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ABSTRACT
CD8+ T cells are frontline defenders against cancer and primary targets of current immunotherapies. In
CLL, specific functional alterations have been described in circulating CD8+ T cells, yet a global view of
the CD8+ T cell compartment phenotype and of its real impact on disease progression is presently
elusive. We developed a multidimensional statistical analysis of CD8+ T cell phenotypic marker expres-
sion based on whole blood multi-color flow-cytometry. The analysis comprises both unsupervised
statistics (hClust and PCA) and supervised classification methods (Random forest, Adaboost algorithm,
Decision tree learning and logistic regression) and allows to cluster patients by comparing multiple
phenotypic markers expressed by CD8+ T cells.

Our results reveal a global CD8+ T cell phenotypic signature in CLL patients that is significantly
modified when compared to healthy donors. We also uncover a CD8+ T cell signature characteristic of
patients evolving toward therapy within 6 months after phenotyping. The unbiased, not predetermined
and multimodal approach highlights a prominent role of the memory compartment in the prognostic
signature. The analysis also reveals that imbalance of the central/effector memory compartment in CD8+

T cells can occur irrespectively of the elapsed time after diagnosis.
Taken together our results indicate that, in CLL patients, CD8+ T cell phenotype is imprinted by

disease clinical progression and reveal that CD8+ T cell memory compartment alteration is not only
a hallmark of CLL disease but also a signature of disease evolution toward the need for therapy.

ARTICLE HISTORY
Received 5 November 2018
Revised 10 December 2018
Accepted 8 January 2019

KEYWORDS
CD8+ T cells;
multidimensional
phenotyping; chronic
lymphocytic leukemia;
phenotypic signature;
supervised learning

Introduction

Results obtained in mice and humans established the notion that
CD8+ T cells, and in particular cytotoxic T lymphocytes (CTL),
are key components of the antitumor immune-surveillance.
Accordingly, an increased CD8+ T cell infiltrate correlates with
a better prognosis in various cancers.1 In line with these observa-
tions, therapeutic protocols designed to potentiate CTL responses
against tumor cells are currently at the frontline of cancer clinical
research.2,3 A better understanding of CD8+ T cells functional
phenotype in cancer patients is becoming increasingly important.

According to the immuno-editing model, the selective
pressure of the immune system promotes tumor progression
by selecting tumor variants that are fit to survive in an
immunocompetent host.4 We hypothesize that a global remo-
deling of the CD8+ T cell compartment functional phenotype
(beyond T cell exhaustion) in a process mirroring immuno-

editing, could highlight the development of a new equilibrium
at the whole organism scale occurring during disease progres-
sion. Thus, monitoring the CD8+ T cell compartment pheno-
type might reveal the sculpturing of this compartment by the
tumor and might provide tools to classify patients according
to their disease evolution and need for therpy.

Chronic lymphocytic leukemia (CLL), a common adult leuke-
mia characterized by the clonal expansion of B lymphocytes in the
peripheral blood, lymphoid organs and bone marrow represents
an excellent model to test such an hypothesis.5 Indeed, in this
indolent disease, in which patients can live for years without
needing treatment, cellular partners such as CD8+ T cells and
tumor B cells can interact within the three main tumor compart-
ments (blood, bone marrow and lymph nodes) over prolonged
time periods.6 Moreover, defined CD8+ T cell functional deficien-
cies have been described in CLL patients, including defective lytic
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synapse formation with tumor B cells and limited cytotoxic
function.7,8

Although a clear consensus exists on the point that several
functional alterations occur in CD8+ T cells in CLL patients,9

a global view of the CD8+ T cell phenotypes reflecting their
potential functional status is presently elusive.

To investigate possible global CD8+ T cell phenotypic
remodeling in CLL patients, we undertook an unbiased
approach for multi-dimensional characterization of CD8+

T cell phenotypic signature. We centered our study at the
patient level so that we could compare multiple marker
expression in multiple patients at the same time. For this,
we implemented approaches for statistical multi-dimensional
analysis of multicolor flow cytometry data sets.

Our results show that CD8+ T cell phenotype is altered in CLL
patients when compared to healthy donors and that major altera-
tions are embedded within a limited number of functional mar-
kers. The analysis also reveals a CD8+ T cell phenotypic signature
in CLL patients that reflects disease progression toward therapy
and is mainly due to imbalance in the memory compartment.
Interestingly, memory compartment alteration appears to be an
intrinsic feature of aggressive disease rather than the result of
chronic immune system activation in CLL patients.

Results

Analysis of individual CD8+ T cell phenotypic marker
expression reveals the necessity of using dimensionality
reduction techniques

We initially compared the expression of a panel of 29 phenotypic
markers from a cohort of CLL patients (n = 31) and a cohort of
healthy donors (n = 23) (see Table 1- clinical information with
Binet stage and IGVHmutation and Table 2-marker description).
We focused our study on whole blood to preserve tumor micro-
environment and to ensure that CD8+ T cells keep imprinting of
their recent interactions within tumor niches. Moreover, the
observation that the expression of several markers can be altered
by cell isolation/freezing procedures supports the validity our
choice of a whole blood-based analysis (Supplementary Figure
1A and10,11).

