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The purpose of this study was to evaluate the dose differences introduced by the 
TMR 10 and the convolution dose calculation algorithms in GammaPlan version 10, 
as compared to the TMR classic algorithm in the previous versions of GammaPlan. 
Computed axial tomographic images of a polystyrene phantom and a human head 
were acquired using a GE LightSpeed VCT scanner. A treatment target with a 
prescription dose of 20 Gy to 50% isodose line was defined in the phantom or the 
head CT set. The treatment times for single collimator, single shot placements were 
calculated using the three dose calculation algorithms in GammaPlan version 10. 
Four comparative studies were conducted: i) the dose matrix position was varied 
every 10 mm along the x-, y-, z-axes of the stereotactic coordinate system inside 
the phantom and the treatment times were compared on each matrix for the three 
collimators of the Gamma Knife Perfexion and the four collimators of the 4C;  
ii) the study was repeated for the human head CT dataset; iii) the matrix position 
was varied every 20 mm in the X and the Y directions on the central slice (Z = 
100 mm) of the head CT and the shot times were compared on each matrix for the 
8 mm collimator of both units; a total of 51 matrix positions were identified for 
each unit; iv) the above comparison was repeated for the head CT transverse slices 
with Z = 20, 40, 60, 80, 120, 140, and 160 mm. A total of 271 matrix positions were 
studied. Based on the comparison of the treatment times needed to deliver 20 Gy 
at 50% isodose line, the equivalent TMR classic dose of the TMR 10 algorithm is 
roughly a constant for each collimator of the 4C unit and is 97.5%, 98.5%, 98%, and 
100% of the TMR 10 dose for the 18 mm, 14 mm, 8 mm, and the 4 mm collimators, 
respectively. The numbers for the three collimators of the Perfexion change with 
the shot positions in the range from 99% to 102% for both the phantom and the 
head CT. The minimum, maximum, and the mean values of the equivalent TMR 
classic doses of the convolution algorithm on the 271 voxels of the head CT are 
99.5%, 111.5%, 106.5% of the convolution dose for the Perfexion, and 99%, 109%, 
104.5% for the 4C unit. We identified a maximum decrease in delivered dose of 
11.5% for treatment in the superior frontal/parietal vertex region of the head CT 
for older calculations lacking inhomogeneity correction to account for the greater 
percentage of the average beam path occupied by bone. The differences in the 
inferior temporal lobe and the cerebellum/neck regions are significantly less, owing 
to the counter-balancing effects of both bone and the air cavity inhomogeneities. 
The dose differences between the TMR 10 and the TMR classic are within ± 2.5% 
for a single shot placement on both Perfexion and 4C. Dose prescriptions based on 
the experiences with the TMR classic may need to be adjusted to accommodate the 
up to 11.5% difference between the convolution and the TMR classic.
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I.	 Introduction

The Leksell GammaPlan (LGP) software package(1) (Elekta Instrument AB, Stockholm, Sweden) 
is a treatment planning platform designed for the stereotactic radiosurgery procedures using the 
Leksell Gamma Knife units.(2,3) The LGP planning system performs three-dimensional radia-
tion dose calculations and dose statistics analyses based on the head geometry of the patient 
being treated, the treatment shots planned, and the configuration of the Gamma Knife unit. 
In addition, a set of image processing tools is also included in the LGP to facilitate the target 
delineation and the interactive treatment planning process. 

Several versions of the LGP have been developed in conjunction with the Gamma Knife models 
U, B, C, 4C, and the Gamma Knife Perfexion. In the earlier versions of the LGP, the patient head is 
approximated by a semispherical 3D water phantom based on the measurements of 24 predefined 
points on the patient skull. The LGP system calculates the radiation dose at an arbitrary point 
in the patient head as the superposition of the dose contributions from all the radiation sources 
included in the treatment shots placed.(4,5)  The dose contribution from a single radiation source 
is determined from the water-based TMR classic algorithm using the strength of the cobalt-60 
source, the coordinates of the cobalt-60 source and the calculation point, the skull shape informa-
tion, and a set of predefined beam profiles for the selected collimator. The TMR classic algorithm 
is generally considered a good approximation for targets located at the center of the brain, but not 
as accurate when being applied to the peripheral and/or heterogeneous regions.

