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Abstract

Motivation: The rapid proliferation of single-cell RNA-sequencing (scRNA-Seq) technologies has spurred the devel-
opment of diverse computational approaches to detect transcriptionally coherent populations. While the complexity
of the algorithms for detecting heterogeneity has increased, most require significant user-tuning, are heavily reliant
on dimension reduction techniques and are not scalable to ultra-large datasets. We previously described a multi-
step algorithm, Iterative Clustering and Guide-gene Selection (ICGS), which applies intra-gene correlation and hy-
brid clustering to uniquely resolve novel transcriptionally coherent cell populations from an intuitive graphical user
interface.

Results: We describe a new iteration of ICGS that outperforms state-of-the-art scRNA-Seq detection workflows
when applied to well-established benchmarks. This approach combines multiple complementary subtype detection
methods (HOPACH, sparse non-negative matrix factorization, cluster ‘fitness’, support vector machine) to resolve
rare and common cell-states, while minimizing differences due to donor or batch effects. Using data from multiple
cell atlases, we show that the PageRank algorithm effectively downsamples ultra-large scRNA-Seq datasets, without
losing extremely rare or transcriptionally similar yet distinct cell types and while recovering novel transcriptionally
distinct cell populations. We believe this new approach holds tremendous promise in reproducibly resolving hidden
cell populations in complex datasets.

Availability and implementation: ICGS2 is implemented in Python. The source code and documentation are avail-
able at http://altanalyze.org.

Contact: nathan.salomonis@cchmc.org

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Recent advances in single-cell RNA-sequencing (scRNA-Seq) pro-
vide exciting new opportunities to understand cellular and molecu-
lar diversity in healthy tissues and disease. With the rapid growth in
scRNA-Seq, numerous computational applications have been devel-
oped that address diverse technical challenges such as measurement
noise/accuracy, data sparsity and high dimensionality to identify cell
heterogeneity within potentially complex cell populations. Most
software applications consist of a shared set of steps, including: (i)
gene filtering, (ii) expression normalization, (iii) dimension reduc-
tion and (iv) clustering (Andrews and Hemberg, 2018). While the
specific algorithms and options used for these steps varies

significantly among applications, most approaches rely heavily on
dimension reduction techniques, such as PCA, t-SNE and UMAP to
select features and define cell populations. As noted by others
(Andrews and Hemberg, 2018), the reliance on such techniques has
several limitations, including insensitivity to non-linear sources of
variance (e.g. when defined using PCA), loss of global structure due
to a focus on local information (t-SNE) (Maaten and Hinton, 2008)
and inability to scale to high-dimensions (UMAP) (McInnes and
Healy, 2018), resulting in a significant loss of information during
projection.

While a number of methods exists to identify clusters from large
lower dimensional projections, including DBSCAN, K-means, affin-
ity propagation, Louvain clustering and spectral clustering, these as
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well as other approaches require proper hyperparameter tuning.
Identifying these parameters is non-intuitive and often requires mul-
tiple rounds of analysis. To address this concern, consensus-based
approaches that consider the results from multiple runs with differ-
ent parameters have been developed, such as SC3 (Kiselev et al.,
2017); however, the ultimate selection of the parameters remains
user dependent and is not automated.

A separate but related challenge is the analysis of cell atlases,
with potentially hundreds of thousands of cells and samples col-
lected from different donors. Multiple joint-alignment methods have
been developed to address such challenges, including Seurat3, conos,
Scanorama, Biscuit, scVI, LIGER, scMerge and Harmony (Azizi
et al., 2018; Hie et al., 2019; Korsunsky et al., 2019; Lin et al.,
2019; Lopez et al., 2018; Welch et al., 2019). While such tools can
reduce the contribution of technical artifacts, further minimizing the
impact of both known and hidden covariates remains a continuing
challenge in the unsupervised analysis of single-cell genomics data.

We previously described an unsupervised computational ap-
proach called Iterative Clustering and Guide-gene Selection (ICGS),
designed to discover both discrete and transitional cell populations
from diverse scRNA-Seq platforms (Olsson et al., 2016). ICGS itera-
tively identifies core variable gene expression programs from a cell/
gene-expression matrix through multiple rounds of hybrid clustering
(HOPACH; van der Laan and Pollard, 2003), selection of maximal-
ly informative guide-genes (transcription factor biased) and expres-
sion correlation. While ICGS was found to identify cell populations
that could not be detected from alternative workflows (Churko
et al., 2018; Olsson et al., 2016), this approach has several limita-
tions that hinder its use in large-scale studies of tens or hundreds of
thousands of cells. Notably, HOPACH clustering is computationally
expensive with increasing dataset size, is not effective at partitioning
datasets with dozens of discrete cell populations and cannot effect-
ively distinguish between technical artifacts (e.g. doublet versus real
cell clusters).

