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Abstract: In recent years, ion electrolyte membranes (IEMs) preparation and properties have attracted
fabulous attention in fuel cell usages owing to its high ionic conductivity and chemical resistance.
Currently, perfluorinatedsulfonicacid (PFSA) membrane has been widely employed in the membrane
industry in polymer electrolyte membrane fuel cells (PEMFCs); however, NafionTM suffers reduced
proton conductivity at a higher temperature, requiring noble metal catalyst (Pt, Ru, and Pt-Ru), and
catalyst poisoning by CO. Non-fluorinated polymers are a promising substitute. Polysulfone (PSU) is
an aromatic polymer with excellent characteristics that have attracted membrane scientists in recent
years. The present review provides an up-to-date development of PSU based electrolyte membranes
and its composites for PEMFCs, alkaline membrane fuel cells (AMFCs), and direct methanol fuel cells
(DMFCs) application. Various fillers encapsulated in the PEM/AEM moiety are appraised according
to their preliminary characteristics and their plausible outcome on PEMFC/DMFC/AMFC. The key
issues associated with enhancing the ionic conductivity and chemical stability have been elucidated
as well. Furthermore, this review addresses the current tasks, and forthcoming directions are briefly
summarized of PEM/AEMs for PEMFCs, DMFCs, AMFCs.

Keywords: polysulfone; polymer electrolyte membrane; DMFCs; AMFCs; sulfonation; NafionTM;
fillers; inorganic/organic hybrid membranes

1. Introduction
1.1. Fuel Cells

The fuel cell is an electro-chemical energy conversion design; it alters the chemical
energy of the reactants directly into electric energy along with heat and potable water. As
global environmental and energy issues become more and more acute, incredible efforts are
being made to explore new energy selections. As a new energy technology, fuel cells have
been shown to be highly efficient and have an excellent ability to convert conventional
fossil fuel energies due to low or zero-emission [1–3]. Fuel cells and batteries share multiple
similarities: both are based on the anode-to-cathode electronic transfer principle and
convert chemical energy into electric energy; they both require an electrolyte and external
load to perform useful work and generate low DC voltages. Fuel cells are stacked similarly
to batteries as well. Extensive power and voltage output is achieved by combining many
cells in series. The main differences between fuel cells and batteries are the nature of their
electrodes. Batteries use metallic anodes (lithium or zinc) and cathodes (generally metallic
oxides). During operation, batteries consume the anode and the cathode, which will need
recharge or replacement. In contrast, fuel cells operate with externally supplied reactants
and do not consume any part working part of the cell. Therefore, fuel cells need no recharge
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and can continue operating as long as the reactant is supplied. Such repeated charging and
discharging resulted in decreasing the life-time of the battery compared to that in the case
of the fuel cell. In addition, fuel cells provide an inherently clean source of energy, with no
adverse environmental impact during operation, as the byproducts are simply heat and
water [4]. Nevertheless, the recent constraint in fuel cell commercialization stalks from the
expensive nature of the raw materials (NafionTM electrolyte membrane and noble metal
catalysts) and of the manufacturing method [5]. Furthermore, fuel cell electric vehicles
(FCEV) are under progress by many automobile companies and are effectively verified due
to their several advantages. Even though many advantages are in the fuel cells, there is a
gap in the implementation of the fuel cells in on-road vehicles due to some practical issues.

1.2. Types of FCs

Fuel cells are divided into direct and indirect fuel cells according to their working
temperature, the fuel cell components, and the type of electrolytes used. Fuel cells are
classified according to their operational temperatures, such as low-temperature fuel cells
and high-temperature fuel cells, as shown in Figure 1a [6]. The PEMFC, AMFC, and DMFC
belong to low-temperature fuel cells. Molten carbonate fuel cell (MCFC), phosphoric acid
fuel cell (PAFC), and solid oxide fuel cell (SOFC), fall into the high-temperature fuel cells
group. In this cataloging, PEMFCs are more promising and consistent than other fuel cells
owing to their versatile applications, extraordinary efficacy, and tiny emission of impurities,
and can be the basis for DMFCs and AFCs. The acidic or alkaline concentrations are applied
as electrolytes in fuel cells termed as mobile electrolyte systems, whereas electrolytes are
immersed in a porous-based (pores enriched) material, defined as an inert/immobile
electrolyte system or matrix system [7–10].

Figure 1. (a) Different types of fuel cell; (b) structure of PFSA.

1.2.1. PEMFCs

In a typical PEMFC, the cation exchange membrane (CEM or PEM) is accountable
for the proton conductivity, which permits the passage of H+ from anode to the cathode,
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establishing the essential component of the electrochemical device. In various types of fuel
cells, membranes constructed with perfluorinatedsulfonicacid (PFSA) is predominantly
employed because of its excellent proton conductivity and adequate chemical/mechanical
characteristics; they are worked at temperatures between 120 and 180 ◦C in high pres-
sure [11,12]. The structure of PFSA is illustrated in Figure 1b; the sulfonic acid group is
connected to the perfluoroethereal side chains of the PFSA. Proton conductivity is due to
the significant phase separation between hydrophilic and hydrophobic domains in PFSA
when hydrated; and the chemical/mechanical stability is caused by the rigid structure
of the polytetrafluoroethylene (PTFE) backbone and strong C-F bond even in the side
chains. However, this type of membrane exhibited a severe defect at temperatures be-
low zero degrees Celsius and above hundred degrees Celsius [13,14]. Another kind of
membrane, NafionTM, developed and introduced by Dupont in the 1960s, has been exten-
sively studied and is a commercially available proton-conducting membrane in PEMFC
applications. NafionTM shows excellent characteristics, such as high electrochemical and
chemical stability, low permeability to reactant species, selective and high ionic conduc-
tivity, and the ability to provide electronic insulation. However, the NafionTM membrane
showed poor proton conductivity at higher temperatures due to dehydration of water,
which controlled the number of water-filled channels [15–17]. To solve these problems,
researchers have developed alternative ways of proposing other polymeric materials, such
as SPEEK (sulfonated poly(ether ether ketone)) [18,19], polybenzimidazole (SPBI) [20,21],
and polysulfone (SPSU or SPSF) [22,23]. These membranes show their strengths in different
features of water uptake %, ionic conductivity, and mechanical and thermal stability. The
pictorial illustration of PEMFC is depicted in Figure 2a along with cell reaction.