The multidimensional raw expression data of phenotypic mar-
kers for all individuals included in the study is presented in
Supplementary Figure 2 and is summarized in the heat map of
Supplementary Figure 3A. We first compared the mean expres-
sion levels fromCLL patients and healthy donors for eachmarker.
Wilcoxon tests showed that 58% of the markers (17 out of 29)
exhibited a significantly different expression in CLL patients and
healthy donors (Supplementary Figure 3B). This observation sug-
gested that taking into account a combination of various markers
could be instrumental to better characterize CD8+ T cells in CLL
patients as compared to healthy donors. We also analyzed the
correlation between markers two by two and constructed correla-
tion plots for the two cohorts using pairwise Spearman correlation
coefficients (Supplementary Figure 3C). This analysis showed that
the nature and the intensity of marker expression correlation were
different in CLL patients when compared to healthy donors.

Together, the above results provided a first indication that the
CD8+ T cell compartment is molded by the disease. However, the
high dimensionality of the data sets prompted us to use multi-
dimensional analysis and dimension reduction techniques to have
an integrated view of global CD8+ T cell remodeling.

Unsupervised multidimensional analysis of functionally
diverse phenotypic markers allows CLL patient and
healthy donor clustering

We focused our analysis at the patient population level. We
thus considered each patient as one data point with coordi-
nates in 29 dimensions. We initially compared CLL patients
with healthy donors to define the appropriate method to
discriminate individuals, since difference between healthy
individuals and CLL patients is an obvious read-out.

First, we used hierarchical clustering algorithm (hClust) to
define whether the consideredmarkers allowed clustering of simi-
lar individuals at the multi-dimensional level. Based on the 29
marker expression on CD8+ T cells, hClust generated
a dendrogram separating the individuals in two main clusters
(Figure 1(a)): one cluster comprised mainly CLL patients (seven
errors), and the other cluster contained mainly healthy donors
(four errors). Thus, hClust separated the healthy donors from the
CLL patients with 79.6% accuracy (see confusion matrix in
Supplementary Figure 4). These observations confirmed that the
markerswere reliable to highlightmajorCD8+T cell compartment
differences in our data set and were powerful enough to cluster
similar individuals by only analyzing CD8+ T cells phenotypes.

In parallel, we performed Principal Component Analysis
(PCA) to highlight the markers that were driving the cluster-
ing of individuals included in the study. We considered only
the first 2 dimensions created by PCA that were driving most
of the variation in the data set (31.2%) (Figure 1(b) and
Supplementary Figure 4B) and used them to plot the “hClust
generated” clusters. We observed that the “CLL cluster” and
the “Healthy cluster” were separated mostly according to
dimension 1 of PCA. Interestingly, the markers correlating
the most with this first dimension, and thus responsible for
the difference between the individuals, are indicators of rele-
vant biological functions of CD8+ T cells such as: migration
and adhesion (CXCR4, CD11a, CCR7, CD58), lytic function
(GzB, GzA, perforin), cell activation and differentiation
(CD57, CD127, CD45RA, CD45RO, CD27) (Figure 1(c)).
While adhesion molecule and lytic molecule expression cor-
related positively with dimension 1, chemokine receptor and
activation/differentiation molecule expression negatively cor-
related with dimension 1 (Figure 1(b,c)). We also observed
that, four markers (CCR7, CD27 CD45RA and CD45RO) that
are commonly used to define naive, central memory (CM),
effector memory (EM) and effector (EMRA) CD8+ T cells
were present within the most correlating markers. We thus
combined these four markers in a multi-step gating strategy
(Table 2) to evaluate the impact that the various CD8+ T cell
subsets (naive, effector, memory, etc.) have on the discrimina-
tion of CLL patients from healthy donors since alterations in
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CD8+ T cell differentiation subsets have been described in
CLL.12 When the differentiation subsets were introduced into
the clustering analysis (instead of the markers individually)
the accuracy increased to 81.5%.

To test whether the observed imprinting of CD8+ T cells
from CLL patients was correlated with functional modifica-
tions, we analyzed the ex vivo effector capabilities of CD8+

T cells. We observed that the average amount of IFNγ pro-
duced per cell was lower in CLL patients compared to healthy
donors even though the percentage of cells producing IFNγ
was more important in CLL patients (Supplementary Figure
5A). Moreover, the cytotoxicity of CD8+ T cells toward con-
ventional targets or autologous tumor B cells was reduced
(Supplementary Figure 5B) despite high levels of lytic mole-
cules expression (Supplementary Figure 2). In agreement with
previously reported data,7,8 these observations suggest that
although exhibiting an activated phenotype CLL CD8+

T cells are functionally deficient.
Taken together these results show that non-supervised analy-

sis of multiple and biologically non-related CD8+ T cell markers
can efficiently discriminate CLL patients from healthy donors.
These results imply that the CD8+ T cell compartment of CLL
patients is molded by the disease and suggest that the CD8+ T cell
imprinting is affecting markers of biological activation.

Clustering of healthy donors and CLL patients is not
explained by age differences and CMV infection

Since some discriminating markers between CLL patients and
healthy donors are markers of activation and differentiation,

known to be influenced by age,13 and since CLL is a disease
associated with aging, we investigated whether the “patient/
healthy donor clusters” we observed were due to age differ-
ences. For that, we performed hClust/PCA analysis by con-
sidering samples of individuals from two smaller cohorts
(CLL and healthy) with a narrow age-matching (50–67 y for
CLL patients and 50–66 y for healthy donors). We observed
that the accuracy of clustering was comparable to that
obtained with the previous analysis (82.1%) and that markers
correlating the most with dimension 1 (responsible for CLL
patient/healthy donor discrimination) were essentially not
changed (Figure 2(a–c)).