Here, we present the next iteration of ICGS. ICGS2 incorporates
additional downstream methods to improve subtype detection, scale
to extremely large and complex datasets and automate parameter es-
timation. To analyze extremely large datasets, while retaining rare
cell populations, ICGS2 applies an intelligent sampling-based strat-
egy for large scRNA-Seq datasets to capture the most informative
cells for downstream unsupervised analyses. To improve the identifi-
cation of both broad and rare cell clusters, ICGS applies a secondary
sparse-non-negative matrix factorization (NMF) analysis (Kim and
Park, 2007), automatically estimates k, excludes clusters with no
uniquely expressed genes (cluster fitness) and assigns all cells to
identified cell populations using support vector machine (SVM) clas-
sification (Cortes and Vapnik, 1995). This workflow is implemented
as an easy-to-use automated pipeline through integration with the
software AltAnalyze (Emig et al., 2010). This workflow can be run
from the command-line or an intuitive graphical user interface and
includes a large repertoire of user-friendly integrated downstream
analysis tools (e.g. cell-type prediction, differential expression, path-
way analysis). We demonstrate improved performance of ICGS2
when compared to diverse alternative algorithms applied to scRNA-
Seq datasets of varying size and complexity (e.g. donor-bias).
Importantly, this approach remains scalable to ultra-large datasets
(memory efficient), without sacrificing sensitivity.

2 Materials and methods

2.1 Algorithm design
The software ICGS2 has been developed as part of an open-source
python toolkit, AltAnalyze, with extensive documentation on its
use, algorithms and optional user-defined parameters (https://altana
lyze.readthedocs.io/en/latest/). ICGS2 identifies cell clusters through
a five-step process: (i) PageRank-downsampling of cells (optional),
(ii) feature selection (ICGS2), (iii) dimension reduction and cluster-
ing [sparse-NMF (SNMF)], (iv) cluster refinement (MarkerFinder al-
gorithm) and (v) cluster reassignments (SVM) (Fig. 1A). AltAnalyze
includes support for multiple input formats including: (i) an

expression file, such as raw counts or counts-normalized, non-log or
log2, with genes as rows and samples as columns, (ii) 10� Genomics
(version 1.0–3.0) produced filtered sparse matrix results (.mtx,

HDF5), (ii) genome-aligned BAM files or (iv) FASTQ files for indi-
vidual cells. A tab-delimited gene-counts matrix can be normalized

within the software or prior to import using the module
CountsNormalize. The principle steps of this program are:

2.1.1 Step 1: downsampling with PageRank (recommended for

datasets with > 2500 cells or user-defined)

In this step, cells within a scRNA-Seq dataset are downsampled, to
allow ICGS2 to run with a small memory footprint on datasets of
varying sizes. For datasets of >2500 cells by default (user defined),

PageRank alone is performed on a k-nearest neighbor graph of the
cells, while for datasets of over 15 000 cells, initial downsampling is

performed using a community clustering approach followed by
PageRank:

a. Selection of variable genes for downsampling: ICGS2 imports an

input expression file processed from AltAnalyze (automatically

normalized by cell total read counts and log2 transformation,

for protein-coding genes and initial ICGS variance filtered) and

identifies the top 500 genes with the highest dispersion (user

defined). Excluded from this set are mitochondrial genome, L

and S ribosomal genes and immunoglobins to minimize batch

and donor effects (default option). Dispersion for each gene is

calculated as the ratio of the variance divided by its mean. The

resulting PageRank input file is filtered for these genes.

b. Graph construction: A graph representation of the dataset (lim-

ited to the filtered genes from Step 1a) is created by using the

cells as vertices and connecting cells with edges to the k-nearest

neighbors (k¼10 default) of each cell. The graph is created using

the networkx python package and identification of the k-nearest
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Fig. 1. Performance of ICGS2 against diverse alternative unsupervised scRNA-Seq

algorithms. (A) Overview of the ICGS2 workflow for single-cell RNA-Seq popula-

tion prediction. These steps include: (i) PageRank-downsampling (optional), (ii) fea-

ture selection (ICGS), (iii) dimension reduction (SNMF), (iv) cluster refinement/

exclusion (‘fitness’) and (v) cluster assignments (linear SVM). (B) Comparison of

ICGS2 to previously evaluated algorithms and benchmarking datasets of varying

size and complexity to detect prior-defined cell populations. Performance of each

method was evaluated by comparing the author annotated cell-to-cluster assign-

ments to those obtained by each algorithm using the ARI (Section 2). (C)

Comparison of ICGS2 to the top performing methods for Tabula Muris tissue

scRNA-Seq (SMARTSeq2) from panel B, using an aggregated ARI to account for

contributing composite sub-clusters (see Supplementary Fig. S1B for corresponding

ARI values and in Supplementary Table S1 for cluster numbers)
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neighbors is performed using the python package Annoy

(Aumüller et al., 2020).

c. PageRank: Once the graph is generated, a score is calculated for

each cell based on PageRank score (networkx python library).

