and we obtain a numer-
ical estimate of the quality of the secondary structure of a given se-
quence. An overview of this pipeline is shown in Figure 2. Steps II–
III–IV (structure inference, PM and DP features) have been devel-
oped using PyTorch (Paszke et al., 2019), while step I relies on
HHsuite (Steinegger et al., 2019) and step V (reduction) on scikit-
learn (Pedregosa et al., 2011) for supervision. PDB structure extrac-
tion (Burley et al., 2019) is done with Biotite API (Kunzmann and
Hamacher, 2018) in provided repository.

4 Results

We assess the performance of our approach on existing datasets of
various nature. Russ et al. (2020) designed new protein sequences
from the DCA model learned from homologous sequences of the
Chorismate Mutase (CM) enzyme (PF07736 in PFAM, alignment
referred to as NAT), and measured their fitnesses in vivo, see Section
4.1. In Section 4.2, we test our approach on 23 mutational effect
datasets compiled in Hopf et al. (2017) (complete list of reference is
available in Supplementary Section S6). Finally, in Section 4.3, we
propose an approach to combine SSQA and DCA models in a pro-
tein design process and showed potential improvement in the aver-
age functionality of the sequences generated.

4.1 A posteriori screening of DCA-based designed pro-

teins with SSQA
CM is an enzyme that catalyzes an intermediate reaction in the syn-
thesis of aromatic amino acids. Its role in maintaining the balance of
these amino acids in the cell is vital, making easy the evaluation of
its functionality. In Russ et al. (2020), putative protein sequences

Fig. 2. Schema of the SSQA pipeline. First step (I) being the alignment of sequences and computations of the profiles through HHmake (image PFAM), then the structure infer-

ence (II, see Section 2.2) through a secondary structure predictor (image UniProt). Then the computation of the DP (III, see Section 3.2) and PM (IV, see Section 3.3) features

with reference structure from PDB and finally the reduction (V, see Section 3.4) through unsupervised or supervised reduction
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sampled from DCA model distribution (1), were inserted in
Escherichia coli, in which the CM gene had been removed. The
growth rate of these E.coli presented a bimodal distribution that
allowed for splitting the sequence dataset into inactive and active
samples.

Our objective is to help discriminating active and inactive protein
sequences. We will take a look at several scores. First we consider
the DCA energy,EDCAðxÞ in (2) (as available in Russ et al. (2020)
dataset), which corresponds to the negative log-probability (up to an
additive constant) in the DCA model. The vast majority of high-
energy sequences are inactive, while a substantial fraction of low-
energy sequences is active. However, DCA energy alone does not
allow for separating active from inactive sequences below some en-
ergy threshold, see for instance EDCA<25 in Figure 3c. Russ et al.
(2020) showed that discrimination performance could be enhanced
by a Logistic Regression trained on aligned sequences (MSA) with
activity as a target (MSA Log Reg). This method could identify gen-
erated sequences similar to the one of the test organism (E.coli) in
the low-dimensional space spanned by the top components of the se-
quence data covariation matrix.

We next study the capability of SSQA to discriminate between
active and inactive sequences, in particular at low EDCA. To do so
we rely on supervised and unsupervised scoring methods based on
the DP and the PM features. Our training set is made of the natural
sequences (NAT), whose activities have been determined experimen-
tally (see above). Sequences generated with DCA models in Russ
et al. (2020) (DCA) will constitute our testing set. Their activity was
also experimentally assessed. Taking for x0 the CM sequence of
E.coli and its secondary structure in PDB (PDB: 1ECM) as referen-
ces, we compute the DP and PM features with both 3- and 8-class
secondary structures. For the unsupervised scoring functions, we
found that DPðxÞ ¼

P
i DPiðxÞ

1
2 and PMðxÞ ¼

P
k PMkðxÞ yield the

most encouraging results (see Figure 3c). For the supervised scoring

functions, we train a model through a Random Forest with 200 trees
on the natural sequences (NAT) to target the activity of a sequence
and evaluated it on generated sequences (DCA). The model was
chosen from cross-validation on the training set as describe in
Supplementary Section S3.

In Figure 3a, we plot the DCA energy and the supervised SSQA
score (DPþPM) on a same graph with active samples in green and
inactive ones in red. We see that SSQA helps discriminate active and
inactive samples with low energy. Most of the sequences with low
energy have been correctly labeled as inactive by SSQA, while most
samples with good SSQA and low DCA energy are active. In the low
EDCA-high SSQA domain delimited by the black lines in the figure
85% of the sequences are active. In Figure 3b, we show the scatter
plot of MSA Log Reg and of the supervised SSQA score (DPþPM).
The high value of the Spearman coefficient underlines the correla-
tions between the correlation between the enrichment method devel-
oped by Russ et al. (2020) and secondary structure features. This
correlation may either reflect a causal effect, i.e. preservation of sec-
ondary structure is a key ingredient to the functionality of the pro-
tein, or simply that the similarities at the secondary structure level
are indicative of the phylogenetic similarities in the CM family.