CMV infection has been associated with CLL, and CMV
specific expansion of CD8+ T cells in CLL patients has been
reported to be more pronounced than in age-matched healthy
individuals.14 We thus wondered whether CMV imprinting of
CD8+ T cells could explain CLL patient/healthy donor clus-
tering. Since we did not have access to the CMV sero-status
information for all the individuals, we investigated reduced
groups of individuals (CLL and healthy, for which we had
access to CMV sero-status information) by hClust/PCA ana-
lysis. hClust clustered patients with no error (accuracy = 100%)
even though several CLL patients were CMV− and one healthy
donor was CMV+ (Figure 2(d–f)).

These results indicate that, even though we cannot exclude
some influences of age and CMV infection on CD8+ T cell
remodeling, disease imprinting on CD8+ T cells appears to be
the main driver of CLL/healthy donor clustering.

Alteration of CD8+ T cell memory compartment correlates
with need for therapy as revealed by supervised
statistical methods

Since CLL is an indolent disease and some patients can live
for years without therapy, predicting the potential need of
treatment before uncontrolled tumor progression is of
major interest. Since we described a CLL CD8+ T cell
phenotypic imprinting that is strong enough to cluster
CLL patients and healthy donors, we asked whether this
signature could also classify patients on the basis of their
need for therapy. We selected progression toward therapy
as a readout rather than established prognostic markers
since the decision to treat is a turning point of the disease
that could be associated with observable phenotypic
changes among CD8+ T cells (See Table 1 for clinical
information). We used a similar strategy of hClust/PCA
analysis to generate clusters of patients. The optimal num-
ber of clusters proposed by hClust was two and we
observed that the markers that were correlating with
dimension 1 of PCA were for a large part similar to the
ones responsible of the CLL/Healthy discrimination.
However, we could not observe a significant clustering of
the patients according to need for therapy (Figure 3(a–c)).
Significant clustering of patients according to Binet stage or
IGVH mutational status was also not observed
(Supplementary Figure 8A and Table 1). This observation
could have two major explanations: (1) CD8+ T cell com-
partment is not shaped by clinical progression toward need
for therapy; (2) unsupervised statistical methods might not

Table 2. List of markers and parameters extracted from flow cytometry data and
used in the study.

Marker
Parameters
extracted Gating parameters

1 B7-H3 % of CD8
2 BTLA % of CD8
3 CCR4 % of CD8
4 CCR5 % of CD8
5 CCR7 % of CD8
6 CD127 % of CD8
7 CD137 % of CD8
8 CD25 % of CD8
9 CD27 % of CD8
10 CD38 % of CD8
11 CD45RA % of CD8
12 CD45RO % of CD8
13 CD5 % of CD8
14 CD54 % of CD8
15 CD57 % of CD8
16 CD58 % of CD8
17 CD69 % of CD8
18 CTLA-4 % of CD8
19 CXCR3 % of CD8
20 CXCR4 % of CD8
21 CXCR5 % of CD8
22 Gal-3 % of CD8
23 GzA % of CD8
24 GzB % of CD8
25 HLA-II % of CD8
26 LAG-3 % of CD8
27 PD1 % of CD8
28 PERFORIN % of CD8
29 CD11A % of CD8 CD11Ahigh

30 Naive % of CD8 CD45 RA+, CD45RO−, CCR7+, CD27+

31 EMRA % of CD8 CD45 RA+, CD45RO−, CCR7−, CD27−

32 EM % of CD8 CD45 RA−, CD45RO+, CCR7−, CD27−

33 CM % of CD8 CD45 RA−, CD45RO+, CCR7+, CD27+

e1570774-4 P. GONNORD ET AL.



be able to unveil subtle phenotypic differences. To address
this point, we used supervised learning algorithms to inves-
tigate whether a significant phenotypic signature was asso-
ciated with need for therapy.

We first applied Random Forest (RF) algorithm which
learns from profiles of marker expression how to create
decision trees that select a combination of relevant markers
allowing separation of individuals according to a defined
criterion. We generated an RF model to uncover the phe-
notypic markers that would allow discrimination of CLL
patients treated within the 6 months period after phenotyp-
ing. We conducted a repeated cross-validation scheme of
the RF algorithm from which we extracted an average
accuracy of the prediction on the validation set and an
average importance of the markers (Figure 3(d)). The aver-
age accuracy of need for treatment prediction (out of 1000
repetitions) was 73.37% demonstrating the existence of
a specific phenotype of CD8+ T cells associated with patient
need for therapy. The three first markers of the RF analysis
(CM, EM, and CXCR4) were effective to distinguish the
patients that evolve toward therapy from the one who do not
(Figure 3(e) and Supplementary Figure 6A). Interestingly,
the expression profile of the differentiation markers asso-
ciated with evolution toward therapy (increased representa-
tion of EM cells and decreased representation of CM cells
among CD8+ T cells Supplementary Figure 6A) was also
observed, to a lesser extent, in patients with more advanced

Binet stage (B and C) and patients with unmutated IGVH
genes (Supplementary Figure 8B).

To confirm the existence of this specific phenotypic signa-
ture of CD8+ T cells in patients evolving toward therapy, we
tested two additional learning algorithms from which we
could get a feature hierarchy after learning. With Adaboost
algorithm (Supplementary Figure 6B), we found again differ-
entiation status subsets (EM, CM) among the five most
important markers to predict the need for therapy. Those
two subsets were also the most important markers in the
Decision tree learning (Supplementary Figure 6C).

In conclusion, our supervised analysis highlights
a phenotypic signature correlating with evolution toward
need for therapy.

