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ARTICLE INFO ABSTRACT

Keywords: Crab-eating (Cerdocyon thous) and Pampas foxes (Lycalopex gymnocercus) are wild canids distributed in South
Canid America. Domestic dogs (Canis lupus familiaris) and wild canids may share viral pathogens, including rabies virus
Fox (RABV), canine distemper virus (CDV), and canine parvovirus 2 (CPV-2). To characterize the virome of these
HTS wild canid species, the present work evaluated the spleen and mesenteric lymph node virome of 17 crab-eating
Wwildlife . . . .

Metagenomics and five Pampas foxes using high-throughput sequencing (HTS). Organ samples were pooled and sequenced
Vimsg using an Illumina MiSeq platform. Additional PCR analyses were performed to identify the frequencies and host

origin for each virus detected by HTS. Sequences more closely related to the Paramyxoviridae, Parvoviridae and
Anelloviridae families were detected, as well as circular Rep-encoding single-stranded (CRESS) DNA viruses. CDV
was found only in crab-eating foxes, whereas CPV-2 was found in both canid species; both viruses were closely
related to sequences reported in domestic dogs from southern Brazil. Moreover, the present work reported the
detection of canine bocavirus (CBoV) strains that were genetically divergent from CBoV-1 and 2 lineages.
Finally, we also characterized CRESS DNA viruses and anelloviruses with marked diversity. The results of this
study contribute to the body of knowledge regarding wild canid viruses that can potentially be shared with
domestic canids or other species.

1. Introduction

Crab-eating (Cerdocyon thous) and Pampas foxes (Lycalopex gymno-
cercus) are Canidae members with distribution ranges that overlap ex-
tensively in South America. These wild canids are widely found in the
farms of southern Brazil, on the border regions of Uruguay and
Argentina. The vulnerability of these animals is in part due to the de-
struction of their natural environment, either by deforestation for ex-
tending the agricultural borders, or spreading of urban communities on
the natural environment, as well as the habitat fragmentation caused by
the roads. These foxes seem to be tolerant to human disturbance and are
frequently seen in rural areas and close to urban regions. These wild

canids have nocturnal scavenger habits and live in close proximity with
domestic animals, which may be notable, as domestic host species can
play a role in the transmission of infectious agents to wild animals
(Alves et al., 2018a; Antunes et al., 2018; Ferreyra et al., 2009; Hiibner
et al., 2010).

It is known that domestic dogs (Canis lupus familiaris) and wild ca-
nids may share viral pathogens, including the rabies virus (RABV)
(Antunes et al., 2018; Rocha et al., 2017), canine distemper virus (CDV)
(Conceicao-Neto et al., 2017; Ferreyra et al., 2009; Hiibner et al., 2010;
Megid et al., 2009), canine parvovirus 2 (CPV-2) (de Almeida Curi
et al., 2010; Hiibner et al., 2010), canine coronavirus (Alfano et al.,
2019), canine adenoviruses 1 and 2 (Dowgier et al., 2018), and canine
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astrovirus (Alves et al., 2018a). However, the knowledge about sanitary
conditions of these animals are still scarce.

The enhanced availability and application of high-throughput se-
quencing (HTS) technologies has facilitated the detection of known and
unknown viruses (Goodwin et al., 2016; Paim et al., 2019). Thus, the
knowledge of the virus genetic diversity present in different host species
can be improved. HTS sequencing has been applied in the knowledge of
the virome of domestic dogs (Moreno et al., 2017; Weber et al., 2018a,
2018b), but reports of its application in wild canids remain scarce.
Therefore, the present study aimed to evaluate and characterize the
spleen and mesenteric lymph node virome of crab-eating and Pampas
foxes from southern Brazil and Uruguay using HTS. The results outline
the viral agents that compound the microbiota of these wild dogs,
helping to elucidate the viral population present in these wild canid
species.