The Google PageRank algorithm (Page et al., 1999) is a graph-

based algorithm, originally designed to identify the most fre-

quently visited websites. Since the graph is generated by connect-

ing each cell to only its nearest 10 cells, cells from smaller

populations can have high PageRank scores and thus be repre-

sented in the sampling. Thus, the approach prioritizes the selec-

tion of interspersed nodes in the larger graph, with minimum

representation bias. PageRank has previously been evaluated for

graph sampling and shown to perform comparatively better

than other approaches (Leskovec and Faloutsos, 2006). In

ICGS2, the top 2500 cells (by default) with the highest

PageRank scores are selected and used for the remaining analysis

(steps 2–5). For datasets of millions of cells, this default thresh-

old would likely need to be increased by the user to accommo-

date potentially hundreds of cell types (downsample option).

d. Louvain-based downsampling: For very large scRNA-Seq data-

sets (n>15 000 cells), an initial preliminary downsampling is

performed using community detection via Louvain clustering

(community python library), after graph construction and prior

to PageRank.

Louvain-based downsampling is performed to reduce the cell
space for PageRank (PageRank is not sufficiently scalable to ultra-
large datasets). Louvain Clustering has become a standard approach
to perform clustering single-cell datasets. Several tools, such as
Monocle3 (Cao et al., 2019), Seurat (Butler et al., 2018) and Scanpy
(Wolf et al., 2018), use the approach as default. In ICGS2, Louvain
clustering is performed with the lowest possible resolution (r¼0) to
find maximal clusters (smallest communities). This value indicates
at which level to cut the clustering dendrogram, with 0 resulting in
the most granular clusters. This approach helps sample an equal
number of representative cells for rare and extremely large cell pop-
ulations. For each community identified using Louvain clustering, m
representative cells that have the smallest mean Euclidean distance
to all other cells in that community (most central) are selected as
representative cells of that community. The most representative cell
for a community is defined as

xrepresentative ¼ argminy2fx1 ;x2 ;...:xcg
Xc

i¼1

d y; xið Þ; (1)

where x1; x2; . . . :xc are the cells of a community, c is the total num-
ber of cells in the community and d is the distance function
(Euclidean). The number of cells to select as representatives for each
community is defined from the maximum number of cells to initially
downsample to (s), the total number of communities detected (n)
and the number of cells in each community (ci). The total number of
representative cells selected for community i is given by

mi¼argmin(ci,
s
n), for i¼1,2,3,. . .n, (2)

where s¼10 000 cells by default (downsample_cutoff�4, where

downsample_cutoff¼2500 cells by default). In effect, this process

leads to selecting (s/n) representatives for each community, ex-

cept for those communities with fewer than the average commu-

nity size. From these 10 000 downsampled cells (variable based

on downsample_cutoff), PageRank is used to further downsam-

ple (2500 cells by default).

2.1.2 Step 2: feature selection

While feature selection in ICGS2 is the same as in the original ICGS,
the associated thresholds are now automatically determined,

including the correlation cutoff appropriate for the dataset. In brief,
ICGS identifies correlated gene modules through pairwise correla-
tions of variable genes [Pearson correlation coefficient (rho) above a
user supplied threshold (default¼0.2)], followed by multiple rounds
of HOPACH clustering of genes and cells (the Guide3 file is gener-
ated in the final round of ICGS clustering) and determination of rep-
resentative marker genes (guide-genes) for supervised correlation
analysis. Guide-gene selection enables the exclusion of cell-cycle
gene expression modules by exclusion of guide-associated cell-cycle
genes prior to supervised correlation of those guide-genes. ICGS has
shown to improve the delineation of rare transcriptionally distinct
populations while minimizing ‘batch’ or donor-bias through the se-
lection of highly coherent gene expression clusters derived through
intra-correlation of genes (Lu et al., 2018; Olsson et al., 2016).
ICGS2 begins with a default Pearson rho threshold of 0.2 for the
identification of correlated genes; however, if the number of initial
correlated genes is >5000, the rho cutoff is automatically incre-
mented by 0.1 and the correlation step is reiterated until this cutoff
is met. By default, only protein-coding genes are considered with ex-
clusion of mitochondrial genome, L and S ribosomal genes. 10�
Genomics data are automatically imported and normalized [counts
per gene divided by the total counts per barcode multiplied by a
10 000�counts per ten thousand (CPTT)].