Figure 2. Schematic illustration of (a) PEMFC; (b) AMFC, and (c) DMFC with half-cell reaction.

1.2.2. DMFCs

The DMFCs have few merits of efficiently working at low temperature, easy strategy,
and eco-friendly characteristics. The usage/handle of methanol is also easy since it exhibits
liquid properties at ambient temperature. More specifically, unlike PEMFCs, aqueous
methanol-based DMFCs do not require a humidification system and peculiar thermal
management aids. They also have superior energy and power density as compared to
indirect fuel cells and recently established lithium-ion batteries (LIBs). A plausible usage of
the DMFC comprises portable electronic gadgets, military communications, transportation
services, and traffic lights/signals [23–25]. The schematic of DMFC is presented in Figure 2c.
The major issue with DMFCs is methanol cross-over as it permeates methanol along with
water from anode to cathode direction. During DMFC operation, methanol cross-over
outcomes in low power-output due to methanol oxidation at the cathode with the aid of
cathode catalysts, leading to (i) electrode depolarization, (ii) mixed potential, consequently
open-circuit voltage (OCV) of the DMFC less than 0.8 V, (iii) consuming of oxygen, (vi) CO
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poisoning, and (v) severe water accretion at the cathode, which restricts oxygen contact to
cathode catalyst spots. In addition, the presence of excessive methanol cross-over lowers
the overall performance of the fuel cell [26–28].

1.2.3. AMFCs

In principle, AMFC is a feasible substitute for PEMFC and is currently receiving new
consideration. In AMFCs, the AEM conducts OH− (hydroxide) or CO3

2− (carbonate) anions
while an electric current is flowing, which has numerous advantages, (i) in a high alkaline
environment, both oxygen reduction reaction and methanol oxidation are more predomi-
nant; electro-osmotic drag by OH− moves from cathode to anode, which reduces anode to
cathode methanol cross-over, simplifies water management, and (ii) allows the use of non-
noble metal catalysts. These AEMs are cheap and have improved mechanical/chemical
characteristics compared to PEMs. In recent years, more research attempts have been
performed to synthesize novel AEMs to enhance their ionic (OH−) conductivity [29] along
with alkaline stability [30,31]. Polymer back bones such as polystyrene (ethylene butylene)
polystyrene [32], poly(2,6-dimethyl-1,4-phenylene oxide) [33], polystyrene [34], poly(ether
ether ketone) [35], poly(vinyl alcohol) [36], and polyether sulfone [37,38] have been ex-
pansively explored to synthesize alkaline membranes. The afore-mentioned polymeric
materials can be readily functionalized with the following cationic groups, quaternary phos-
phonium [39,40], guanidinium [41,42], quaternary ammonium [43], or imidazolium [44–46]
which are accountable for creating the polymer backbone conductive.

1.3. Ion Exchange Membranes

For all FCs, the membrane (PEM or AEM) is the heart of the FC. It plays a prominent
part in the transportation of ions within a fuel cell via the following aspects: (1) friction
through the pore walls, (2) the energy of the membrane swelling process, (3) complete block-
age of transport due to insufficient water absorption, (4) hydrophobic/hydrophilic contact
between solvation shells and water dipoles, (5) effects of double-layer and (6) surface
diffusion [47,48]. The main difference between CEMs and AEMs are tabulated in Table 1.

Table 1. Difference between cation and anion exchange membrane.

IEM CEM AEM

Counter ion H+ conductive OH− conductive

Ion-exchange group -SO3
−; -PO4

−; -CO2
− Quaternary ammonium cation,

1-methyl pyridinium

Features High ionic conductivity,
excellent ionomer solution

Non-noble metal catalyst can be
used. Oxygen reduction reaction

and methanol oxidation reaction are
more facile.

Issues

High-cost materials,
fuel crossover, chemical, and

mechanical stability,
practical lifetime

Low ionic conductivity, low
thermostability, influence of CO2,

durability, chemical, and
mechanical stability

1.4. Preliminary Characteristic of IEM

The prepared IEMs were subjected to the following preliminary characterization
studies: water uptake (WU), ion exchange capacity (IEC), ionic conductivity, permeability
of methanol (p), and alkaline stability test to check the appropriateness of the IEMs in FC
applications, and the pictorial protocol is illustrated in Figure 3.
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1.4.1. Water Uptake and Schroeder’s Paradox

The WU of the IEM was measured by calculating the weights of the dry and wet
membrane samples. The dry membrane weight (Wdry) is obtained by drying the sample at
100 ◦C for 12 h immediately before weighing it. The weight of the corresponding membrane
in wet conditions (Wwet) is obtained by immersing the membrane sample in deionized
water (DI water) at room temperature for about 1 day, wiping off the surface moisture with
filter paper and then quickly weighing it. The water uptake (%) was determined from the
subsequent equation [49]:

WU (%) =
Wwet −Wdry

Wdry
× 100% (1)

In addition, the sorption may be measured by bringing a membrane to equilibrium
with a liquid by either immersion of the membrane into the liquid (directly) or by contact
with the vapor phase (isopiestically). Since the solution, the vapor, and the sample are all in
equilibrium, it is believed that there is no difference between the two methods. The uptake
of water by PFSA from a liquid reservoir and a saturated vapor reservoir differs under
the same conditions. This phenomenon is called Schroeder’s paradox, and more recently,
attempts have been made to explain this phenomenon theoretically.