CD8+ T cell compartment signature associated with need
for therapy allows to score CLL patients on the basis of
their CD8+ T cell compartment

To extend the validity and relevance of the uncovered pheno-
typic signature, we assessed whether the markers identified in
the signature could be used to score patients on the basis of
their CD8+ T cell compartment and to evaluate the “statistical
chance” for a patient’s disease to evolve to a stage requiring
treatment during the 6 months following phenotypic analysis.

We thus computed a logistic regression using the most
relevant markers of the RF model predicting the need for
treatment 6 months after phenotyping. The calculated score

Figure 1. Clustering of CLL patients and healthy donors using unsupervised multidimensional analysis of functionally diverse phenotypic markers. (a) Dendrogram
based on 29 marker expression on CD8+ T cells of CLL patients and healthy donor cohorts, generated by hierarchical clustering on Euclidian distances between the
marker expression values. One group containing mostly CLL patients is colored in red, and the other group containing mostly healthy donors is colored in black. (b)
Two-dimensional representation of PCA analysis. The whole data set is reduced using PCA analysis and the patients are plotted in the first two dimensions generated
by PCA using the same color code as in Figure 1A. The blue triangle indicates the orientation of the expression of markers positively correlating with dimension 1; the
red triangle indicates the orientation of the expression of markers negatively correlating with dimension 1. Examples of markers correlating positively and negatively
according to correlation plot of Figure 1C are indicated in the triangles. (c) Correlation coefficients of each marker with the PCA dimension 1 and 2. Correlation
coefficients are described by dot color for the nature of the correlation (blue for positive correlation, red for negative correlation, see scale beside the panel) and dot
size for amplitude of correlation.

ONCOIMMUNOLOGY e1570774-5



represents the probability of being in one of the two states
(“treated” or “untreated”) according to the phenotypic marker
expression values and the coefficients applied in the regres-
sion (Figure 4(a)). We used a cross-validation scheme where
we split the cohort into three groups. We sequentially used
two groups as learning cohorts to calculate the coefficients
applied to each variable and one group as testing cohort to
calculate the score on remaining patients and assess the valid-
ity of the model. Then, based on the learning data, we
adjusted an optimal threshold with ROCR package15 to

optimize the number of “false positive” and “true negative”.
The individuals whose score was above the cutoff were pre-
dicted as “treated” and “untreated” otherwise. An example of
scores calculated for learning and testing patients is presented
in Figure 4(b). We calculated the average accuracy and the
F-measure of prediction by our model using increasing num-
bers of markers following the hierarchy of the RF model. We
also screened different groups of patients to see whether
groups’ composition was affecting the precision of accuracy
and F-measure (Figure 4(c,d)). We observed that increasing

Figure 2. Clustering of healthy donors and CLL patients is not explained by age differences and CMV infection. PCA/hClust analyses based on 29 marker expression
on CD8+ T cells of “age-matched” CLL patients and healthy donors (a-c) and selected CLL patients and healthy donor with known CMV sero-status (d-f). (a and d)
Dendrograms generated by hierarchical clustering on Euclidian distances between the marker expression values on CD8+ T cells. One group containing mostly CLL
patients is colored in red, and the other group containing mostly healthy donors is colored in black. B and E- Two-dimensional representation of PCA analysis. The
whole data set is reduced using PCA analysis and the patients are plotted in the first two dimensions generated by PCA using the same color code as in Figure 2A. (c
and f) Correlation coefficients of each marker with the PCA dimensions 1 and 2. Correlation coefficients are described by dot color for the nature of the correlation
(blue for positive correlation, red for negative correlation, see scale beside the panels) and dot size for amplitude of correlation.
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the number of markers taken into account in the logistic
regression did not improve the accuracy or the F-measure
suggesting that the first 2 markers (CM and EM) have
a strong influence on the evolution toward therapy.

As a control, we calculated the score in healthy donors by
applying the regression learned on CLL patients and observed
that all donors were predicted “untreated” when using the
first 2 markers (CM and EM) (Supplementary Figure 7A).

To test whether the observed signature of CD8+ T cells
from CLL patients that will evolve toward therapy correlated
with functional modifications, we also analyzed the ex vivo
cytokine production capability of CD8+ T cells in the different
groups of patients. We observed that the average percentage
of cytokine-producing cells and the amount produced per cell
(IFNγ, TNFα, IL-2 and MIP-1β) was not statistically different

in CLL patients who evolve toward treatment versus the ones
who do not (Supplementary Figure 7B).

In conclusion, these results identify a phenotypic signature of
CD8+ T cells in CLL patients that evolve toward therapy that
reflects tumor sculpturing of CD8+ T cells. They highlight
a combination of surface markers (CM, EM, CXCR4) that can
be used to score CLL patients probability of disease progression.

A frozen validation cohort confirms the existence of CD8+

T cell phenotype imprinting

We next used a validation cohort of frozen PBMC from CLL
patients (untreated at the time of sample collection) to have
access to a larger cohort of patients with available clinical
follow-up data (Table 3).