2.1.3 Step 3: dimension reduction with SNMF

To improve the delineation of cell clusters following HOPACH clus-
tering in ICGS, SNMF is applied to the clustered cell data to im-
prove population detection. SNMF uses an L1-norm minimization
and is solved using a fast non-negativity constrained least squares al-
gorithm (Kim and Park, 2007). This approach is frequently used for
clustering non-negative sparse datasets. To obtain consistent results
across multiple runs, the initialization is performed using the stand-
ard approach, non-negative double singular value decomposition
(Boutsidis and Gallopoulos, 2008). The Guide3 results from ICGS
(‘ICGS’ output directory) are produced as previously described
(HOPACH output from the last step of the guide-gene correlation
analysis) (Olsson et al., 2016). To estimate the rank of the matrix
(i.e. clusters) for SNMF, the ICGS Guide3 matrix is z-score normal-
ized and its eigenvalues are calculated. The number of clusters is
estimated as 2�k, where k is determined by the number of eigenval-
ues that are significantly different with P<0.001 from the Tracy–
Widom distribution (Kiselev et al., 2017) whose mean is
ð
ffiffiffiffiffiffiffiffiffiffiffi
g� 1

p
þ

ffiffiffi
c
p

)2 and standard deviation is:

ffiffiffiffiffiffiffiffiffiffiffi
g� 1

p
þ

ffiffiffi
c
p� �

� 1ffiffiffiffiffiffiffiffiffiffiffi
g� 1

p þ 1ffiffiffi
c
p

 !1
3

; (3)

where g is the number of genes and c is the number of cells (Kiselev
et al., 2017).

Dimension reduction is performed on the ICGS Guide3 results
using SNMF, which is available in the ‘nimfa’ python package.
Given an input matrix c�g where c is the number of cells and g is
the number of genes, the SNMF factorization returns two matrices:
the basis matrix, W with the dimensions c�r, where c is the number
of cells and r is the number of ranks and the coefficient H matrix
with the dimensions g�r, where g is the number of genes and r is the
number of ranks. For each cell, its provisional assignment is based
on its largest contribution in W. All the parameters are set to default
as per the package except the rank.

2.1.4 Step 4: marker gene selection (cluster fitness)

In some cases, the clusters identified in Step 3 will be weakly defined
by unique gene expression. To identify rigorously defined cell clus-
ters with unique gene expression for downstream cell-cluster assign-
ment (all cells, not just downsampled), ICGS2 applies the
MarkerFinder algorithm, which is a component of AltAnalyze
(Olsson et al., 2016). MarkerFinder identifies genes that are posi-
tively correlated with an idealized cluster-specific expression profile
(1 or 0). For each SNMF cluster, a reference is created where cells
belonging to the group are assigned 1 and the remaining cells are
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assigned 0. Each gene is correlated to the references and assigned to
a particular cluster based on the highest Pearson correlation (rho).
Using the initial correlation cutoff identified for ICGS pipeline,
SNMF cell clusters with fewer than two genes above the supplied
rho threshold are excluded from downstream analyses. As such,
centroids will be derived for only clusters with unique gene expres-
sion for supervised assignment to those final clusters. The Top 60
Pearson correlated genes for each SNMF cluster with a rho >0.3 are
considered for the remaining SNMF groups. As such, this method
addresses the vital unmet need to exclude clusters that specifically
result from doublet cell clusters with no uniquely expressed genes.

2.1.5 Step 5: cell-cluster assignment (linear SVC)

(i) Using the marker genes identified for sufficiently fit clusters, clus-
ter centroids are determined based on the cells assigned to the specif-
ic SNMF clusters. Next, a linear SVM model with a linear kernel is
constructed. (ii) The SVM prediction model is applied to all the cells
in the dataset and reclassified based on the training models. ICGS2
uses the linear SVC option in scikit-learn (default parameters).
When evaluated, SVM has shown to perform well for single-cell
datasets (Abdelaal et al., 2019).

2.2 User parameters
By default, ICGS2 includes built-in automated parameter estimation
for its correlation cutoff (ICGS and MarkerFinder), estimation of
number of clusters (rank estimation for SNMF) and number of cells
to downsample for PageRank. These defaults can be explicitly set by
the user to force the software to identify more or fewer clusters/het-
erogeneity. Additionally, ICGS has default options which can be
modified by the user including: (i) intra-gene variability ‘fold’-
threshold (Step 2, ICGS), (ii) protein-coding gene filter (Step 2,
default¼yes), (iii) exclusion of cell-cycle effects, (iv) HOPACH clus-
tering metric for columns (Step 2, default¼Cosine; other options are
Euclidean and correlation), (v) number of cells to downsample to
(Step 1, default¼2500) and (vi) exclude outlier cells (default¼no;
other options are yes and the minimum number of genes expressed
with a CPTT >1 (default�500). For evaluation of these methods,
the software defaults have been used.

2.3 Cell-type prediction
ICGS2 automatically performs a gene-set enrichment analysis on
each cell population marker gene cluster using the software GO-
Elite (Zambon et al., 2012) (see Fig. 4A). This database includes
marker genes for tissues and purified cell types (Olsson et al., 2016)
and those previously curated from diverse published scRNA-Seq
studies [e.g. Mouse Cell Atlas, Human Cell Atlas (HCA), fetal devel-
opment]. Cell-type predictions are displayed on the resulting UMAP
plot.