2. Materials and methods
2.1. Study design and sample sources

Five Pampas foxes (Lycalopex gymnocercus) and seventeen crab-
eating foxes (Cerdocyon thous) run over by cars were collected by the
Veterinary Pathology sector of Universidade Federal do Rio Grande do
Sul and Plataforma de Salud Animal of Instituto Nacional de
Investigacién Agropecuaria Tacuarembd using an active search on
highways between November 2017 and September 2019. Fig. 1 shows
the location on the foxes sampled in the present study. The mesenteric
lymph nodes and spleen of the 22 animals were collected, macerated
and diluted to 20% (w/v) in phosphate-buffered saline (PBS) (pH 7.2),
centrifuged at low speed (1800 x g for 30 min), filtered through a 0.45-
um filter for removal of small debris and stored at —80 °C for sub-
sequent analysis. These organs were selected since they concentrate
antigens in order to presentation for immune system, which could
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increase the chance of detecting some viral agents.

The authorization for the collection of the samples from Brazil was
registered in SISBio/ICMBio under number 67053. Samples obtained of
dead animals do not require authorization for molecular analysis in
Uruguay.

2.2. Viral metagenomics and HTS

The 22 wild canid spleens and mesenteric lymph nodes (17 crab-
eating foxes and five Pampas foxes) were assembled into one pool
containing 500 pL of each sample. A total of 11 mL was passed through
a 0.22-um filter and subsequently centrifuged on a 25% sucrose cushion
at 150,000g for 3 h at 4 °C in a Sorvall AH629 rotor. The pellet con-
taining the viral particles was incubated for 1.5 h with DNase and
RNase enzymes (Thermo Fisher Scientific, Waltham, MA, USA)
(Thurber et al., 2009). Subsequently, the total RNA and DNA were
isolated using TRIzol™ LS reagent (Thermo Fisher Scientific) and a
standard phenol-chloroform protocol (Sambrook and Russel, 2001),
respectively. The viral DNA was enriched using the Genoplex® Com-
plete Whole Genome Amplification (WGA) kit (Sigma-Aldrich, St.
Louis, MO, USA) according to the manufacturer's recommendations.
Furthermore, the viral RNA was reverse-transcribed using the Trans-
Plex® Complete Whole Transcriptome Amplification Kit (Sigma-Al-
drich) following the manufacturer's recommendations. The DNA pro-
ducts from these enrichment protocols were pooled in equimolar
amounts and purified using the PureLink™ Quick Gel Extraction and
PCR Purification Combo Kit (Thermo Fisher Scientific). The quality and
quantity of the DNA were assessed through spectrophotometry and
fluorometry performed with NanoDrop™ (Thermo Fisher Scientific) and
Qubit™ (Thermo Fisher Scientific), respectively. The DNA libraries were
further prepared with 1 ng of purified DNA using the Nextera XT DNA
sample preparation kit and sequenced using a MiSeq Reagent kit v2 300
(2 x 150 paired-end) at the MiSeq platform (Illumina®).

N
BRAZIL
Q Capivari do Sul - Cerdocyon thous (2)
Caxias do Sul - Cerdocyon thous (2)
@ Cruz Alta- Cerdocyon thous (2)
Estrela - Cerdocyon thous (2)
9 Santa Margarida do Sul - Cerdocyon thous (3)
9 Sdo Francisco de Paula - Lycalopex gymnocercus (3)
Tavares - Cerdocyon thous (1)

Q Viamao - Cerdocyon thous (2)

URUGUAY
° Florida - Cerdocyon thous (1)
9 Rivera - Lycalopex gymnocercus (1)

9 Tacuarembo - Cerdocyon thous (2), Lycalopex gymnocercus (1)

Fig. 1. Spatial distribution of the crab-eating (Cerdocyon thous) and Pampas foxes (Lycalopex gymnocercus) sampled. The quantity of each wild canid specie are shown

on the map.
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Table 1

Summary of sequences that matched with the animal viruses present in the
pooled spleen and mesenteric lymph nodes of Cerdocyon thous and Lycalopex
gymnocercus sample.