1.4.2. Ion Exchange Capacity

IEC is a quantity of the capacity of an insoluble substance to endure ions displacement
with formerly attached and lightly encapsulated into its architecture by oppositely charged
ions existing in the adjacent solution. IEC was calculated by a back titration method with
the following formula [50]:

IEC
(

meq.g−1
)
=

Titre value × Normality of tirant
Membrane weight (dry)

(2)
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1.4.3. Ionic Conductivity

The ionic conductivity of the IEM was measured by AC impedance spectroscopy. Prior
to the testing, the membranes (IEMs) of various forms were fully hydrated overnight in
DI water. The measuring device with IEM was positioned in DI water to maintain the
relative humidity (RH) at 100% throughout the experiment. Membrane resistance was
measured from the difference in the resistance between the blank cell and the one with IEM
separates the counter electrode and working electrode compartment and is converted into
ionic conductivity values using the below formula [51]:

Ionic conductivity
(

S cm−1
)
=

L
R × A

(3)

where R is resistance of IEM (ohm); L is width of IEM (cm); A is area of IEM (cm2).

1.4.4. Methanol Permeability

The methanol permeability (p) is studied at ambient temperature using a two-portion
diffusion cell comprising of a collector (C) and a reservoir (R). C and R were separated by
the investigated IEM, occupied with DI water, methanol, respectively. Both the portions are
stirred continuously during the permeability test. The methanol permeability is calculated
from the time versus concentration curve of the methanol collector slope values according
to the following equation [52].

p
(

cm2 s−1
)
=

m × VC × d
A × CR

(4)

where m represents the linear plot slope; VC signifies the methanol solution volume in the
C; A and d illustrate the area and thickness of the IEM; CR is the methanol concentration in
the tank.

1.4.5. Selectivity Ratio

Especially for DMFCs, the IEM must have two significant characteristics. The pro-
ton/hydroxide ionic conductivity should be maximal and have minimal methanol diffusion.
Therefore, the higher the ratio of ionic conductivity to methanol permeability (termed as se-
lectivity ratio), the better the IEM performance of the DMFC. This selectivity ratio indicates
the performance of the IEM [53].

1.4.6. Oxidative Stability

Oxidative resistance is studied by Fenton’s test in terms of weight loss over a period.
In Fenton’s reagent, degradation of the polymer is caused by free radicals attacking the
electrophilic sites, leading to weight loss.

2. Polysulfone

Polysulfone is a commercially existing aromatic polymer. The relentless attention
of the membrane researchers for PSU is because of its outstanding properties [54], such
as soluble tendency in a wide range of solvents (dimethylformamide, dimethyl sulfox-
ide, halogen derivative, dimethyl acetamide, halogen derivatives), excellent film forming
capacity, withstanding in high temperatures, wide range of operating pH, outstanding me-
chanical strength, and reasonable reactivity in aromatic electrophilic substitution reactions
(acylation, chloromethylation, nitration, sulfonation, etc.) [55]. The chemical structure of
polysulfone is shown in Figure 4. In this present review, we have seen the recent develop-
ments of the polysulfone-based membrane and its composites for PEMFCs, DMFCs, and
AMFCs applications.
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Figure 4. Chemical structure of PSU.

2.1. Membranes Derived from Polysulfone and Its Composites for PEMFCs Application

PEMFC technology has evolved quickly over the past 2 decades, with many advan-
tages over traditional energy storage devices, such as batteries and internal combustion
engines. PEMFCs are more energy-efficient related with diesel/gas engines. They also
produce no hazardous by-products [56–58]. However, the practical feasibility of this tech-
nology is highly dependent on the PEM and its characteristics [59,60]. Hence, PEM is a
crucial component in PEMFCs devices. The outcome of PEM depends not only on excellent
mechanical and thermal resistance but also on the other characteristics, such as film-forming
capacity, excellent proton conductivity, and reduced methanol cross-over [61,62]. Recently,
nano fillers have been widely explored to adjust polymeric membranes to enhance the out-
come of PEMs. These enhancements are reached by introducing a nonstop proton transfer
path in the polymer environment and enhanced mechanical/ thermal characteristics of the
polymer [63,64].