2.4 Software outputs
ICGS2 results include marker gene heatmaps with likely predicted
cell types (downsampled and all cells), UMAP projection, unique
marker genes associated with each cell population and ranks (text
file), SVM scores (text file) and cell-to-cluster (text file) associations
within the ICGS-NMF and NMF-SVM folders. Secondary results in-
clude predicted cell-population labels (GO-Elite), differential ex-
pression results between clusters, protein–protein and protein–DNA
predicted interactions among these genes (network plots), QC plots,
cellHarmony cell-type predictions (DePasquale et al., 2019) and
GO-Elite pathway/ontology/gene-set enrichments by default
(Zambon et al., 2012).

2.5 Benchmarking
To evaluate the performance of ICGS2, nine datasets were consid-
ered (Supplementary Methods). We compared ICGS2 clustering
results to the cell-population labels determined by the authors of the
different datasets tested. We use the Adjusted Rand Index (ARI)
(Hubert and Arabie, 1985) which has been used previously bench-
mark other unsupervised scRNA-Seq subtype prediction algorithms.

To maximize the ARI score for each approach, we calculated an ag-
gregate ARI where if multiple clusters were predicted for a single ref-
erence population (high specificity >0.75), these clusters were

combined prior to scoring, using a custom python script. The speci-
ficity for a tested cluster is given as

Specificity si for a given jð Þ ¼ Number of cells overlap in i and j

Number of cells in i
� 100;

(4)

where i represents the tested algorithm’s cluster and j is a ground
truth cluster tested against. A detailed description of all benchmark
datasets, parameters for algorithms tested (ICG2, Seurat3, SC3,

Monocle3, CellSIUS) and the simple random sampling (SRS) pro-
cedure is provided in Supplementary Methods. Associated ICGS2

clustering results, input data files can be obtained at: https://www.
synapse.org/#!Synapse:syn18659335.

3 Results

To improve the prediction of discrete cell populations from diverse
possible single-cell RNA-Seq datasets, we developed a significantly

improved iteration of our previously described software ICGS
(Olsson et al., 2016). These new methods were built on-top of ICGS

rather than creating a new method from scratch, as this software has
several potential fundamental advantages over existing approaches.
These advantages include ease-of-use (graphical and non-graphical

user interfaces), a lack of reliance on dimension reduction to identify
initial cellular and gene expression heterogeneity (guide-gene-based

discovery), automated data visualization outputs (heatmap, UMAP),
methods for cell-type prediction and embedded pathway/network
analyses. To improve the delineation of rare transcriptional cell pop-

ulations, we have augmented the core ICGS algorithms with rigor-
ous methods for determining biologically valid clusters (SNMF,

SVC, cluster fitness), automated cluster number determination,
introduced a new method for accurate downsampling (e.g.
PageRank) for large scRNA-Seq datasets, added new methods for

data visualization (UMAP) and significantly updated the original
cell-type marker gene database (Fig. 1A and Section 2.5). These
methods were designed to increase the sensitivity of ICGS to identify

important rare cell populations in datasets with potentially hundreds
of thousands of cells.

3.1 ICGS2 has improved performance over alternative

algorithms for established benchmarks
To assess the performance of the full ICGS2 workflow in compari-
son to its individual components (ICGS version 1 and ICGS with
NMF alone), we evaluated each against multiple silver-standard ref-

erence datasets. The datasets Zeisel et al. (2015), Pollen et al.
(2014), Usoskin et al. (2015) and Treutlein et al. (2014) were
selected particularly for their diversity of size and number of clus-

ters. The ARI method was used to evaluate cluster similarity against
the author provided labels, considered here as ground state truth. As

a first test, we note that for all four datasets, ICGS2 had improved
ARI scores over each of its intermediate outputs (Supplementary
Fig. S1A).

To compare ICGS2 to alternative unsupervised approaches, we
considered previously obtained ARI scores on these same evaluated

datasets from the software SINCERA (Guo et al., 2015), SNN-Cliq
(Xu and Su, 2015) and t-SNEþK-means and pcaReduce (Kiselev

et al., 2017). New versions of SC3 (version 1.8) (Kiselev et al.,
2017) and Seurat (version 3) (Butler et al., 2018) were further substi-
tuted for prior benchmarked versions of these tools. Comparison of

these ARI measurements finds that ICGS2 collectively outperforms
all other approaches tested for these small and medium sized
scRNA-Seq datasets (Fig. 1B).
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3.2 Optimized population discovery from large scRNA-