Best blast hit (BLASTX, No. No. of Contigs Amino acid
E-value < 1 x 107%) of reads® lengths identity range”
hits
Canine bocavirus 3 22 267-343 93.5-100%
Carnivore protoparvovirus 1 2 12 435-530 99.3-100%
Canine morbillivirus 3 10 109-251 99.8-100%
Anelloviridae 171 1678 886-2415 42.3-64.8%
CRESS DNA virus 7 87 327-852 34.1-55.9%

2 Analysis performed in BLASTX tool, from GenBank database.
2.3. Bioinformatic analysis

The quality of the generated sequences was evaluated using FastQC.
Furthermore, the sequences with bases possessing a Phred quality
score < 20 were trimmed with the aid of Geneious software (version
9.0.5). Subsequently, the paired-end sequence reads were de novo as-
sembled into contigs with SPAdes Assembler version 3.11.1 (Bankevich
et al., 2012). All assemblies were confirmed by mapping reads to con-
tigs produced by the SPAdes Assembler using Geneious software.
Thereafter, the assembled contigs were examined for similarities with
known sequences through BLASTX software using Blast2GO (Gotz et al.,
2008). Sequences with E-values <10~ > were classified as likely to have
originated from eukaryotic viruses, bacteria, bacteriophages, or un-
known sources, a conclusion reached based on the taxonomic origin of
the sequence with the best E-value. Gene and protein comparisons were
performed with BLASTN and BLASTP programs (https://blast.ncbi.nlm.
nih.gov/Blast.cgi).

Sequences representative of viruses belonging to circular Rep-en-
coding single-stranded (CRESS) DNA viruses and the families
Anelloviridae, Parvoviridae and Paramyxoviridae were obtained from
GenBank and aligned with the sequences identified in the present study
with MAFFT software (Katoh and Standley, 2013). Phylogenetic trees
were constructed using MEGA6 (Tamura et al., 2013).

2.4. PCR and RT-PCR

The 22 animals were screened individually for CPV-2 (Buonavoglia
et al., 2001), CDV (Fischer et al., 2013), canine circovirus (CaCV) (Li
et al., 2013), and RABV (Soares et al., 2002). Positive samples in the
applied CDV-RT-nested PCR were submitted to an additional assay to
amplify a fragment of CDV-hemagglutinin (An et al., 2008; Riley and
Wilkes, 2015) for genotyping.

CBoV were searched applying two independent PCR protocols in the
22 individual wild canid samples, where the first one was designed
against one of the contigs obtained in the HTS in order to amplify a 154-
bp fragment from the nonstructural protein of CBoV-1 (Supplementary
Table). The second PCR protocol using primers CBoV-QFX1-f1 and
CBoV-QFX1-r2 amplifies a 311-bp fragment of the VP2 gene of CBoV-1
(Kapoor et al., 2012)

The sequences related to anelloviruses detected through HTS higher
than 400 amino acids in ORF1 were investigated individually to define
the host origin (Lycalopex gymnocercus or Cerdocyon thous). The primer
pairs (Supplementary Table 1) were selected using Primer3 software
(Untergasser et al., 2007). The PCRs for anelloviruses were conducted
using [1x ] PCR buffer, 1 mM MgCl,, 0.5 mM dNTP mix, 0.2 mM each
specific primer pair, and 1 unit of GoTaq® DNA Polymerase (Promega,
Madison, WI, USA). Reactions were performed in a Veriti 60-well
Thermal Cycler (Applied Biosystems, Foster City, CA, USA) under the
following conditions: 3 min at 95 °C followed by 35 cycles of 45 s at
95 °C, 45 s at 50 °C and 45 s at 72 °C with a final extension at 72 °C for
7 min.
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2.5. Sanger sequencing

All positive samples in PCR and RT-PCR were submitted for Sanger
sequencing to confirm the specificity of the tests. The PCR products
were purified using the PureLink™ Quick PCR Purification Kit
(Invitrogen, Carlsbad, CA, USA). Both DNA strands were sequenced
with an ABI PRISM 3100 Genetic Analyzer utilizing a BigDye
Terminator v.3.1 cycle Sequencing Kit (Applied Biosystems, Foster City,
CA, USA). Furthermore, overlapping fragments were aligned and as-
sembled using Geneious software.

3. Results
3.1. HTS overview

One DNA library consisting of 22 pooled wild canid spleens and
mesenteric lymph nodes (17 crab-eating foxes and five Pampas foxes)
was generated and sequenced using paired-end 2 X 150 base runs on
the Illumina MiSeq platform, which generated a total of 138,850 reads.
The 13,250 assembled sequence contigs produced with SPAdes
Assembler version 3.11.1 (Bankevich et al., 2012) were compared with
the viral reference database and the GenBank nonredundant protein
database through a BLASTX search conducted with an E-value cut-off of
10 % in Blast2GO (Gotz et al., 2008). The exogenous eukaryotic virus-
related sequences comprised 1.38% (1809/138,850) of the reads and
1.37% (182/13,250) of the contigs.