In recent years, two new dose calculation algorithms, namely the TMR 10(6) and the con-
volution algorithms,(7) were introduced into the LGP planning system version 10. The TMR 
10 algorithm is an evolution of the water-based TMR classic algorithm with updated physics 
parameters(6) from more advanced measurements and more accurate Monte Carlo simulations 
with the PENELOPE code.(8,9)  The updated physics parameters include the beam profile data 
for the existing Gamma Knife units and all the fitted parameters for single-source radiation dose 
calculation. The depth dose formalism for the Gamma Knife B & C was also slightly changed 
in the TMR 10 algorithm, to be consistent with the formalism for the Perfexion.(6) 

The development of the CT-based convolution algorithm(10,11) was driven by several objec-
tives including a more reliable way of skull shape definition, a more accurate method for scattered 
dose calculation, and a major improvement for the tissue inhomogeneity dose correction. Initial 
studies on clinical Gamma Knife treatment plans have indicated that there is a nonnegligible 
difference between the absolute dose values from the TMR classic algorithm and the Monte 
Carlo simulations.(12-14) Analyses of the potential effect of the change of the skull shape defini-
tion method in Gamma Knife radiosurgery were also undertaken.(15) 

In this work, we present an evaluation of the dose differences between the TMR classic, the 
TMR 10, and the convolution algorithm for both the Gamma Knife C models and the Perfexion 
Gamma Knife units. Advantages and disadvantages of the use of these algorithms for patient 
dose calculations are also discussed.   

 
II.	 Materials and Methods

A. 	 Configuration of the LGP version 10
The LGP version 10 was configured for a Gamma Knife Perfexion and a Gamma Knife 4C at 
the University of Pittsburgh Medical Center in 2011. The dose rates for the largest collimators of 
both units were measured using an Exradin A16 ion chamber (Standard Imaging Inc., Middleton, 
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WI) and a 16 cm diameter spherical polystyrene phantom following the TG 21 protocol.(16-17) To 
obtain the dose rates in water that are required by the planning system, a mass energy-absorption 
coefficient (μ/ρ) ratio of 1.036 was applied to the measured dose rates in polystyrene. Following 
the recommendations from the manufacturer, the output factors used were 1, 0.9, and 0.814 for 
the 16 mm, 8 mm, and 4 mm collimators of the Perfexion unit, and 1, 0.985, 0.956, and 0.881 
for the 18 mm, 14 mm, 8 mm, and 4 mm collimators of the 4C, respectively. 

In order to obtain the CT calibration curve for the convolution algorithm, a CIRS model 
062A electron density phantom (CIRS Inc., Norfolk, VA) with 11 inserts of predefined electron 
density values was scanned using a GE LightSpeed VCT scanner (GE Medical Systems Inc., 
Waukesha, WI). Two hundred axial images with a slice thickness of 1.25 mm were acquired 
for this phantom using a 120 kVp head CT protocol. Five Hounsfield numbers were taken from 
the central region of each insert and an averaged Hounsfield number was calculated. A one-
to-one correspondence between the averaged Hounsfield numbers and the predefined relative 
electron density values was then established for the scanner. Figure 1 shows the plot of the CT 
calibration curve that was created in the planning system for the GE LightSpeed VCT scanner. 
Table 1 gives the relative electron densities (relative to water) and the corresponding equivalent 
materials for the 11 inserts used to obtain the CT calibration curve.

Fig. 1.  CT density calibration curve for the GE LightSpeed VCT scanner measured using the CIRS model 062A electron 
density phantom. 

Table 1.  Relative electron densities and equivalent materials of the 11 inserts used for the CT electron density 
calibration.