Metal-organic frameworks (MOFs) as carriers for proton-conducting material have
received remarkable attraction from many experimental scientists owing to their high
surface area compared to usual filler materials that permits encapsulation of proton transfer
material [65,66]. For example, Leila Ahmadian-Alam and Hossein Mahdavi reported a
ternary composite membrane composed of MOF and sulfonic acid functionalized silica
(MOF/SO3H-f -Si) nanoparticles with polysulfone for PEMFCs [67]. The implanting of
MOF/SO3H-f -Si nanoparticles on sulfonated PSU ensued in substantial enhancement of the
thermal and mechanical properties of the composite membrane. The ion conductivity and
transport properties of the composite membrane were increased to 0.017 S cm−1 by adding
only 5% of MOF/SO3H-f -Si nanoparticles. Furthermore, the nanocomposite exhibited a
supreme power density (PD) of 40.80 mW cm−2. Nor Azureen Mohamad et al. described
cross-linked highly sulfonated polyphenylene sulfone (SPPSU) membranes comprised of
carbon nanodots (CNDs) as a PEM for PEMFCs application [68]. The cross-linked mem-
brane was prepared by pyrolysis at 453 K, where cross-linking occurs between SPPSU
and CNDs. The prepared cross-linked composite membrane showed the maximum ionic
conductivity of 56.3 mS cm−1. Further, the authors demonstrated that the CNDs encapsu-
lation into SPPSU membrane by pyrolysis treatment displayed a high ionic conductivity
with superior dimensional stability. Recently, Balappa B. Munavalli and Mahadevappa
Y. Kariduraganavar have prepared PEM based composite membrane by two step meth-
ods. First, sulfanilic acid (H2N-C6H4-SO3H) functionalized poly(1,4-phenylene ether ether
sulfone) (SPEESSA) was synthesized. Then, different weight percentages of -SO3H func-
tionalized zeolites have been incorporated into the prepared composite membrane [69].
The composite membranes, Na-ZSM-5 zeolite, Na-β zeolite, and Na-Mordenite zeolite,
exhibited the ionic conductivities of 102, 112, and 124 mS cm−1, respectively. Furthermore,
the composite membrane with 8 weight% Na-ZSM-5 zeolite, Na-Beta zeolite, and Na-
Mordenite zeolite exhibited outstanding PD of 0.37, 2.042, and 0.45 W cm−2, respectively,
in H2/O2 fuel cells. In addition, the obtained PEMFCs results were much better than
the commercially existing Nafion® 117 membranes. Jinzhao Li et al. reported graphene
oxide-based nanoscale ionic materials (NIMs-GO) by sulfonation with 3-(trihydroxysilyl)-
1-propanesulfonic acid (SIT) and consequent neutralization with amino-terminated poly-
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oxypropylene (PO)-polyoxyethylene (EO) block co-polymer [70]. The schematic illustration
of the NIMs-GO synthesis is depicted in Figure 5(A1). Transmission electron microscopy
(TEM) was employed to analyze the morphology of the prepared GO, SIT-GO, and NIMs-
GO (Figure 5a–f). Despite sulfonation by SIT, GO nanosheets exhibit a wrinkled and folded
configuration, an intrinsic property of GO due to their large surface area and intramolecular
attraction. Remarkably, the NIMs-GO exhibited greatly stretched features (Figure 5e,f),
after being ion-exchanged with M2070. The authors stated that the change in morphology
confirms that the M2070 has been ionically bonded to the GO surface via -SO3H/-NH2
interactions. The resulting NIMs-GO with acid-base pairs and hygroscopic EO units were
incorporated into sulfonated polysulfone (SPSF) to fabricate nanocomposite membranes.
The water uptake and retention ability of the SPSF/NIMs-GO nanocomposite membranes
were enhanced due to the hydrophilic EO units of NIMs-GO. Furthermore, the maximum
PD of 167.6 mW cm−2 was attained for SPSF/NIMs-GO-3 at 60 ◦C/100% RH, which is
higher than that of Nafion® 117 and the pristine SPSF membrane (Figure 5(B1)). When
the relative humidity drops to 50% (Figure 5(B2)), the maximum PD of 33.3, 17, and 23.2%
decreases by SPSF, SPSF/NIMs-GO-3, and Nafion® 117, respectively. All these results are
due to the increased H+ conductivity of the fuel cell in both hydrated and low relative
humidity conditions.
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Recently, Cataldo Simari et al. synthesized sulfonated polysulfone (SPSF)/layered
double hydroxide (LDH) nanocomposite membranes with various weight percentage
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filler content by an easiest solution intercalation method to replace Nafion® electrolyte
in PEMFCs applications [71]. The comprehensive exfoliation and nano dispersion of the
LDH platelets into the polymer improve the thermomechanical resistance, water retention
capability, and dimensional stability of the electrolyte membranes. The photographic
images of the prepared PEMs were depicted in Figure 6a. All membranes except the sPSU-
LDH4 membrane are transparent. In addition, no inorganic particles are noticed in both the
sPSU-LDH2 and sPSU-LDH3 membranes illustrating no agglomeration. The power density
and polarization curves are shown in Figure 6b,c. The maximum PD of 204.5 mW cm−2

at 110 ◦C/25% RH was achieved for the sPSU-LDH3 composite membrane, which is
double the value achieved by the Nafion® membrane. Such a superficial performance was
attributed by the establishment of extremely interconnected ion pathways encouraging an
efficient Ghrotthus-type mechanism for the H+ passage even in dehydrated environments.
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Ting Pan et al. described novel composite membrane from functionalized PSU with
high sulfonic acid groups, N,N-bis (sulfopropyl)aminyl-4-phenyl polysulfone (PSF-N-
C3H6SO3H) and O,O’-bis(sulfopropyl)resorcinol-5-yl-4-phenyl polysulfone (PSF-O-
C3H6SO3H) [72]. The above polymers prepared by grafting amino phenyl group and
dimethoxy phenyl groups to the polymer backbone through bromination of PSU followed
by Suzuki cross-coupling reaction, and the introduction of the sulfopropyl groups through
sulfone ring-opening reaction. Furthermore, the prepared composite membrane exhib-
ited the highest proton conductivity of 46.66 mS cm−1 at 95 ◦C/90% RH. In addition, the
prepared membrane exhibited an adequate swelling ratio and water uptake and reduced
methanol cross-over. The outstanding presentation of the composite membrane is due
to the phase separation between the hydrophobic and hydrophilic subphases and the
establishment of the hydrogen-bonding network in the hydrophilic subphase. Very recently,
Berlina Maria Mahimai et al. prepared a series of nanocomposites from PSF, SPANI (sul-
fonated polyaniline), and Nb2O5 (niobium pentoxide) by the solution casting method [73].
The composite membrane with 10 wt% Nb2O5/PSF/SPANI displayed the highest ionic
conductivity of 0.0674 S cm−1. Furthermore, the authors demonstrated that incorporating
Nb2O5 into virgin PSF enhanced the proton conductivity and improved the thermal and
oxidative stability.

In order to find different polymer electrolyte materials other than NafionTM, polymeric
membranes functionalized with H3PO3 (phosphonic acid) groups have encouraged much
research consideration owing to their enhanced ionic conductivity at high temperature
under dehydration environment ascribing to the self-ionization of H3PO3 groups within
an infused hydrogen-bonding network [74,75]. When compared with SO3H and COOH,
the H3PO3 group has moderate acidity and low water solubility and swelling ability, so
it has a high ability for hydrogen bonding [76]. Furthermore, the bond that exists in
phosphonic acid (-C-P-) is more thermally and electrochemically stable than the sulfonic
acid (-C-S-) bond and carboxylic acid (-C-C-) bond, and therefore, more appropriate for
PEMFCs application [77,78]. For example, Lesi Yu et al. reported proton-conducting
composite membrane from SPSF and polysulfone grafted (phosphonated polystyrene)
(SPSF/PPSF) through controlled atom transfer radical polymerization (ATRP) for PEMFCs
application [79]. The supreme ionic conductivity of 0.01723 S cm−1 at 95 ◦C/90% RH was
achieved. Furthermore, the SPSF/PPSF membrane exhibited promising thermal stability,
adequate swelling ratio, and water uptake, notably enhanced mechanical stability. In
addition, the permeability of methanol decreased from 5.74 × 10−8 cm2 s−1 for PPSF to
0.96 × 10−8 cm2 s−1 for the composite membrane.