Furthermore, eukaryotic exogenous virus-related sequences with
single-stranded DNA (ssDNA) genomes belonging to two viral families
(Anelloviridae and Parvoviridae) and CRESS DNA viruses were observed,
as well as with single-stranded RNA (ssRNA) genomes belonging to the
Paramyxoviridae family (Table 1). Moreover, the majority of the viral
sequences studied shared a high degree of identity with known animal
viruses (CPV-2, CDV and CBoV), while others (anellovirus-like and
CRESS DNA virus) exhibited a high degree of divergence to genomes
already recorded in GenBank. Information regarding the sequences
obtained is described in the following sections. All 22 samples analyzed
using CaCV (Li et al., 2013) and RABV-specific PCR (Soares et al., 2002)
were negatives.

3.2. Canine distemper virus (CDV)

Three contigs closely related to CDV were obtained in the pooled
wild canid organs sequenced by HTS (Table 1). Applying the RT-nested
PCR protocol to amplify the CDV nucleocapsid (Fischer et al., 2013),
18.18% (4/22) of the samples were positive, and all the positive sam-
ples were from Cerdocyon thous from Brazil. The amplification products
from the positive samples were Sanger sequenced and shared
99.29-100% nucleotide identity between them. In the nucleotide
BLAST search, the samples detected in this study presented 99.6 to
100% identity with CDV strains detected in domestic dogs in Brazil
(GenBank accession numbers MH382872 and KU725677). The partial N
gene sequences obtained in the present study presented the same single
nucleotide polymorphisms (SNP) that characterize South America I
lineage described previously (Fischer et al., 2013). These sequences
were deposited in GenBank under accession numbers MT002482-
MT002485.

Positive samples were submitted to an additional PCR assay to
amplify a fragment of CDV-hemagglutinin (An et al., 2008; Riley and
Wilkes, 2015) followed by Sanger sequencing for genotyping
(Budaszewski et al., 2014). The sequences presented 99.06 to 99.87%
nucleotide identity. In the nucleotide BLAST search, the samples de-
tected in this study presented 99.3 to 99.6% identity with CDV strains
detected in domestic dogs in Brazil (GenBank accession numbers
KC879049 and KC879050). The partial CDV-hemagglutinin phyloge-
netic reconstruction (Fig. 2) presented 14 well-supported branches
corresponding to the 14 genotypes analyzed. All the sequences
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generated in the present study grouped into the Europe/South America-
1 genotype cluster supported by a 72% bootstrap value. The sequences
grouped in the same node of samples detected in domestic dogs from

M MT036987 LVG1/17 Cerdocyon thous
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Fig. 2. Nucleotide phylogenetic reconstruction of the partial hemagglutinin of
canine morbillivirus species members highlighting the sequences detected in
the present study. Sequences were analyzed through maximum-likelihood
method applied with the GTR + G + I model. All analyses were conducted with
1000 bootstrap replicates, and the percentage of replicate trees in which the
sequences clustered together have been depicted adjacent to the branches.
Bootstrap values for each node have been demonstrated if they were > 50%.
The sequence detected in the present study has been highlighted with @.
GenBank accession numbers are described in the phylogenetic tree.

southern Brazil KC879049 and

KC879050).

(GenBank accession numbers

3.3. Canine parvovirus 2 (CPV-2)

In the 22 pooled wild dog organs submitted for HTS, the presence of
two contigs closely related to CPV-2 was observed (Table 1). The ap-
plication of the specific CPV PCR protocol (Buonavoglia et al., 2001)
revealed 13.64% (3/22) to be positive (one Lycalopex gymnocercus and
two Cerdocyon thous from Brazil).