	Relative Electron Density	 Equivalent Material

	 0	 Air
	 0.2	 Lung (inhale)
	 0.5	 Lung (exhale)
	 0.97	 Adipose
	 0.99	 Breast
	 1	 Water
	 1.06	 Muscle
	 1.07	 Liver
	 1.16	 Trabecular bone
	 1.61	 Dense bone
	 3.98	 Titanium rod
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B. 	 Dose calculations in a Polystyrene phantom
To study the differences between the three dose calculation algorithms in a uniform medium, 
the spherical polystyrene phantom used for the dose rate measurements was scanned using the 
same head CT protocol as for the electron density phantom. Prior to scanning, a solid polysty-
rene insert was placed in the dosimetry phantom to minimize dosimetric uncertainties caused 
by air cavities and air gaps from the ion chamber or film inserts. The 120 transverse CT slices 
acquired were imported into the LGP 10 and the stereotactic coordinate system was defined 
such that the phantom center had the coordinates of 100 mm, 100 mm, and 100 mm. The skull 
shape for the phantom was generated using the imaging skull definition method and manually 
edited with the paint brush tool. A 3D electron density map was then created for the phantom 
using the CT density calibration curve defined in the planning system. A sample transverse slice 
of the electron density map for the polystyrene phantom is shown in Fig. 2(a).

After a treatment plan was created for the Perfexion unit, a dose calculation matrix was defined 
on the CT image set with a matrix center position of 100 mm, 100 mm, and 100 mm, a grid size 
of 0.4 mm, and a dose prescription of 20 Gy to the 50% isodose line. Dose calculations were 
performed using both the TMR 10 and the convolution algorithms for a single 4 mm shot with a 
gamma angle of 90° and a shot position of 100 mm, 100 mm, and 100 mm. The resultant treatment 
times from both algorithms were then recorded along with the coordinates of the reference points 
and the equivalent doses from the TMR classic algorithm. The equivalent TMR classic dose for 
each matrix is the dose at the reference point from the TMR classic algorithm for the same machine 
configuration, the same patient geometry, and the same shot arrangement from a TMR 10 or con-
volution calculation for a certain prescription dose. This information is provided in LGP version 
10.1 for all the calculation matrices at the time of a TMR 10 or a convolution calculation.

To evaluate the differences between the three algorithms in different regions of the phantom, 
the dose matrix position and the shot position were varied concurrently every 10 millimeter 
along the x-, y-, z-axes of the stereotactic coordinate system. A total of 15 matrix positions and 
shot positions were studied on each axis by varying the coordinate values from 20 to 160. 

For a comparison of the three dose calculation algorithms with different collimators, the 
above procedure was repeated for the other six collimators of the Perfexion and the 4C units 
with grid sizes of 0.4 mm, 0.8 mm, 1.4 mm, 1.6 mm, and 1.8 mm for the 4 mm, 8 mm, 14 mm, 
16 mm, and 18 mm collimators, respectively. 

Fig. 2.  Sample transverse images of the electron density maps for (a) the polystyrene phantom and (b) the head CT. 
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C. 	 Dose calculations in a human head CT
A human head CT image set with 120 axial slices and 1.25 mm slice thickness was selected to 
perform a comparative study of the three algorithms for real patient geometry. The CT series was 
acquired using the same GE CT scanner following the same protocol as used for the phantom 
study. The procedures for the skull definition and the electron density calibration were also the 
same. A sample transverse slice of the electron density map for the head CT series is shown 
in Fig. 2(b).

In addition to the one-dimensional studies performed for the phantom, 2D and 3D compari-
sons of the dose differences between the three algorithms were also made for the head CT. For 
the 2D comparison, the transverse slice at Z = 100 mm and the 8 mm collimator from both 
machines were used. The dose calculation matrix positions and the shot positions were varied 
every 20 mm along the X and the Y directions on the transverse slice. The data points from 
the failed convolution calculations inside air or bone inhomogeneity were excluded from the 
study. A total of 51 matrix positions were identified for each machine. 

For the 3D study, the 8 mm collimators from both Gamma Knife units were used. The 2D 
comparison was repeated every 20 mm for the transverse slices ranging from Z = 20 mm to 
Z = 160 mm. The number of the valid shot positions on the eight transverse slices was 5, 30, 
45, 40, 51, 33, 31, and 36, respectively. A total of 271 matrix positions were studied. 