Seq datasets
ICGS2 is dependent on HOPACH clustering and SNMF which are
computationally expensive with increasing dataset size. As such, it is
not immediately applicable to ultra-large datasets (n>50 000 cells).
Hence, we implemented a new method for intelligent downsampling
of scRNA-Seq data, prior to SVM classification of the entirety of
cells in a dataset. While approaches such as SC3 apply random
downsampling, this procedure is likely to miss rare cell populations
or require a large sampling fraction. Alternatively, a recent down-
sampling single-cell method (BigScale) applies a k-nearest neighbor
approach that is effective at preserving heterogeneity in large
scRNA-Seq datasets, but requires specifying the number of nearest
neighbors a priori (Iacono et al., 2018). To address this challenge,
ICGS2 applies the Google PageRank algorithm to identify the top
2500 representatives cell profiles (by default) for large scRNA-Seq
datasets. We evaluated the performance of the PageRank-based
downsampling approach with ICGS2 using three medium sized
datasets with prior curated clusters from the Tabula Muris project
(Tabula Muris Consortium, 2018): tongue (n¼5448 cells), lung
(n¼7538 cells) and brain (n¼3231 cells). ICGS2 produced results
in these comparisons that were comparable to Seurat3, but
improved over SC3 (Supplementary Fig. S1B). As the observed ARI
scores were relatively low for all three datasets, we further maxi-
mized the ARI score using an aggregate ARI which produced gener-
ally similar rankings with improved overall performance (Fig. 1C
and Section 2).

3.3 Identification of distinct hematopoietic subtypes in

the HCA
We recently performed a comprehensive analysis of eight independ-
ent donor bone marrow scRNA-Seq samples collected and profiled
from HCA initiative (Hay et al., 2018). This analysis defined 35 dis-
tinct hematopoietic cell populations from over 100 000 cells.
Although the workflow applied in this analysis relied on ICGS ver-
sion 1, ICGS was run independently on the cells from each eight
donors individually, prior to those results being aggregated and used
as references for cell alignment using the software cellHarmony
(DePasquale et al., 2019). This analysis produced both a combined
dataset with all mature and progenitor cells and a separate analysis
in which selectively defined and refined populations in presumptive
bone marrow progenitors (BMPs) (11 548 CD34þ cells). We con-
sider these predictions as additional ‘silver’ standards, as these popu-
lations were independently verified using prior sorted-population
transcriptomic references, prior-defined cell-type marker genes and
largely exclude donor-driven effects (Hay et al., 2018). When com-
paring PageRank-downsampling of the selected 2500 cells from this
dataset, the percentage of cells retained for each known group was
consistently �17–26% of cells (22% total cells downsampled in the
dataset) (Fig. 2A). Further, the results of the original ICGS2 and
downsampled ICGS2 were highly concordant, with an aggregate
ARI of 86% (ICGS2 downsampled compared to ICGS2 for all cells).
When compared with SC3, Monocle3 (Cao et al., 2019) and
Seurat3 with multiple-donor sample integration, ICGS2 still had a
higher or equivalent aggregated and non-aggregated ARI than these
alternative methods (Fig. 2B and Supplementary Fig. S2A).

While none of the evaluated scRNA-Seq algorithms were able to
identify several transcriptionally distinct clusters [two separate
Monocytic Dendritic Precursor populations, Hematopoietic Stem
Cell (HSC) in cycle versus HSC], both downsampled and all-cell
ICGS2 analyses selectively identified common lymphoid progenitors
and lymphoid-primed multipotent progenitors not identified by the
other algorithms. ICGS2 further found additional granularity in the
original annotated presumptive multi-lineage progenitor (Multi-Lin)
cells (Fig. 2C–E and Supplementary Fig. S2B and C). While these
Multi-Lin sub-clusters were also not identified using a specialized
approach for rare sub-clusters identification (CellSIUS, see
Supplementary Methods), this delineation is supported by unique
gene expression present in these subsets with high expression of

CSF3R and SMIM24 (c8), C1QTNF4 and CSF1R (c10) or cell-cycle
genes (TOP2A and MKI67, c21) (Fig. 2E).