Last of all we notice in Figure 3c that DP clearly outperforms
PM when used with supervision, while PM is better without supervi-
sion. This is an important remark to take into consideration, since,
for the many studies that do not rely on experimental measurements
of protein viability, supervised methods to improve the precision of
SSQA cannot be used.

4.2 SSQA on mutational datasets
We generalize the method on mutational datasets extracted from
multiple mutagenesis studies compiled in Hopf et al. (2017). Each of
these datasets (available in the Git repository in mut.zip) contain
sequences with generally one or few mutations around a wild-type

Fig. 3. (a) EDCA and SSQA of generated samples. Green dots are the active samples. As we can see, the combination of DCA energy and SSQA allow a good discrimination.

About 82% of the samples in the black block are active. (b) MSA Log Reg from Russ et al. (2020) and SSQA of generated samples. Green dots are the active samples. MSA Log

Reg is performing Logistic Regression of the MSA of the sequences with activity as a target. The Spearman correlation between the two scores is q¼ 0.65. (c) AUROC for in-

active samples detection for different combination of features, MSA Log Reg and EDCA from Russ et al. (2020) dataset, PM features and DP features with and without supervi-

sion. We computed the AUC with the activity as a target for different datasets: natural sequences (NAT), generated sequences (DCA) and subset of the generated sequences by

focusing on low-energy samples (EDCA < 25) or on samples generated with different sampling temperatures T (the higher T, the more the samples will be generated with free-

dom toward the training set). As we can see the use of SSQA features (DP, PM) has a particular interest on low-energy samples that are indistinguishable from natural sequence

from statistics of order 1 and 2. The combination DCA energy and SSQA features often yield a very good discrimination of low activity samples (AUC: 0.914 with supervision

and 0.810 without on the full dataset)
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sequence, with the experimentally determined values of their in vitro
or in vivo fitnesses. Hopf et al. (2017) perform mutational effect pre-
dictions through DCA couplings, see (2), that we take as baseline for
our own predictor.

To quantify the performance of SSQA, we train models with fea-
tures computed through DP and PM through cross-validation. The
secondary-structure patterns are retrieved from PDB when available,
or inferred with the PM inference method. The model we select is a
Random Forest Regressor (50 trees) fitted with the experimental
fitnesses as targets through cross-validation. We then linearly
combine DP and PM scores with the DCA score (energy of mutated
sequence) from Hopf et al. (2017), weighting of the scores are opti-
mized through Linear Regression and cross-validation. We compute
for each obtained score the Spearman correlation q with the ground-
truth experimental measurements. A selection of these correlations
can be found in Figure 4a. Figure 4b shows the scatter plot of
the Spearman correlations obtained with the DCA coupling esti-
mates (E) only versus the ones where DCA couplings are combined
with DP and PM (EþDPþ PM). We see that, for most datasets,

both DP and PM bring an improvement to the mutational effect
prediction.

In Figure 4c, we show the relative improvement r ¼
log qðEþPMþDPÞ

qðEÞ as a function of the ratio L� log 20ðNÞ, where L is

the length of the reference sequence and N is the size of the dataset.
We observe a slight correlation between r and L� log 20ðNÞ
(Pearson q ¼ 0:32, P-value¼0.14). DP often outperforms PM for
large training dataset, whereas PM is superior to DP for small data-
sets. The few sophisticated features produced by PM are helpful for
long proteins or small datasets, but it is advisable to use the many
raw features of DP when sequences are short and numerous.

4.3 Improved Restricted Boltzmann Machine-based se-

quence sampling with secondary structure sequence

assignment
We now ask whether SSQA can improve graphical-model-based gen-
erating models. We consider a RBM energyERBMðxÞ for sequence x,
and a scoring function m(x, r) of the secondary-structure quality
(local or global) of sequence x with respect to pattern r; m can be for

Fig. 4. (a) Spearman correlations between experimental fitness measurements computed through cross-validation with DCA energy (E) from Hopf et al. (2017), DP and PM fea-

tures, and their combinations, for different datasets. (b) Scatter plot of the Spearman correlations q between the experimental measurements of fitness and the scores combining

DCA energy, as well as DP and PM features (EþDPþ PM) versus DCA energy only (E) over the different datasets. The sizes of the dots are proportional to the sizes of the cor-

responding datasets. The improvement brought by SSQA is nonnegligible in particular for bigger datasets. (c) Relative enrichment from DP method to PM given the relative

size of the dataset N compared to the size the sequence L� log 20ðNÞ. As the quantity of available annotated data decreases DP become less and less performing compared to

PM
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instance one of the SSQA metrics introduced above. We propose to
sample sequences following the distribution

P x; rð Þ ¼
1

Z
1mðx;rÞ>k e�ERBMðxÞ ; (13)

where Z is a normalization constant, and the indicator function 1
rejects all sequences with scores lower than the threshold k.