 
III.	 Results  

A. 	T reatment time
Figure 3(a) shows the treatment times from the TMR 10 and the convolution algorithms for the 
Perfexion 8 mm shots placed on the x-axis of the phantom and the head CT with a prescription 
dose of 20 Gy to the 50% isodose line. The treatment time from the convolution algorithm is 
consistently longer than that from the TMR 10 algorithm for the same matrix position. The 
treatment time from the same algorithm is in general larger in the central region than in the 
peripheral regions. This is consistent with the behavior of the sum of two exponential attenua-
tion functions with a fixed total attenuation depth. In Gamma Knife radiosurgery, the multiple 
radiation sources can be roughly viewed as two groups of radiation sources opposite to each 
other. The maximum attenuation of the radiation beams occurs when a spherical phantom is 
centralized and the attenuation depths from all sources are equal. 

Shown in Fig. 3(b) are the treatment times along the z-axis of the stereotactic coordinate 
system for the phantom and the head CT on the Perfexion. The treatment time increases with 
increasing Z coordinate, which is consistent with the fact that more beams are arranged to come 
from the vertex side of the collimator system in the Leksell Gamma knife units.

The curves representing the treatment times for the other collimators of the Perfexion and the 
4C units are similar in shape and are not presented here. It should be pointed out that the refer-
ence points used for dose calculation in a matrix are not necessarily the same for the TMR 10 
and the convolution algorithms. By definition, the LGP system chooses the point of maximum 
dose from each calculation matrix as the dose reference point. The maximum dose points are 
not necessarily the same even for a single collimator shot, considering the completely different 
formalism used in the two algorithms. However, our observation was that the reference point 
positions from the two calculations usually agree to within one or two pixels for the same 
matrix. The change of the dose values within one or two pixels should be small in the central 
regions of the radiation fields.
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B. 	 Dose difference between TMR 10 and TMR classic
Figure 4 compares the equivalent TMR classic doses of 20 Gy in TMR 10 for single collima-
tor shots placed at varying positions on the x-axis of the polystyrene phantom and the head 
CT. The shape of the curves for the same collimator from Fig. 4(a) (the phantom data) and 
Fig. 4(b) (the head CT data) are similar. The equivalent TMR classic dose for 20 Gy in TMR 
10 is roughly a constant for each collimator of the 4C unit and is 19.5 Gy (97.5%), 19.7 Gy 
(98.5%), 19.6 Gy (98%), and 20 Gy (100%) for the 18 mm, 14 mm, 8 mm, and 4 mm col-
limator, respectively. The corresponding values for the three collimators of the Perfexion unit 
fluctuate in the range from 19.9 Gy (99.5%) to 20.4 Gy (102%), as a result of the asymmetric 
arrangement of the radiation sources in the Perfexion and the ring-specific beam profiles used 
in the TMR 10 algorithm.

Figure 5 plots the equivalent TMR classic doses for single 8 mm shots placed on the z-axis 
from the TMR 10 algorithm for a prescription dose of 20 Gy to 50%. There is a slight increase 
in the equivalent TMR classic dose with decreasing Z coordinate on the Perfexion unit for 
both the phantom and the head CT. The curves for the other collimators are similar in shape 
and are not shown here.

Fig. 3.  Treatment times from the TMR 10 and the convolution algorithms for the Perfexion 8 mm shots with a prescription 
dose of 20 Gy to 50% isodose line: a) shots on the x-axis; b) shots on the z-axis.
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C. 	 Dose difference between convolution and TMR classic
Figure 6 compares the equivalent TMR classic doses of 20 Gy in convolution for single col-
limator shots placed at varying positions on the x-axis of the polystyrene phantom and the 
head CT. As could be expected, the variations in the equivalent TMR classic doses with the 
X coordinate are larger for both units when compared to the corresponding variations for the 
TMR 10 in Fig. 4. For the head CT, the larger variations are simply the result of taking into 
account the tissue inhomogeneity in the convolution calculation. For the phantom, the TMR 10 
treats the polystyrene phantom as a perfect water sphere, whereas the convolution algorithm 
picks up the electron density fluctuations caused by the residue air cavities and air gaps inside 
the phantom. The equivalent TMR classic doses in Fig. 6(b) fluctuate more than the doses in 
Fig. 6(a) because of a more pronounced electron density inhomogeneity in the head CT. 