Figure 3. Supervised learning of phenotypic imprinting of CD8 T cells associated with need for therapy confirms the importance of the memory compartment. (a)
Dendrogram based on 29 marker expression on CD8+ T cells of CLL patients, generated by hierarchical clustering on Euclidian distances between the marker
expression values. The two groups of patients proposed by hClust are colored in black and brown. (b) Two-dimensional representation of PCA analysis. The whole
data set is reduced using PCA analysis and the patients are plotted in the first two dimensions generated by PCA using the same color code as in Figure 3A. Treated
patients are indicated by red boxes. (c) Correlation coefficients of each marker with the PCA dimension 1 and 2. Correlation coefficients are described by dot color for
the nature of the correlation (blue for positive correlation, red for negative correlation, see scale beside the panels) and dot size for amplitude of correlation. (d)
Parameters correlating with “need for therapy” as ranked by Random Forest analysis. The parameters are ranked according to normalized Gini index of their
importance (Random Forest importance). (e) 3-D representation of the patients (untreated: black dot, treated 6 months after phenotyping: red dot) according to CM,
EM and CXCR4 expression values.
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As mentioned before, we observed that the expression of
several phenotypic markers is altered by cell isolation/freezing
procedures (Supplementary Figure 1A). Nevertheless, the use
of frozen samples is convenient for several reasons: (a) frozen
samples are much more easily available and shareable than
fresh samples; (b) they can be processed in a more automa-
tized fashion; (c) they can be used in retrospective studies. We

thus investigated whether our CD8+ T cell signature and
scoring system might be still valid on an additional frozen
sample CLL cohort in spite of the possible alteration of some
marker expression.

CD8+ T cell scores of these patients were computed using
the same logistic regression method we described on the fresh
cohort. An example of scores calculated for learning and

Figure 4. CD8+ T cell compartment signature associated with need for therapy allows to score CLL patients on the basis of their CD8+ T cell compartment. (a)
Example of graphical representation of a typical logistic regression model as used in Figure 4B,E. Random Forest analysis of Figure 3(d) is reminded to indicate which
markers will be taken into account to create the logistic regression. (b) Graphical example of calculated scores of patients using a logistic regression model
constructed with two markers (CM, EM). The cohort was split into three groups to conduct a three-fold validation scheme (Only one fold is presented here – see R file
for visualization of all repetitions). The patients that were used to learn the regression and calculate the coefficient are represented as open circle and the patients
that were used to apply the regression and calculate scores are represented as close circle. Patients that evolved toward therapy within 6 months after phenotyping
are plotted in red while all other patients that did not need therapy are plotted in black. The optimized threshold was calculated using the ROCR package. The
accuracy of this particular example is 0.9 (90%) and F-measure id 0.86. (c) Accuracies of logistic regression models predictions. Different logistic regressions were
generated using 2,3,4,5 or 6 markers according to RF analysis. For each model, the mean accuracy of the threefold validation scheme was calculated and plotted as
one dot. The same process was repeated 10 times after changing the groups of patients (two-tailed Mann–Whitney test * p < 0.05, ns = non-significant, black
line = mean, error bars = S.D). (d) F-measure of logistic regression models predictions. Different logistic regressions were generated using 2,3,4,5 or 6 markers
according to RF analysis. For each model, the mean F-measure of the threefold validation scheme was calculated and plotted as one dot. The same process was
repeated 10 times after changing the groups of patients (two-tailed Mann–Whitney test * p < 0.05, ns = non-significant, black line = mean, error bars = S.D). (e)
Graphical example of calculated scores of patients from the validation cohort using a logistic regression model constructed with three markers (CM, EM and CXCR4).
The cohort was split into three groups to conduct a threefold validation scheme (Only one fold is presented here – see R file for visualization of all repetitions). The
patients that were used to learn the regression and calculate the coefficient are represented as open circle and the patients that were used to apply the regression
and calculate scores are represented as close circle. Patients that evolved toward therapy within 6 months after phenotyping are plotted in red while all other
patients that did not need therapy are plotted in black. The optimized threshold was calculated using the ROCR package. The accuracy of this particular example is
0.74 (74%) and F-measure is 0.78. (c) Accuracies of logistic regression models predictions of the validation cohort. Different logistic regressions were generated using
2,3,4,5 or 6 markers as in Figure 4C. For each model, the mean accuracy of the threefold validation scheme was calculated and plotted as one dot. The same process
was repeated 10 times after changing the groups of patients (two-tailed Mann–Whitney test * p < 0.05, ns = non-significant, black line = mean, error bars = S.D). (d)
F-measure of logistic regression models predictions of the validation cohort. Different logistic regressions were generated using 2,3,4,5 or 6 markers as in Figure 4D.
For each model, the mean F-measure of the threefold validation scheme was calculated and plotted as one dot. The same process was repeated 10 times after
changing the groups of patients (two-tailed Mann–Whitney test * p < 0.05, ns = non-significant, black line = mean, error bars = S.D).
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testing patients is presented in Figure 4(e). We again calcu-
lated the average accuracy and F-measure of prediction of our
model for different cross-validation groups and using increas-
ing numbers of markers following the hierarchy of the RF
analysis (Figure 4(f–g)). We observed that increasing the
number of markers taken into account in the logistic regres-
sion to three markers (CM, EM, CXCR4) (but not above) did
improve the accuracy or the F-measure.

These observations confirm that a signature of three rele-
vant markers (CM, EM, CXCR4) can be used to predict the
need for therapy of CLL patients based on the phenotype of
their CD8+ T cell compartment and that our approach might
be extended to frozen cohorts.

CD8+ t cell memory compartment alteration can be
detected early after disease diagnosis

Having observed an imprinting of the CD8+ T cell compart-
ment associated with disease progression, we wondered
whether observed phenotypic alterations were resulting from
chronic immune system stimulation or were rather an intrin-
sic characteristic of an aggressive form of the disease.