PEMFCs operating at high temperatures (HT-PEMFCs) have received considerable
attraction owing to their improved electrode reaction kinetics and simplified humidification
and thermal management [80,81]. In the HT-PEMFC devices, the PEM is a vital element for
carrying H+ (protons) and allocating fuel and oxygen. Hence, HT-PEMs necessitate both
good ionic conductivity and adequate mechanical stability. There have been incredible
efforts to progress HT-PEMs with high proton transport capacity at higher temperatures
(120–300 ◦C). Recently, Hongying Tang et al. have prepared phosphate poly(phenylene
sulfone) (P-PPSU) by post-phosphonylation of brominated poly(phenylene sulfone) (Br-
PPSU), followed by acidification [82]. In addition, the prepared P-PPSU material can act as
a binder material in the catalyst layer to decrease the decay of operating performance of
HT-PEMFC operations. The ionic conductivity of P-PPSU membrane at a high temperature
without extra humidification is only 0.30 mS cm−1 at 160 ◦C, the PD of 242 mW cm−2 is
attained in fuel cell operation at 160 ◦C. The obtained values are low when compared with
Nafion binder material; however, the excellent stability of 200 h is noticed in FCs worked at
160 ◦C with P-PPSU polymer binder with no noteworthy decrease in the fuel cell evaluation.
Hence, the authors demonstrated that the prepared P-PSSU is a viable candidate as a binder
material in the catalyst layer for extremely robust HT-PEMFCs. Jujia Zhang et al. have
also prepared 2,4,6-tri(dimethylaminomethyl)-phenol (TDAP) with three tertiary amine
groups that were grafted to PSF (TDAP-PSF) to attain higher phosphoric acid uptake at
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lower grafting degree from HT-PEMFCs [83]. Furthermore, the single cell reaches the PD of
453 mW cm−2 and has excellent stability without exterior humidification. Huijuan Bai et al.
also described a new strategy for grafting poly(1-vinylimidazole) with phosphoric acid
doping sites on the PSF backbone via ATRP [84]. The authors demonstrated that the high
H+ conductivity is attained due to the establishment of micro-phase separated structures,
and mechanical properties are maintained due to the decreased plasticizing effect produced
by the separation of phosphoric acid adsorption sites and the polymer backbone. The
obtained phosphoric acid incorporated membranes have outstanding ionic conductivity of
127 mS cm−1 at 160 ◦C and excellent tensile strength of 7.94 MPa. On the other hand, the
single H2/O2 fuel cell performance with the optimized membrane is inspiring, achieving a
peak PD of 559 mW cm−2 at 160 ◦C. Table 2 summarized the preliminary characteristics of
various proton-conducting polysulfone-based composite membranes along with their fuel
cell evaluations.

Table 2. Preliminary characteristics of various proton-conducting polysulfone based composite
membranes along with their fuel cell evaluation.

Membrane

Membrane Characteristics
Fuel Cell

Performance
Ref.

WA (%)
IEC

(meq. g−1)

Ionic
Conductivity

(S cm−1)

Methanol
Permeability

Selectivity
Ratio

Oxidative
Stability

PSF/MOF/Si
nanocomposite

16.50 0.86 0.017 @ 70◦C - - -
OCV: 0.90 V; PD:

40.80 mW cm−2 @
160 ◦C

[67]

Crosslinked
CNDs-SPPSU

134 1.67 0.0563 @ 80 ◦C - - -
OCV: 1.0224 V @

100% RH
[68]

SPEESSA/sulfonic
acid zeolite
composite

29.12 3.189 0.124 - - -
OCV: 0.91 V; PD:
0.45 W cm−2 @

1.1 A cm−2
[69]

SPSU/NIMs-GO
composite

34.1 1.49 0.23 @ 75 ◦C - - -
OCV: 1.038 V; PD:
167.6 mW cm−2 @

60 ◦C
[70]

SPSU-LDH
composite

31 1.49 0.0137 @ 120 ◦C - - -
PD:

204.5 mW cm−2 @
110 ◦C

[71]

PSF-N-C3H6SO3H/
PSF-O-C3H6SO3H

60 2.03 0.04666 2.65 × 10−8 cm2 s−1 -

94.12% residual
mass remains at
80 ◦C for 1 h in

Fenton’s solution

- [72]

PSU/SPANI/Nb2O5

nanocomposite
17.6 1.50 0.0674 - -

98.6% residual
mass remains in
Fenton’s solution

- [73]

PSU-g-
phosphonated

polystyrene/SPSU
composite

23.07 - 0.0172 @ 95 ◦C 0.96 × 10−8 cm2 s−1 -

>95% residual
mass remains at

25 ◦C for 120 h in
Fenton’s solution

- [79]

Phosphonated PSU 6.6 2.75 0.0003 @ 160 ◦C - -

87.7% residual
mass remains for
70 h in Fenton’s

solution

- [82]

PA doped
TDAP-g-PSU

- - 0.056 @ 160 ◦C - - -
OCV: 0.92 V; PD:
453 mW cm−2 @

150 ◦C
[83]

Poly(1-
vinylimidazole)-g-

PSU
220.3 - 0.127 @ 160 ◦C - - -

OCV: 0.98 V; PD:
559 mW cm−2 @

160 ◦C
[84]

In summary, the potential of sulfonated polysulfone and its composites, phospho-
nated polysulfone, and several grafted polymers of sulfonated polysulfone for low and
high-temperature polymer electrolyte membranes for PEMFC has been discussed. In
general, the incorporation of nano sized inorganic filler or metal organic frameworks or
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zeolites has enhanced a phenomenal result in both the mechanical characteristics and ion
conducting properties.