Fig. 4.  Equivalent TMR classic doses for the TMR 10 algorithm for single collimator shots placed on the x-axis with a 
prescription dose of 20 Gy: a) shots placed in the phantom; b) shots placed in the head CT. 

Fig. 5.  Equivalent TMR classic doses from the TMR 10 algorithm for single 8 mm shots placed on the z-axis with a 
prescription dose of 20 Gy. 
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Figure 7 shows the equivalent TMR classic doses for single 8 mm shots placed on the z-axis 
from the convolution algorithm. An interesting phenomenon can be observed in the curves for 
the head CT on both units. As the Z coordinate decreases from the central point at 100 mm, the 
equivalent TMR classic dose starts to increase gradually and reach a maximum at Z = 20 mm, 
where the treatment shots are in the superior frontal/parietal vertex region. This behavior is not 
seen in the phantom data in Fig. 7 and the corresponding curves for the TMR 10 in Fig. 5.

The large difference between the convolution and the TMR classic algorithms for treatment 
shots in the superior frontal/parietal vertex region can be attributed to the high radiation attenu-
ation in the dense skull bone. As the treatment shots approach the frontal/parietal bone, the total 
attenuation depths of the radiation beams (especially for the beams from the anterior side of 
the Gamma Knife units) in the patient head decreases. The percentage of the attenuation depth 
in the frontal bone increases. The contribution from the high radiation attenuation in the dense 
bone starts to play an important role in the overall dose calculation and could cause an 11.5% 
dose difference for Perfexion (7.5% for 4C) between the convolution and the TMR classic.

Figure 8 shows the equivalent TMR classic doses for the 8 mm shots placed on the Z  = 
100 mm slice of the head CT with a prescription dose of 20 Gy. The two-dimensional dose 
maps (20 mm × 20 mm pixel size) for the Perfexion (Fig. 8(a)) and the 4C (Fig. 8(b)) follow 
a similar pattern. The white spots around the corners of the pictures are regions outside the 
patient skull. The equivalent TMR classic dose is in general smaller in the central region of 
the slice than in the peripheral region, even though fluctuations caused by the local bone or air 
inhomogeneities can be observed. For the same matrix position, the equivalent TMR classic 
dose from the 4C is in general smaller than that from the Perfexion. 

Fig. 6.  Equivalent TMR classic doses from the convolution algorithm for single collimator shots placed on the x-axis 
with a prescription dose of 20 Gy: a) shots in the phantom; b) shots in the head CT.
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Figure 9 plots the histogram of the equivalent TMR classic doses for the convolution algo-
rithm for the 8 mm shots placed on the 2 cm × 2 cm × 2 cm voxels of the head CT with a pre-
scription dose of 20 Gy. A total of 271 shots were included in the histogram analysis for each 

Fig. 7.  Equivalent TMR classic doses from the convolution algorithm for single 8 mm shots placed on the z-axis with a 
prescription dose of 20 Gy.

Fig. 8.  Equivalent TMR classic doses from the convolution algorithm for single 8 mm shots placed on the Z = 100 cm 
slice of the head CT with a prescription dose of 20 Gy: a) shots from the Perfexion; b) shots from the 4C.

Fig. 9.  Histogram of the equivalent TMR classic doses for the convolution algorithm for single 8 mm shot placed on 
the 20 mm × 20 mm × 20 mm voxels of the head CT with a prescription dose of 20 Gy: a) shots from the Perfexion;  
b) shots from the 4C.
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unit. The minimum, maximum, and the mean of the equivalent TMR classic doses are 19.9 Gy 
(99.5%), 22.3 Gy (111.5%), and 21.3 Gy (106.5%) for the Perfexion. The corresponding values 
for the 4C units are 19.8 Gy (99%), 21.8 Gy (109%), and 20.9 Gy (104.5%), respectively. The 
voxels of high doses are usually seen in the superior frontal/parietal vertex region or close to 
bone inhomogeneity. The low-dose regions are primarily in the inferior temporal lobe and the 
cerebellum/neck regions or around air cavities.