In practice, we sample the RBM distribution of (4) with Gibbs
sampling, see Algorithm 2. Then we perform rejection sampling as
following to simulate Pðx; rÞ.

Using the CM dataset described in Section 4.1, we train a RBM
from the NAT alignment of PFAM (PF07736) and PCD. The ‘L1b’
normalization defined in Tubiana et al. (2019) is used. The hidden
layer is composed of 200 Gaussian units. After training, the RBMs
are used to sample 2000 sequences by Gibbs sampling (30 steps).
Rejection with different thresholds is performed, to enforce harder
and harder secondary structure requirement. We use the unsuper-
vised PM score (AUC: 0.686 in Table 3) to reject samples, as this
score requires knowledge about the secondary structure only, there-
by making the method applicable to proteins for which no experi-
mental data is available. Newly generated samples are available in
pfam/russ/gen_data in the Git repository.

For validation of our method, we use the supervised combined
EþDPþ PM score (AUC: 0.899 in Figure 3c) to assess the quality of
our generated samples, even though methods used for rejection and

for functionality assessment are similar, the latter still gives a good
idea of the improvement brought by the rejection. The supervised
EþDPþ PM score predict that the fraction of sequences predicted
active in the generated dataset are 26% and 51% with, respectively,
no (k ¼ �1) and high (k ¼ 0:65) rejection. Results are displayed in
Figure 5, where a clear shift toward good structures samples when
adding rejection based on SSQA (t-test gave us a P-value
P ¼ 7:3� 10�19), which strongly suggest that experimental deter-
mination of activity would also lead to an improvement in the share
of active sequences designed.

5 Conclusion

In summary, we have proposed multiple scoring functions for assess-
ing the compatibility of protein sequences with respect to a reference
secondary structure. Our approach is computationally tractable, has
intuitive meaning, and shows promising performance. A posteriori
validation of sequences generated in previous works shows the abil-
ity of our method to detect dysfunctional proteins, and constitutes
an improvement compared to standard graphical-model-based meth-
ods. These results strongly suggest that quality assessment is a prac-
tical way to exploit secondary structure, despite the 	15% error rate
of the best available secondary structure prediction algorithms.

The results we report on CMs or on mutational effect datasets
showed a great complementarity between SSQA and DCA; for in-
stance, functionality of sequences with both good SSQA and good
DCA energy have been shown to be very high (>80% for CMs). It is
not surprising that DCA or RBM captures functionally relevant in-
formation on residues (for instance, at or close to binding sites) be-
yond secondary structure alone. However, it is less clear what
statistical features of the sequence data are overlooked by graphical
models, and, yet, essential to secondary structure prediction. A pre-
liminary answer to this question can be found in Supplementary
Section S5. Indeed, for the betalactamase family (see Majiduddin
et al., 2002), SSQA brings particular improvement in the activity
prediction task for mutations happening on b-strand, where DCA
models are failing to yield good prediction. While it may not be in-
conceivable that accounting for some b-motifs may require a com-
plex pattern of couplings, beyond what DCA can accommodate for,
further systematic studies are required to understand the origin of
the complementarity between their scores.

In addition, we observed that SSQA methods, in particular PM,
may lead to enhanced performance with little sequence annotation
e.g. additional structural information, or little experimental data.
Indeed, state-of-the-art secondary structure prediction software have
been tested and validated on huge datasets, including all protein
families with known structures. Use of these methods for SSQA of
sequences attached to a single protein family may therefore be seen
as an illustration of knowledge transfer. In this context, addition of
tertiary-structure quality assessment method such as in Baldassarre
et al. (2021) would be interesting for further developments.

Last of all, the efficient computation of SSQA scores reported in
this work suggest other applications and their integration at the
heart of sequence generative processes, such as sampling with rejec-
tion, as done here. Furthermore, it would be interesting to integrate
these scores into reward functions for Reinforcement Learning pro-
cess or loss functions for Neural Networks, in generative networks
(such as Hawkins-Hooker et al., 2020; Repecka et al., 2019) or rep-
resentation network (Alley et al., 2019; Rives et al., 2019), which is
made possible by their differentiability.
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Fig. 5. Distribution of probability to be active predicted from Random Forest classi-

fier with supervised EþDPþ PM features (Section 4.1), of 500 sequences generated

by RBM without and with rejection sampling (rejection unsupervised PM SSQA).

The numbers of putatively active sequences are much higher with rejection (green)

than without (blue)

Algorithm 2 Gibbs rejection sampling through RBM

1: function GIBBS REJECTION SAMPLING(X, N, k)

2: Pick x0 in the set of natural sequences (NAT)

3: for n 2 ½1;N� do

4: Sample x according to Algorithm 1

5: if mðx; rÞ > k accept sample, else reject it and re-

sume to line 2.
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