3.4 ICGS2 uniquely identifies novel sub-populations in

ultra-large datasets with minimal donor effects
We next compared the performance of ICGS2 in the complete HCA
bone marrow dataset (n¼101 618) against other approaches com-
patible with ultra-large scRNA-Seq datasets. For datasets of
>15 000, Louvain clustering is performed on the k-nearest neighbor
graph with the minimum resolution to more efficiently downsample
the data to around 10 000 cells, prior to performing PageRank to
identify the final top 2500 representative cells by default. Following
downsampling, at least six representative cells per population were
selected by this downsampling method for all 35 previously defined
bone marrow cell populations (Supplementary Fig. S3A). ICGS2
was able to effectively sample cells from all 35 cell populations with
2500 selected cells as compared to SRS, which required �15 000
sampled cells (Fig. 3A and Supplementary Methods). To compare its
ability to detect cell populations, ICGS2 was again evaluated rela-
tive to Seurat, Monocle3 and SC3, which have previously shown to
effectively handle large scRNA-Seq datasets. To assess the contribu-
tion of donor-driven effects in the clusters obtained, Seurat3 was
run with all samples combined (no batch effects correction) or by
considering different donors using Seurat integration or canonical
correlation analyses (Multi-CCA). While runtime on this dataset
ranged from 80 min (Monocle3) to 7.5 h (Seurat3), ICGS2 proved to
be the most memory efficient method, while remaining relatively
fast (2 h) (Table 1). We attempted to run SC3, however, this ap-
proach reached its memory limit with 256 GB of RAM (estimate k-
step) (see Section 2). BigScale was excluded from evaluation as it is
currently compatible only with Windows operating systems with a
Matlab license required. Even with downsampling, the aggregated
ARI of ICGS2 was comparable to that of Seurat3 (with and without
integration) and improved over Seurat-Multi-CCA and Monocle3
(Fig. 3B and Supplementary Fig. S3B). This included the detection of
exceedingly rare populations by ICGS2 (e.g. CD34þ eosinophil,
stromal and platelet). In addition, ICGS2 and Seurat3 with integra-
tion identified clusters that were least confounded by donor effects,
including those identified by Seurat-Multi-CCA (Fig. 3C). In
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addition to the previously described bone marrow cell populations,
ICGS2 uniquely identified distinctive additional subtypes of T cells,
Erythroblasts and Dendritic cells (DC) which were not previously
identified (Fig. 3D and E and Supplementary Fig. S3C–G). For ex-
ample, each DC cell cluster was found to expresses unique marker
genes with established roles in functionally distinct DC subsets (plas-
macytoid, maturing CD1cþ, CD1cþ and CD8þ) (Supplementary
Fig. S3H–K) (Cao et al., 2006; Eggink et al., 2018; Heger et al.,
2018; Orabona et al., 2006; Yan et al., 2016). It is important to
note that most approaches failed to sufficiently define all of the dis-
crete CD34þ cell populations in the entire HCA dataset that were
clearly resolved from the independent analysis of these cells, with
Seurat3 (integration) also finding many of the same novel ICGS2
populations (Supplementary Fig. S3C–G). Nonetheless, ICGS2 out-
performed or was equivalent to these other approaches and identi-
fies unique cell populations that align to prior knowledge.

As a final evaluation of ICGS2, we reanalyzed a large human
scRNA-Seq dataset of fetal hematopoiesis from 15 different embryo/

fetuses ranging in age from 7 to 17 weeks of gestation (Popescu
et al., 2019). This dataset has �210 000 cells from liver, kidney and
skin, using CD45þ, CD45- or no selection, with 38 cell clusters ori-
ginally derived from separate tissue-donor integrative analyses (four
predicted doublet clusters). ICGS2 analysis of all cells identified 33
cell populations, with relatively minimal suggested donor effects in
comparison to the author provided labels (Fig. 4A–C). Comparison
of ICGS2 downsampling with Louvain and PageRank selection,
sampled five more author annotated cell populations than SRS at
the default 2500 cell cutoff (Fig. 4D). Although only 2500 down-
sampled cells were used by ICGS2, cell-type annotations from
ICGS2 biomarker gene-set enrichment aligned largely to the original
authors 38 cell populations, but with very important distinctions
(Fig. 4A and B). First, ICGS2 did not identify any of the prior anno-
tated doublet clusters. Second, ICGS2 uniquely identifies ultra-rare
populations not described by the original authors, including neuron-
al and endothelial cell populations with only <800 cells (<0.05%),
largely corresponding to the authors’ ‘non-immune’ population.
Importantly, we were able to find independent evidence for three
out of four novel rare cell populations with Monocle3 (neuronal
and endothelial), suggesting these are indeed real. While Monocle3
had the greatest aggregated ARI when using the default of 100
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Fig. 3. Identification of rare and novel cell populations from ultra-large scRNA-Seq

data. (A) Comparison of ICGS2 downsampling and SRS at various thresholds to de-

tect at least five cells in each of the 35 cell populations of the bone marrow HCA

dataset. (B) Comparison of prior-defined bone marrow clusters (aggregate cluster

ARI scores) using ICGS2 downsampled, Seurat3 (with and without the multi-donor

integration workflow), Seurat2-Multi-CCA and Monocle. (C) Comparison of the

different algorithms in detecting donor-biased bone marrow clusters (aka batch

effects). Enrichment z-scores (Fisher’s Exact test) are calculated for each of the eight

bone marrow donors against each cell cluster identified by the evaluated algorithm.

A high z-score indicates an enrichment in cells in a specific cluster and a specific

donor. (D and E) UMAP visualization of clusters for prior-defined bone marrow

HCA scRNA-Seq clusters by Hay et al. (D) and by ICGS2 with downsampling (E).