To address this question, we investigated whether the
observed memory compartment signatures might be related to
the elapsed time since diagnosis. We thus defined four groups of
patients based on the time elapsed between diagnosis and phe-
notyping (0–2 y, 2–5 y, 5–10 y and >10 y) and color-coded the
patients accordingly. We plotted CLL patients according to
their CM/EM expression values since these markers were
strongly influencing CD8+ T cell imprinting using the time color-
code. Our results show that we could not observe a natural
classification of patients according to the time elapsed since
CLL diagnosis (Figure 5). The elapsed time after diagnosis did
not correlate with the CM/EM signatures of individual patients
irrespectively of whether they were undergoing therapy or not.

These results provide evidences that CD8+ T cell phenoty-
pic imprinting of the memory compartment in CLL disease
are not linearly correlated with time exposure of CD8+ T cells
to tumor CLL cells. They imply that the observed memory
compartment alteration is an intrinsic signature of disease
aggressiveness.

Discussion

In the present work, we investigated the remodeling of the CD8+

T cell compartment in CLL and the impact that CD8+ T cell
phenotypic alterations might have on disease progression.

Table 3. Patients included in the frozen sample validation cohort.

REF NUMBER AGE
TREATED

AT 6 MONTHS

FCLL1 65.8 Yes
FCLL2 66.4 Yes
FCLL3 65.5 No
FCLL4 68.7 No
FCLL5 64.2 Yes
FCLL6 54.8 Yes
FCLL7 51.1 No
FCLL8 60.3 Yes
FCLL9 72.2 Yes
FCLL10 58.5 Yes
FCLL11 69.0 No
FCLL12 65.7 Yes
FCLL13 75.6 Yes
FCLL14 68.0 No
FCLL15 64.7 No
FCLL16 65.9 Yes
FCLL17 60.7 No
FCLL18 72.8 Yes
FCLL19 66.5 Yes
FCLL20 63.3 Yes
FCLL21 77.7 Yes
FCLL22 74.8 No
FCLL23 67.3 No
FCLL24 37.7 Yes
FCLL25 56.4 Yes
FCLL26 63.7 No
FCLL27 71.0 Yes
FCLL28 69.7 No
FCLL29 56.9 No
FCLL30 54.2 Yes
FCLL31 65.7 Yes
FCLL32 61.1 Yes
FCLL33 59.1 No
FCLL34 69.0 Yes
FCLL35 67.5 Yes
FCLL36 61.7 Yes
FCLL37 67.5 Yes
FCLL38 60.5 No
FCLL39 64.7 Yes
FCLL40 41.9 No
FCLL41 64.6 No
FCLL42 54.1 No
FCLL43 60.1 Yes
FCLL44 64.7 No
FCLL45 57.2 No
FCLL46 73.0 No
FCLL47 41.6 Yes
FCLL48 56.2 No
FCLL49 62.5 No
FCLL50 35.7 No
FCLL51 65.0 Yes
FCLL52 55.4 Yes
FCLL53 68.6 Yes
FCLL54 64.7 Yes
FCLL55 56.5 Yes
FCLL56 48.4 No
FCLL57 61.0 Yes

Figure 5. CD8+ T cell memory compartment alteration is uncoupled from
elapsed time since diagnosis. Dot plot representation of patients according to
their raw value expression of EM and CM markers. The patients are color-coded
according to their time since CLL diagnosis (see legend below). Red rectangles
indicate patients that were treated 6 months after phenotyping.

ONCOIMMUNOLOGY e1570774-9



Statistical tools reveal a CD8+ T cell compartment-specific sig-
nature distinguishing CLL patients from healthy donors. In
addition, supervised learning reveals a signature of “need for
therapy” among patients that can be used to score disease pro-
gression toward therapy in individual patients. Moreover, altera-
tion in CD8+ T cell memory compartment can occur
irrespectively of the elapsed time after diagnosis.

A peculiar characteristic of our study is that statistical
analysis was based on data obtained by phenotyping fresh
samples that did not undergo any manipulation before stain-
ing to preserve both (i) the imprinting of the recent interac-
tions of CD8+ T cells within tumor niches and (ii) molecules
expression that can be affected by PBMC preparation and
freezing10,11 and Supplementary Figure 1. Analyzing cell phe-
notypes of unprocessed cells by flow cytometry has the advan-
tage of providing integrated pictures of the protein expression
by each cell, taking into account genetic and epigenetic
regulations.

The initial cohorts included in our study might appear of
limited dimensions. Yet, our results are based on fresh blood
samples collected over a 2-y period and that have been ana-
lyzed by deep multiplexed phenotyping with a multi-
dimensionality comparable to that achieved by mass
cytometry.16 Moreover, our experimental approach has the
advantage over mass cytometry of being readily reproducible
in clinical routine. In addition, although the use of frozen cell
sample is less indicated for our multiplexed analysis, we were
able to confirm the validity of our statistical procedure on
a larger independent cohort of frozen CLL patients’ peripheral
blood lymphocyte samples.

The unsupervised analysis tools (hClust/PCA) allowed us to
non-subjectively identify the CD8+ T cell markers whose expres-
sion is mainly altered in the tumor environment thanks to
a patient cluster centered approach and provide a global view
of CD8+ T cells phenotype. Importantly, our analysis revealed
that clustering of healthy donors and CLL patients cannot only
be explained by age differences or CMV infection, indicating
that the disease itself (and not additional co-morbidity factors) is
responsible of the observed global remodeling of the CD8+ T cell
phenotype.