2.2. Polysulfone and Its Composites for DMFCs

DMFCs provide numerous distinct advantages associated with reasonable working
temperatures, easy handling and storage of liquid fuel (methanol), offering power in the
utmost effective way. Furthermore, there is no need to recharge the DMFC because liquid
fuel can be delivered directly to the anode, and electricity can be produced immediately.
Significantly, it might be the major energy basis for portable electronic instruments and
automobiles with no toxic gases associated with combustion engines [85–87]. Sulfonated
polysulfone (SPSU) exhibited exceptional mechanical strength and extraordinary methanol
resistance (even at 100% sulfonation), illustrating its tremendous potential for the fabrica-
tion of novel polymeric membranes used in DMFC technology. Nevertheless, the very low
ionic conductivity of SPSU still remains one of the most serious drawbacks. A favorable
and cost-effective method to report this issue is to: (i) blend SPSU with other polymers.
In practice, this approach is commonly applied in order to modify the characteristics of
a virgin macromolecule, attaining superior properties in the resulting blended materi-
als [88–91]. (ii) The preparation of composite membranes by dispersion of inorganic fillers
including silica (SiO2) [92], titania (TiO2) [93], zeolites [94], and heteropoly acids inside the
polymer matrix have been demonstrated to satisfactorily enhance the ionic conductivity of
the resulting electrolyte without sacrificing its mechanical resistance [95,96]; and (iii) the
introduction of functionalized 2D-layered materials (example, graphene oxide, smectite
clay, layered double hydroxides (LDHs), and siliceous layered materials) effectively lowers
the methanol permeability in Nafion-based membranes and simultaneously improves their
proton conductivity, water retention capacity, and thermo-mechanical resistance [97–100].
Among these inorganic fillers, LDHs have recently gained more attention, a class of nanos-
tructured materials belonging to the anionic clay family, with unique physicochemical
properties [101–104]. For instance, E. Lufrano et al. described the incorporation of hy-
groscopic LDH particles into SPSU for DMFCs [105]. The substantial enhancement in
the water and methanol absorption and dimensional stability of the SPSU/LDH com-
posite membrane was observed when compared with both pristine SPSU and Nafion®

212 membranes. Furthermore, the fabricated single DMFC achieved the remarkable PD of
150 mW cm−2 at 80 ◦C at higher methanol concentration (5 M methanol) solution. Xianlin
Xu et al. reported bio-inspired amino acid-functionalized cellulose whiskers impregnated
SPSU as PEM for DMFCs [106]. The maximum ionic conductivity of 0.234 S cm−1 at 80 ◦C
achieved for 10 wt% L-Serine-functionalized cellulose whiskers. In addition, enhanced
water uptake and reduced methanol cross-over were observed. Therefore, the composi-
tion of filler and mixed matrix display outstanding characteristics, and H+ conducting
mixed-matrix membranes are promising materials in DMFCs. Adnan Ozden et al. pre-
pared SPSU/zirconium hydrogen phosphate (ZrP) composite membranes with different
degrees of sulfonation (20, 35, and 42%) and a uniform weight percentage of ZrP (2.5%) to
alleviate the practical tasks related to the usage of traditional Nafion® membranes in DM-
FCs [107]. The SPSU/ZrP-42 composite membrane exhibited a maximum OCV of 0.75 V
and PD of 119 mW cm−2 at 80 ◦C. Nattinee Krathumkhet et al. synthesized composite
membrane from sulfonated ZSM-5 zeolite and SPSU by solution casting method [108].
First, sulfonated ZSM-5 zeolite was synthesized by an organo-functionalization method
using poly(2-acrylamido-2-methylpropanesulfonic acid). Then, SPSU was prepared by the
conventional method. The composite membrane, ZSM-5/SPSU, significantly enhanced the
ionic conductivity, water uptake, methanol cross-over, and IEC relative to the pristine SPSU
membrane. Recently, C. Simari et al. reported blended electrolyte membranes comprised of
SPSU and SPEEK (SPSU/SPEEK) with two different ratios, 50/50 and 25/75, through a
facile and modest solution casting method for DMFC applications [109]. The fabricated
blend membrane showed enhancement of the proton transport along with the reduced
methanol cross-over which is one of the essential criteria for DMFC operation. Furthermore,
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the DMFC performance with 25/75 blend membrane showed a PD of 130 mW cm−2 at
353 K in 4 M methanol. Faizah Altaf et al. also prepared sulfonated polysulfone (SPSU)
based composite PEM filled with polydopamine (PD) anchored carbon nanotubes (PD-
CNTs) by phase inversion methodology with varying the filler (PCSPSU) [110] and the
detailed reaction protocol was given in Figure 7. The composite membrane, 0.5 weight% PD-
CNTs, displayed a 43% rise in ionic conductivity compared to the original SPSU membrane,
increasing from 0.085 S cm−1 for pristine to 0.1216 S cm−1 for the composite membrane at
80 ◦C. The prepared composite membrane also exhibited a remarkable 75% reduction in
methanol permeability (5.68 × 10−7 cm2 s−1) compared to recast Nafion® 117 membranes
(23.00 × 10−7 cm2 s−1). The obtained outcomes suggested that the PD functionalized CNTs
based PEMs as a potential candidate for DMFCs.

Figure 7. Reaction protocols entailed in the preparation of composite membrane, PCSPSU. Repro-
duced with permission from [110]. Copyright 2020 Elsevier.

In summary, SPSU membranes-based composite membranes were widely used as
PEM for DMFCs to enhance its ionic conductivity, methanol cross-over, and single cell
performance. Nevertheless, as previously discussed, in the performances of SPSU compos-
ites, blends, and LDH based SPSUs, many inconsistencies with the experimental results in
relation to ionic conductivity, water uptake, and so on are perceptible. Each method used to
improve the performance of composite and or blend SPSU based membranes offers benefits
and drawbacks. Table 3 consists of SPSU and its composites for DMFCs application.
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Table 3. Sulfonate polysulfone and its composites for DMFCs.