UMAP derived using Hay et al. marker genes. The number of original and aggre-

gated clusters are provided in Supplementary Table S1

Table 1. Benchmarking of ICGS2 and alternative approaches

Application Maximum memory (GB) Processing time (min)

ICGS2 10 121

Monocle3 170 81

Seruat3 116 441

Seruat3 integration 79 455
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dimensions (recommended for large scRNA-Seq datasets), it also
possessed the lowest non-aggregated ARI, due to the large number
of output cell populations (n¼135), as Monocle3 requires the user
to estimate the target number of clusters (Fig. 4E).

4 Discussion

As scRNA-Seq approaches continue to increase in the depth of cells
captured and molecules measured, more sensitive approaches are
required to identify rare and subtly distinct cell populations associ-
ated unique gene expression programs. Here, we present an
improved and highly scalable version of ICGS, that can be applied
to extremely large scRNA-Seq datasets to delineate subtly distinct
and rare cell populations. We use a hybrid approach that combines
accurate methods for cluster determination and cell classification, in
combination with new approach for intelligent single-cell downsam-
pling. NMF has been shown to improve the detection of sub-
populations from diverse datasets, due to its ability to identify inter-
pretable parts from high dimensional datasets (Mejı́a-Roa et al.,
2015). Using this refined workflow, we demonstrate improved per-
formance over a large spectrum of existing approaches, across dif-
ferent datasets of varying complexity and size. Importantly, the use
of iterative gene correlation and guide-gene selection appears to sig-
nificantly minimize the impact of donor effects in ultra-large
scRNA-Seq datasets, without directly considering such effects. This
approach further uniquely identifies novel cell populations in bone
marrow and fetal hematopoiesis that decompose multiple prior-
defined cell-types associated with biologically informative markers
(Multi-Lin, T cells, Erythroblasts and DC).

ICGS2 is fundamentally distinct from alternative approaches in
terms of its basic strategy to identify heterogeneity. Standard meth-
ods for variable gene selection (dispersion, PCA) are inherently
more susceptible to initial transcriptional noise, batch and donor
effects; however, ICGS selects variable genes through a rigorous
pairwise correlation strategy over multiple rounds of iteration,
with a focus on the selection of transcription factors as guide-
genes. As previously demonstrated, this approach is more likely to
identify transitional states which include mixed-lineage progeni-
tors, weekly defined by unique gene expression (Hay et al., 2018;
Hulin et al., 2019; Lu et al., 2018; Magella et al., 2018; Olsson
et al., 2016; Yá~nez et al., 2017). ICGS2 extends the ability of
ICGS to further define rare and common transcriptionally distinct
populations, including multi-lineage cell populations from the
HCA, independent of donor effects. Because the software automat-
ically identifies the most appropriate number of clusters, it can be
simultaneously applied to many datasets, without the requirement
for the user to specify.

The potential applications of this approach are broad, which in-
clude emerging large-scale whole-organism atlases, where
AltAnalyze provides additional advantages beyond the ICGS2 algo-
rithm itself. These benefits include imbedded methods to predict
cell-type identify based on existing cell-specific gene-set references
(gene-set enrichment, cellHarmony, pathway enrichment analysis)
and display of protein–protein and transcriptional regulatory net-
work relationships among genes differentially expressed between
similar populations (NetPerspective algorithm) (Lu et al., 2018).
Importantly, this workflow is accessible by both knowledgeable
single-cell data analysts as well as conventional biologists without
such expertise, through accessible command-line and graphical user
interfaces. An important caveat of this approach is that it is depend-
ent on the presence of coordinated gene expression patterns in which
the underlying data are not so sparse that initially correlated genes
can be identified. To address this challenge, this tool further includes
the ability for users to designate the number of clusters when initial
heterogeneity is only weakly detected. While the parameters of
ICGS2 and other methods (e.g. SC3, Seurat) can be modified to
identify additional subtypes; in the future, we hope to optimize our
approach to optionally find maximal heterogeneity at the lowest
resolution (sub-clustering). Through similar uses of ICGS2, we an-
ticipate the discovery novel biologically informative cell populations
that can guide our understanding of cellular diversity on complex

organisms, including exceedingly rare populations that underlie dis-
ease phenotypes.
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Yá~nez,A. et al. (2017) Granulocyte-monocyte progenitors and

monocyte-dendritic cell progenitors independently produce functionally dis-

tinct monocytes. Immunity, 47, 890–902.

Zambon,A.C. et al. (2012) GO-Elite: a flexible solution for pathway and

ontology over-representation. Bioinformatics, 28, 2209–2210.

Zeisel,A. et al. (2015) Brain structure. Cell types in the mouse cortex and

hippocampus revealed by single-cell RNA-seq. Science, 347, 1138–1142.

3780 M.Venkatasubramanian et al.