All the CPV-2-positive PCR products were sequenced for CPV-2 type
definition (CPV-2a, 2b, or 2c). Furthermore, samples were assigned to
one CPV-2 type based on the presence of a deduced asparagine (2a),
aspartic acid (2b), or glutamic acid (2c) at amino acid position 426
(Buonavoglia et al., 2000). The three tested samples shared 99.03 to
99.23% nucleotide identity. In the nucleotide BLAST search, the sam-
ples detected in this study presented 99.6 to 100% identity with CPV-2
strains detected in domestic dogs in southern Brazil (GenBank accession
numbers MK344466, MK344470, and JF796206). One sample detected
in Cerdocyon thous was classified as CPV-2b, while the two other sam-
ples detected in the present study (one sample from a Cerdocyon thous
and one sample from a Lycalopex gymnocercus) were classified as CPV-
2c. The CPV-2 sequences generated in the present study were deposited
in the GenBank database under accession number MN997122-
MN997124.

3.4. Canine bocavirus (CBoV)

Three contigs more closely related to CBoV were obtained from the
pooled wild dog organs submitted for HTS (Table 1). One of the 22
(4.55%) samples was positive in both assays and was from a Lycalopex
gymnocercus sampled in Brazil. The two amplification products were
submitted for Sanger sequencing. The sequence obtained using the
primers designed in the present study (Supplementary Table) enabled
us to identify the same sequence obtained in HTS.

In a nucleotide BLAST search, the VP2 fragment (Kapoor et al.,
2012) named LV564/18 presented 96.9% identity with CBoV isolate
Dis-021 reported in a domestic dog presenting respiratory disease in the
United States (GenBank accession number JN648137).

To present the genetic relation between LV564/18 and other
Bocaparvovirus members, a partial VP2 gene phylogenetic tree applying
maximume-likelihood inference, GTR + G + I statistical method, and
1000 bootstrap was constructed in MEGA6 (Tamura et al., 2013)
(Fig. 3). The sequence LV564/18 obtained from the Lycalopex gymno-
cercus sample clustered in the same node of other genetically different
CBoVs (Dis-021 and HRB-C7) reported in domestic dogs from the
United States and China, respectively (GenBank accession numbers
JN648137 and KT192702, respectively), supported by a 99% bootstrap
value. This genetically divergent CBoV cluster evolved from the same
common ancestor that originated the CBoV-1 and CBoV-2 sequences, as
supported by an 82% bootstrap value.

3.5. Anelloviruses

A total of 171 contigs with a closer association with Anelloviridade
members were also observed (Table 1). The contigs ranged between


http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=search&db=nucleotide&doptcmdl=genbank&term=KC879049
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http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=search&db=nucleotide&doptcmdl=genbank&term=JN648137
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=search&db=nucleotide&doptcmdl=genbank&term=JN648137
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Fig. 3. Nucleotide phylogenetic reconstruction of the partial VP2 of subfamily Parvovirinae members highlighting the bocaparvovirus detected in the present study.
Sequences were analyzed through maximum likelihood method applied with the GTR + G + I model. All analyses were conducted with 1000 bootstrap replicates,
and the percentage of replicate trees in which the sequences clustered together have been depicted adjacent to the branches. Bootstrap values for each node have
been demonstrated if they were > 50%. The sequence detected in the present study has been highlighted with a A. GenBank accession numbers are described in the

phylogenetic tree.

2415 and 886 nt in length. It was possible to obtain two complete
genomes (Fig. 4A and B) and five additional sequences displaying the
complete ORF1 gene (Fig. 4C).

To identify the host of origin (pampas or crab-eating fox), we ap-
plied specific PCR protocols designed using the sequences identified in
HTS (Supplementary Table). No sequence was identified in either
Cerdocyon thous or Lycalopex gymnocercus. The sequences were named
the putative Anelloviridae family species Cerdocyon thous torque teno
virus 1 (CtTTV-1), CtTTV-2, CtTTV-3, CtTV-4, Lycalopex gymnocercus
torque teno virus 1 (LgTTV-1), and LgTTV-2, where two different se-
quences displaying 81.21% nucleotide identity (Table 2) were classified
as LgTTV-1 putative species. According to ICTV, nucleotide divergences
in the ORF1 gene higher than 35% and 56% denote the same anello-
virus species and genus, respectively (ICTV, http://www.ictvonline.
org/virusTaxonomy.asp). Apparently, six putative new Anelloviridae
species (CtTTV-1, CtTTV-2, CtTTV-3, CtTTV-4, LgTTV-1 and LgTTV-2)
belonging to five putative new genera were observed (Fig. 4C). CtTTV-1
and CtTTV-2 can be classified in the same genus, since they present
63.15% nucleotide identity in the ORF1 gene. The relation of the se-
quences reported in the present study and other members of the family
Anelloviridae is reported in Table 3.