From a methodological point of view, the multidimen-
sional statistical approach we employed represent a crucial
tool to highlight the markers that are critical and exclude the
non-informative ones in a non-subjective manner. This pro-
cedure might allow, in other studies based on multiplexed
approaches aiming at characterizing CD8+ T cells signatures,
to create sub-groups of markers that better allow classification
of individuals17 such as multiplexed analysis of tissue samples
analyzing activation signatures of tumor-infiltrating T cells in
solid tumors.18,19

Unsupervised hClust/PCA analysis has been reported as
being adequate to highlight groups of patients with clinical
relevance in other tumor models.20,21 Yet, they did not prove
sensitive enough to reveal clear phenotype changes indicating
evolution toward therapy in our disease model. Conversely,
we find that supervised learning techniques such as RF,
Adaboost and Decision Tree 22–24 efficiently unveil the
CD8+ T cell phenotypic profiles associated with disease pro-
gression. Moreover, we validated the reliability of the markers

characterizing the CD8+ T cell phenotypic signature of disease
progression by a scoring system using a logistic regression
model. The accuracy and F-measure of the model were vali-
dated not only in our fresh whole blood cohort, but also in an
additional independent validation cohort despite analysis of
frozen samples might have some limitations. This last obser-
vation might be explained by the fact that the difference in the
expression of markers important for the signature (CM, EM,
CXCR4) and the rest of the markers might have more weight
than the difference of marker expression in fresh versus fro-
zen samples.

The pattern revealed by supervised learning approaches
and used for score calculation contain markers of CD8+

T cell activation state and migration potential (CM, EM, and
CXCR4). Interestingly, these markers are compatible with
numerous previous observations of CD8+ T cell phenotypic
dysregulation in CLL patients, thus validating our automated
approach.6,12,25–29 This signature also contains chemokine
receptor CXCR4 that we find highly expressed in patients
who will be treated. CXCR4 plays a central role in CLL30

since it regulates the localization of B-CLL cells in the differ-
ent tumor compartments and is coupled to BTK, a tyrosine
kinase target of Ibrutinib.31,32 CXCR4 expression is higher in
peripheral blood resting tumor CLL cells than in proliferative
“recent” emigrants from LN or bone marrow.33,34 It is tempt-
ing to speculate that similarly to tumor CLL cells, CD8+

T cells that have high CXCR4 expression are confined in the
blood and thus cannot interact with tumor CLL cells in other
tumor niches. This hypothesis would explain why a higher
expression of CXCR4 on CD8+ T cells is predictive of evolu-
tion toward therapy. Intriguingly, our results show that the
signature of evolution toward therapy does not contain
immune checkpoint markers. In CLL, their expression by
CD8+ T cells is rather controversial. Some authors found
PD1 upregulation on CD8+ T cell surface in CLL
patients12,35–37 while others reported no or barely significant
upregulation of PD1.29,38,39 The discrepancy among different
reports could be due to the age of patients at phenotyping40 or
to disease stage.26,29 It should be noted that all the patients we
considered are untreated at the time of phenotyping, while
this is not always the case in other studies.

We found that alteration of the CD8+ T cell memory
compartment is a prominent component of the “need for
therapy” signature in CLL patients. The fact the EM/CM
markers are part of the CD8+ T cell signature is certainly
not novel,12,28,39,41,42 but the unbiased and multimodal
approach by which EM and CM markers emerged from
deconvolution of a large number of surface markers as the
combined parameters defining patients that will evolve
toward therapy validates both (i) our novel way “to weight”
independent markers and (ii) the biological relevance of these
markers to stratify CLL patients.

We observed a general trend of decreased representation of
CD8+ T cells that have an unexperienced phenotype and an
increased representation of CD8+ T cells that have an “effec-
tor type phenotype” in CLL patients versus healthy donors.
This tendency is even more prominent in the memory com-
partment and even characterize the patients that will evolve
toward therapy. Interestingly, our functional experiments
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revealed that the ex vivo effector potential of CD8+ T cells
from the CLL patients that will evolve toward therapy does
not correlate with the increase of “effector type phenotype”
suggesting that these cells are functionally deficient7,8 with no
scaling in the deficiency.

It is tempting to speculate that our results might have
implication for chimeric antigen receptor (CAR) T cell ther-
apy in CLL. Our observation that having less differentiated
memory CD8+ T cells (CM) is associated with lower chance to
evolve toward therapy, suggests that the CD8+ CM T cell
subset might be preferred for adoptive cell therapy or CART
therapy, in line with previously reported data.43,44

Moreover, our patient classification approach, rarely seen
in immunophenotyping studies, allows investigating both the
relation of memory markers with disease evolution toward
therapy over time and the impact that the duration of the
disease might have on memory compartment imbalance. By
this way, we can define the evolution of phenotypic signatures
despite the absence of same patient samples over time. In
other words, we show that, at the patient population level,
alteration in CD8+ T cell memory compartment can occur
irrespectively of the elapsed time after diagnosis. This obser-
vation has two implications. First, it suggests that this pheno-
typic change is a component of unfavorable disease evolution
rather than being the result of chronic stimulation of the
immune system. Second, it suggests that periodic examination
of patient circulating CD8+ T cell memory compartment
might be used as a tool to uncover immune remodeling
going on at the organism scale that could alert about disease
evolution before clinical symptoms apparition.