Membrane

Membrane Characteristics
Fuel Cell

Performance
Ref.

WA (%)
IEC

(meq.g−1)

Ionic
Conductivity

(S cm−1)

Methanol
Permeability

(cm2 s−1)

Selectivity
Ratio

(sS cm−3)

Oxidative
Stability

SPSU/LDH
nanocomposite

29 1.49 0.102 @ 120 ◦C 116 mA cm−2 - -

OCV: 0.82 V; PD:
150 mW cm−2 @

80 ◦C in 5 M
CH3OH

[105]

Amino-acid
functionalized

cellulose
whiskers/SPSU

68 - 0.234 @ 80 ◦C 7.6 × 10−7 - -

OCV: 0.73 V; PD:
73.757 mW cm−2 @

60 ◦C in 2 M
CH3OH

[106]

SPSU/ZrP 38 - 0.156 @ 80 ◦C - -

96.66% of
weight

retention after
Fenton test

OCV: 0.75 V; PD:
119 mW cm−2 @

80 ◦C
[107]

Sulfonated
ZSM-5/SPSU

45.41 1.03 0.00965 @ RT 2.24 × 10−6 4309.03 - - [108]

SPSU/SPEEK 34 - 0.073 @ 120 ◦C - - -

OCV: 0.81 V; PD:
130 mW cm−2 @

80 ◦C in 4 M
CH3OH

[109]

PD-CNT/SPSU
composite

32 - 0.1216 @ 80 ◦C 5.68 × 10−7 - - - [110]

2.3. Alkaline Based Polysulfone and Its Composites for AMFCs

Recently, the progress of AMFCs has improved significantly, primarily due to the
advantages of the existence of these systems over the widely known PEMFCs. The alkaline
medium produced by AEM in the fuel cell favors electrode kinetics [111] and subsequently
avoids the usage of expensive and noble metal catalysts. Hence, it is possible to use non-
precious metals (cobalt, nickel and aluminium) [112], thereby reducing the cost of the
system [113]. Nieves Urena et al. reported on amphiphilic semi-interpenetrating polymer
networks for AEMFC applications with three dissimilar ionic groups, namely, tetramethyl
ammonium, 1-methylimidazolium, and 1,2-dimethylimidazolium and cross-linked with
N,N,N’,N’-tetramethylethylenediamine (TMEDA) [114]. The resulting membrane exhibits
the following characteristic: (i) at low temperatures (lower than 100 ◦C) has high ther-
mal stability, (ii) lower water uptake at ambient temperature, (iii) acceptable hydroxyl
ion conductivity, (iv) outstanding chemical stability, (v) excellent dimensional stability
because of the inferior water uptake. Furthermore, the membrane showed excellent al-
kaline stability. Recently, Yang Bai et al. prepared quaternized polysulfone-based AEMS
cross-linked with rGO (CQPSU-X-rGO) functionalized with different chain length small
molecules [115]. Especially, the functionalized CQPSU-X-rGO showed improved ionic
conductivity and chemical stability. The maximum ionic conductivity of 0.140 S cm−1 at
80 ◦C was achieved for rGO cross-linked AEMS. Tiantian Li et al. synthesized PSU based
anion exchange membrane via Friedel-Crafts alkylation method contains pendant imida-
zolium functionalized side chain to avoid conventional carcinogenic chloromethylation.
It does not require any special functional groups on the polymeric materials, which is
the main advantage compared with other mentioned chloromethylation-free routes in the
literature [116]. Furthermore, the membranes synthesized in this methodology displayed
excellent ionic conductivity and swelling ratio along with good mechanical, thermal, and
alkaline stabilities. Very recently, Lingling Ma et al. synthesized a series of AEMs modified
with bulky rigid -cyclodextrin (CD) and long flexible multiple quaternary ammonium (MQ)
membrane for AMFC applications [117]. The resulting AEM with a relatively low IEC of
1.50 meq. g−1 exhibits a good ionic conductivity of 112.4 mS cm−1 at 80 ◦C, whereas its
counterpart without CD modification shows 83.0 mS cm−1 despite a similar ion exchange
capacity (1.60 meq. g−1). This is because large CD units can impart a high free volume
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to the membrane, dropping the ion transfer resistance, while the hydrophilicity of the
external surface of the CD can promote the formation of ion transport channels across
the long flexible MQ cross-links. The fabricated H2/O2 FC provides a maximum PD of
288 mW cm−1 at 60 ◦C. Mona Iravaninia et al. prepared AEM from polysulfone membrane
by a conventional three-step method, chloromethylation, amination, alkalization with
functionalized trimethylamine and N,N,N’,N’-tetramethyl-1.6-hexanediamine [118]. The
prepared membrane exhibited ionic conductivity of 2–42 mS cm−1 at 25–80 ◦C in different
RH. The IECs, anion transport numbers, and hydration numbers were within the range
of 1.6-2.1 meq. g−1, 0.95–0.98 and 9–16, respectively. Furthermore, the single H2/O2 fuel
cell showed a OCV of 1.05 V and a maximum PD of 110 mW cm−2 at 60 ◦C. Yang Bai et al.
proposed a facile strategy to construct rGO stable cross-linked PSU-based AEMs with en-
hanced properties [119]. The cross-linked AEMS can constrict the internal packing structure
and improve alkaline stability, ion conductivity, and oxidative stability. The rGO cross-
linked AEM showed higher ionic conductivity of 117.7 mS cm−1 at 80 ◦C. Wan Liu et al.
derived AEM from QPSU and exfoliated LDH for fuel cell applications [120]. The compos-
ite membrane comprising 5% LDH sheets showed good performance, displaying an ionic
conductivity of 0.0235 S cm−1 at 60 ◦C. Yuliang Jiang et al. reported a series of PSU-based
AEMs with cross-linker, 4, 4′-trimethyenedipiperidine (TMDP) [121]. The cross-linked
aminated polysulfone (CAPSF) displayed supreme alkaline stability compared with non-
crosslinked aminated polysulfone (APSF) in 1 M KOH for 15 days at 333 K. Furthermore,
the CAPSF exhibits better dimensional stability as compared with the non-cross-linked
APSF membrane owing to the compact interconnected architecture formation. From the
above results, the authors concluded that the prepared crosslinked AEM is a potential
candidate for AMFCs. Maria Teresa Perez-Prior et al. prepared crosslinked polysulfone
AEMs using 1,4-diazabicyclo [2,2,2] octane (DABCO) as cross-liner [122]. The obtained
results revealed that the cross-linked membranes displayed exceptional thermal stability,
improved water uptake and dimensional stability as compared with non-cross-linked
AEM. Prerana Sharma et al. described a novel strategy to synthesize alkaline membrane of
chloromethylated polysulfone using cross-linker, 4,4′(3,3′-bis(chloromethyl)-[1,1′-bipheny]-
4,4-diyl)bis(oxy))dianiline) (BCBD) [123]. The detailed reaction pathway of cross-linked
quaternary polysulfone (CR-QPS) membrane is shown in Figure 8. The cross-linked mem-
brane performed well in AMFCs and exhibited maximum OCV of 0.813 V and PD of
103.6 mW cm−2 at 260 mA cm−2.