Two whole genome Anelloviridae sequences were obtained by HTS:
CtTTV-1 LVO5 and LgTTV-1 LVO7. CtTTV-1 LVO5 (Fig. 4A) displayed a
typical Anelloviridae organization comprised of a circular single-

stranded DNA genome containing 2415 nucleotides (nt) and a 51.9%
C + G content. The sequence presents an untranslated intergenic region
comprising 556 nucleotides, putative ORF1 (nt 336 to 2048) and ORF2
genes (nt 190 to 468), and an ORF3 gene divided in two intervals (nt
190 to 465 and 1678 to 2034).

LgTTV-1 LVO7 (Fig. 4B) also displayed a typical Anelloviridae or-
ganization comprised of a circular single-stranded DNA genome con-
taining 2352 nucleotides (nt) and a 44.4% C + G content. The sequence
presents an untranslated intergenic region comprising 460 nucleotides,
putative ORF1 (nt 395 to 2095) and ORF2 genes (nt 204 to 581), and an
ORF3 gene divided in two intervals (nt 204 to 578 and 1638 to 2090).

To analyze the sequences detected in the present study and re-
presentative sequences within the Anelloviridae family, a complete
amino acid ORF1 phylogenetic reconstruction was performed (Fig. 4C).
CtTTV-1 LVO5, CtTTV-2 LV15 and CtTTV-3 LV08 were closely related
and apparently emerged from the same common ancestor that origi-
nated Torque teno canis virus (genus Thetatorquevirus) that was re-
ported in domestic dogs (Lan et al., 2011). CtTTV-4 LV23 emerged from
the same common ancestor that originated unclassified anelloviruses
detected in masked palm civet (Paguma larvata) (Nishizawa et al.,
2018). LgTTV-1 LV06 and LVO7 apparently evolved from the same
common ancestor of CtTTV-4 LV23 and the unclassified anelloviruses
reported in the masked palm civet. Finally, LgTTV-2 LV13 apparently
presents the same common ancestor of Etatorquevirus and
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Fig. 4. Genetic characterization of Anelloviridae family members detected in the present study. (A) Genomic organization of LVO5 detected in Cerdocyon thous in the
present study. (B) Genomic organization of LV07 detected in Lycalopex gymnocercus in the present study. (C) Amino acid phylogenetic tree of complete ORF1 gene
highlighting the sequences obtained in the present study. The sequences were analyzed through the maximum-likelihood method with JTT + G + I model. All
analyses were conducted with 1000 bootstrap replicates, and the percentage of replicate trees in which the sequences clustered together have been presented
adjacent to the branches. Bootstrap values for each node have been shown if they were > 50%. The sequences detected in the present study has been highlighted
with @ for sequences detected in Cerdocyon thous, and with A for sequences reported in Lycalopex gymnocercus. The sequences detected in the present study were
deposited in GenBank database: CtTTV-1 LV05 (MT010524), CtTTV-2 LV15 (MT010525), CtTTV-3 LV08 (MT010526), CtTTV-4 LV23 (MT010527), LgTTV-1 LV06

(MT010528), LgTTV-1 LV07 (MT010529), and LgTTV-2 LV13 (MT010530).
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Fig. 4. (continued)

Lambdatorquevirus genera members reported in domestic cats (Okamoto
et al., 2002) and seals (Ng et al., 2011), respectively.

3.6. Circular rep-encoding single-stranded (CRESS) DNA viruses

Seven contigs closely related to unclassified CRESS DNA viruses
were detected by HTS in the present work (Table 1). One of the seven
sequences presents the complete sequence of the putative replicase-
associated (Rep) protein, which is widely used to classify CRESS DNA
viruses (Zhao et al., 2019). This sequence was screened using PCR
(Supplementary Table) in the 22 wild canid samples and was detected
in one Cerdocyon thous from Brazil and putatively named Cerdocyon
thous-associated circular ssDNA virus - LVO3.