All in all our results reveal a tumor-related imprinting of
the CD8+ compartment in CLL patients and prompt to re-
think immuno-editing as a bidirectional phenomenon in
which immune system and tumor cells progressively sculpt
each other. The possibility to read subtle changes engrafted
into the CD8+ T cells phenotype by tumor clinical progression
might pave the road to new immunomonitoring approaches
aiming at scoring disease progression by assessing the new
equilibrium established between tumor and immune system at
whole organism scale.

Methods

Patients

All patients were referred for CLL (before any therapy) according
to IWCLL criteria, between 2015 and 2017, in the Hematology
Department of the Institut Universitaire du Cancer de Toulouse-
Oncopole. Peripheral blood samples from untreated CLL patients
(n = 31) were collected and processed following standard ethical
procedures (according to the Declaration of Helsinki), after
obtained written informed consent and referenced at the HIMIP
laboratory (Collection des hémopathies de l’INSERM Midi-Pyr
énées). According to the French law, HIMIP has been declared to
the Ministry of Higher Education and Research (DC 2008-307
collection 1) and obtained a transfer agreement (AC 2008-29)
after approbation by an ethical committee (Comité de
Protection des Personnes Sud-Ouest et Outremer II). Clinical
and biological annotations of the samples have been declared to

the CNIL (Comité National Informatique et Libertés, i.e. Data
processing and Liberties National Committee). All patient clinical
data are described in Table 1. Healthy specimens (n = 23) used for
control conditions were obtained from fresh blood samples
(Etablissement français du sang Midi-Pyrénées, Purpan
University Hospital, Toulouse, France).

Flow cytometry staining protocol

We designed antibody panels for flow cytometry analysis to
monitor 29 parameters describing the main biological func-
tions of CD8+ T cells, such as cytotoxicity, migration, adhe-
sion, activation, differentiation and expression of checkpoint
molecules (Table 2 – marker description). For every patient,
the blood sample was split into 8 tubes containing marker-
specific antibodies pooled by 5 combined to gating antibodies
(CD3, CD4, CD8 and CD19 antibodies). A control sample
corresponding to gating antibodies mixed with isotype control
antibodies was also recorded for each patient. We extracted
the percentage of positive cells above the isotype control in
the CD8+ T cell population (defined as CD3+ CD19− CD8+

cells) as described in Supplementary Figure 1B for all markers
of interest. We decided to focus on percentage of positive cells
after comparing percentage of positive cells and mean fluor-
escence intensity in a dedicated analysis (see Supplementary
methods and Supplementary Figure 1C).

Whole blood samples were directly mixed with fluoro-
chrome-coupled antibodies (see complete list in Table 4) for
at least 1 h at 4°C. Red blood cells were then lysed and cell
samples were washed twice with FACS buffer (PBS, 1% Fetal

Table 4. List of the antibody specificities, clones, fluorochromes and suppliers
used in the study.

Marker Clone Fluorochrome Supplier

B7-H3 (CD276) DCN.70 PE Biolegend
BTLA (CD272) J168-540 BV421 BD Biosciences
CCR4 1G1 PECY7 BD Biosciences
CCR5 2D7/CCR5 BV421 BD Biosciences
CCR7 150503 BV421 BD Biosciences
CD11A HI111 PE BD Biosciences
CD127 HIL-7R-M21 V450 BD Biosciences
CD137 4B4-1 BV421 BD Biosciences
CD19 HIB19 PECF594 BD Biosciences
CD25 M-A251 PECY5 BD Biosciences
CD27 L128 APC BD Biosciences
CD3 UCHT1 V500 BD Biosciences
CD38 HIT2 FITC BD Biosciences
CD4 SK3 A700 Biolegend
CD45RA HI100 PECY7 Biolegend
CD45RO UCHL1 PE BD Biosciences
CD5 UCHT2 PECY7 Biolegend
CD54 HA58 PE BD Biosciences
CD57 NK-1 FITC BD Biosciences
CD58 1C3 FITC BD Biosciences
CD69 FN50 PE BD Biosciences
CD8 RPA-T8 BV786 BD Biosciences
CTLA-4 (CD152) L3D10 PECY7 Biolegend
CXCR3 1C6/CXCR3 AF488 BD Biosciences
CXCR4 12G5 PECY5 BD Biosciences
CXCR5 51505 PE R&D systems
Gal-3 M3/38 AF647 Biolegend
GzA CD09 PB Biolegend
GzB GB11 AF700 BD Biosciences
HLA-II Tu39 FITC BD Biosciences
LAG-3 REA351 APC Miltenyi
LAMP1 (CD107a) H4A3 PECY7 BD Biosciences
PD1 EH12.1 PECY7 BD Biosciences
PERFORIN dG9 AF647 Biolegend
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calf serum, 1% Human serum, 0.01% Na Azide) before fixa-
tion in 2% Paraformaldehyde. Samples were then washed
twice before permeabilization in FACS buffer with 0.1%
Saponin. Cell suspensions were then stained with antibodies
directed against intracellular proteins for 30 min at room
temperature.

Data acquisition

Fluorescence distributions were acquired by flow cytometry on
a BD FORTESSA cytometer. Fluorescence compensations, gat-
ing and selection of cells of interest (CD19-, CD3+, CD4-, CD8+,
alive) were performed using FlowJo software (Tree Star, Inc,
Ashland, Ore) and fluorescence data files corresponding to
CD8+ T cells only were exported as csv files.

Statistics, data and code availability

Detailed statistical methods used throughout the study are
available as supplementary information. We used R software
for most statistical analyses45 and python software for super-
vised learning.46 The data sets generated and analyzed in this
study, together with code generated in R and python software,
are available as supplementary material.
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