 
IV.	 DISCUSSION

The dose prescription/calculation process is an important part of a Gamma Knife radiosurgery 
procedure. As is the case with other modalities of radiation therapy, the dose calculation algo-
rithms and associated software packages in Gamma Knife radiosurgery have been updated 
periodically.

The development of the water-based TMR classic algorithm for Gamma Knife radiosurgery 
dose calculation stemmed from the unique properties of the Leksell Gamma Knife machines, 
including the small dimension of the radiation fields and the mono-energetic nature of the 
cobalt-60 sources. The water-based TMR classic algorithm has been widely used, to date, with 
proven clinical outcomes, which provides a solid basis for future improvements.

The TMR 10 algorithm was introduced as an improvement over the TMR classic with updated 
physics parameters and dose calculation models. In this study, no clinically significant differ-
ences were observed between the TMR 10 and the TMR classic calculations for a polystyrene 
phantom and a human head CT for both the Perfexion and the 4C Gamma Knife units. This is 
consistent with the observations from other investigators.(6)  

The results from the studies on the convolution algorithm can be interpreted in three dif-
ferent ways. First, a maximum dose difference of 11.5% has been found in this study between 
the convolution and the TMR classic algorithms for the Perfexion treatment shots placed in 
the superior frontal/parietal vertex regions of a human head CT (9% for the 4C units). The 
prescription doses for the treatments of the diseases in these regions with the TMR algorithms 
may need to be adjusted higher to account for the high attenuations from the vertex bones.

Second, the dose difference between the convolution and the TMR classic algorithms varies 
from -0.5% to 11.5% for the Perfexion (-1% to 9% for the 4C), depending on the location of 
the treatment shots placed in the head CT used in this study. This indicates that a considerable 
tissue inhomogeneity effect might be associated with the Gamma Knife treatments around 
dense bones or air cavities.(13) Therefore, implementation of the convolution algorithm might 
be necessary for optimal results in routine Gamma Knife treatments. 

Third, an average dose difference of 6.5% has been found in this study for the Perfexion 
(4.5% for the 4C) between the convolution and the TMR classic algorithm for the 271 treat-
ment shots placed on the head CT. Implementation of the convolution algorithm for Gamma 
Knife radiosurgery treatment will thus need to be followed with careful monitoring of outcome 
studies. Even though the convolution algorithm might be more advanced and accurate, histori-
cally the dose prescription guidelines for Gamma Knife radiosurgery have evolved based on 
the outcome studies associated with the TMR classic dose calculation algorithm.

The results obtained for the Perfexion and the 4C units in this study are similar in nature, 
even though quantitatively there are some small differences. It should be noted that the present 
work does not employ any treatment plans with multiple shots or composite shots. Furthermore, 
only a single set of head CT is used in the model study. For an in-depth understanding of the 
differences between the three dose calculation algorithms, systematic studies on the clinical 
treatment plans for a variety of disease sites will be needed in the future. 
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V.	 Conclusions

In this paper we report the results from a preliminary study of the dose differences between the 
three dose calculation algorithms in Leksell GammaPlan version 10 performed using a poly-
styrene phantom and a human head CT. The difference between the TMR 10 and TMR classic 
are demonstrated to be within ± 2.5% for all the collimators of a Perfexion and a 4C unit. For 
calculations performed on the 271 voxels of a head CT, the convolution algorithm yields a mini-
mum, maximum, and mean dose values that is 99.5%, 111.5%, and 106.5% of the TMR classic 
dose. The corresponding values for the 4C unit are 99%, 109%, and 104.5%, respectively. 

A maximum decrease of 11.5% in delivered dose was observed for the treatment in the supe-
rior frontal/parietal vertex region using the TMR classic calculation. The TMR classic calculation 
does not incorporate tissue inhomogeneity correction to account for the greater percentage of 
the average beam path travelled in bone. The differences in the inferior temporal lobe and the 
cerebellum/neck regions are significantly less, owing to the counter-balancing effects of both 
bone and the air cavity inhomogeneities. Dose prescriptions based on the experiences with the 
TMR classic algorithm may need to be adjusted to accommodate the up to 11.5% difference 
between the convolution and the TMR classic algorithms.
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