P. F. Msomi et al. reported a sequence of AEM comprised of poly(2,6-dimethyl-1,4-
phenylene) (PPO) and PSF blended with titania (QPPO/PSF/TiO2) [124]. The swelling ratio,
ionic conductivity, water uptake, and IEC of the composite were enhanced by multiplying
the titania filler content. Furthermore, the QPSU/PSF/2% TiO2 displayed a supreme
PD of 118 mW cm−2 at 60 ◦C with excellent membrane stability over 60 h. K. Rambabu
et al. described imidazolium functionalized PSF membranes modified with zirconia (Im-
PSF/ZrO2) by solution casting method for AMFC applications [125]. The enhanced water
absorption, IEC (2.84 meq. g−1), hydroxyl ion conductivity (80.2 mS cm−1 at 50 ◦C), and
thermal resistance achieved for Im-PSF/ZrO2 composite membrane as compared with
pristine Im-PSF, which confirms the strong adhesion and property enhancement caused
by zirconia. Furthermore, the composite membrane with Im-PSF/10% ZrO2 showed a
maximum PD of 270 mW cm−2 with OCV of 1.04 C in H2/O2 fueled AMFCs.

In summary, prominent developments have been made for the use of quaternized poly-
sulfone with AEM in alkaline membrane fuel cells with respect to thermal, electrochemical,
mechanical stability, and hydroxyl ion conductivity. Furthermore, virtuous advancement
has been achieved regarding the impregnation of various inorganic filler or ionic liquids or
polymer blend into various polymeric assemblies where the resultant AEMs accomplished
rational performance when tested in AMFCs.
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Figure 8. Schematic illustration for synthesis of CR-QPS AEM. Reproduced with the permission
from [123]. Copyright 2020 Elsevier.

3. Conclusions and Future Perspectives

The emerging fuel cell market is a strong driving force for the scientific community to
achieve new, affordable, and high-performance membrane materials. The present review
deals with the recent advancements of polysulfone-based proton exchange membrane/anion
exchange membrane for PEMFCs, DMFCs, and AMFCs application. Polysulfone-derived
PEM/AEM and its composites are exploited a crucial role in the fuel cell applications as
evidenced by the ample literature that is available. For PEMFCs/DMFCs, sulfonated poly-
sulfone and its composites with inorganic fillers, layered double hydroxides, metal-organic
frameworks have been investigated in this present review. Specifically, water uptake, ionic
(H+) conductivity, methanol permeability, alkaline stability, and the performance of fuel cell
substantially enhanced as compared with pristine sulfonated polysulfone. Furthermore,
many polymer electrolyte membranes reported in this review showed a better fuel cell per-
formance and reduced methanol crossover compared with commercially available Nafion
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membranes in both PEMFCs and DMFCs operation. However, still Nafion membranes
were used in the industrial sector and transport vehicles. Therefore, the commercialization
of the PEMs is the utmost priority to every researcher in the membrane study to overcome
Nafion membrane for PEMFCs/DMFCs applications.

As deliberated, the use of AEMs in electrochemical systems could potentially eliminate
the common issues such as fuel crossover, confronted in PEMFCs. Additionally, the use
of AEMs has several advantages, such as being used in alkaline environments, which
enables the use of non-precious metal catalysts. Nevertheless, numerous problems need to
be fixed such as poor ionic conductivity (which is accountable for poor voltage efficiency
and ohmic losses), insufficient membrane stability in alkaline and oxidative atmospheres,
and a lack of suitable alkaline ionomers, especially for AMFCs. Several conventional
methods have been extensively studied to improve the ionic conductivity of AEMs. Re-
cently, interpenetrating polymer network (IPN) and pore-enriched composite AEMs have
efficiently imitated the Nafion-like morphology, where the hydrophobic polyolefin and the
hydrophilic quaternized polymer moiety are well disconnected. As a result, a fabulous
enhancement in the ionic conductivity could be attained. Inclusive data regarding the
oxidative stability of AEMs can inspire further work towards the modification of existing
materials or the development of new materials for AEMs. The development of AEMs based
on PEEK, polybenzimidazole, and functional group chemistries based on imidazolium
and guanidinium are still in the early stages. Therefore, the chemical stability of these
AEMs can be studied in detail and their performance in electrochemical systems can be
explored extensively.

Furthermore, the aminated/quaternized polysulfone blended with other polymers or
the incorporation of inorganic fillers, such as silica, titania, zirconia, zeolites, metal-organic
frameworks, etc., hinder the ionic conductivity and may reduce the chemical stability of
the AEM. Despite their low alkaline stability, AEMs is still an important research field with
a great outlook due to their outstanding advantages over PEMFCs. Therefore, there is an
urgent need to progress novel AEMs that attain a high ionic conductivity and selectivity
and exhibit outstanding chemical stability in alkaline conditions and high temperatures.
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