A complete Rep amino acid phylogenetic analysis was performed
using Cerdocyon thous-associated circular ssDNA virus - LVO3 and other
representative CRESS DNA viruses (Fig. 5). The phylogenetic re-
construction presented six-well separated clusters corresponding to
classified families Circoviridae, Genomoviridae, Geminiviridae, the pro-
posed potential family Kirkoviridae, and two independent clades con-
taining sequences not classified in any CRESS DNA viral family sup-
ported by bootstrap values ranging between 82 and 100%. The
Cerdocyon thous-associated circular ssDNA virus LV03 grouped into one
of the unclassified CRESS DNA viral families supported by an 87%
bootstrap value and was more closely related to sequences reported in
dragonflies, lakes and marine water (GenPept accession numbers
ALE29688, YP_009237550, AGA18247, and AGA18478).

4. Discussion

The virome present in spleen and mesenteric lymph node samples
obtained from 17 crab-eating foxes (Cerdocyon thous) and five Pampas
foxes (Lycalopex gymnocercus) has been described using HTS and me-
tagenomic analysis (Fig. 1). Previous works described the virome in
samples obtained in domestic dogs (Canis lupus familiaris) (Li et al.,
2011; Moreno et al., 2017; Weber et al., 2018a, 2018b), but only a
limited number of works analyzed wild canids as wolves (Canis lupus
signatus) (Conceicao-Neto et al., 2017) and red foxes (Vulpes vulpes)
(Lojki¢ et al., 2016). Our study, which employed nonspecific amplifi-
cation, revealed the presence of commonly reported dog viruses and
previously unknown viral agents (Table 1). The outstanding presence of
Parvoviridae and Anelloviridae members is consistent with the findings
reported in domestic dogs (Weber et al., 2018a, 2018b). We also ob-
served the presence of highly prevalent viral agents in domestic dogs
from Brazil, such as CPV-2 and CDV (Alves et al., 2018b), that are ge-
netically closely related to those reported in dogs of the same Brazilian
region where the wild canids were sampled.

RABV was not detected in the analyzed samples using either HTS
(Table 1) or RABV-specific PCR (Soares et al., 2002). In Brazil, RABV
was controlled in domestic dogs by intense public vaccination cam-
paigns (Freire de Carvalho et al., 2018). However, the circulation of
RABV in wildlife has become a major concern for public health
(Antunes et al., 2018; Campos et al., 2019; Rocha et al., 2017), where
biting of humans by wild animals has been reported. Moreover, crab-
eating foxes were identified as reservoirs of RABV variants (Campos
et al., 2019; Rocha et al., 2017). It is important to highlight that the
central nervous system is the optimal sample to detect RABV, instead of
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Table 2
Summary of Anelloviridae family-related sequences reported in the present study, reporting host of origin, ORF1 size, and nucleotide identity of ORF1 gene between
them.

Sequence name Host ORF1 size (aa) Nucleotide identity

LVO5 LVO06 Lvo7 LVvO08 LV13 LV15 Lv23

LV05 Cerdocyon thous 570

LV06 Lycalopex gymnocercus 566 42.08

LVO07 Lycalopex gymnocercus 566 41.71 81.21

LV08 Cerdocyon thous 581 57.23 43.93 42.57

LV13 Lycalopex gymnocercus 471 29.36 31.53 32.10 29.54

LV15 Cerdocyon thous 583 63.32 41.26 40.72 53.53 28.40

LV23 Cerdocyon thous 524 43.14 51.50 51.97 42.61 29.88 42.59

the samples used in the present study, and this factor may have con-
tributed to the non-detection of RABV in the samples analyzed.

The CDV species, renamed canine morbillivirus, was detected in
four of the 17 crab-eating foxes sampled from Brazil in the present
study by applying an RT-nested PCR protocol against the CDV nucleo-
capsid (Fischer et al., 2013). Two of these samples had a partial se-
quence within the CDV-hemagglutinin (An et al., 2008; Riley and
Wilkes, 2015) sequenced and were genotyped as South America 1/
Europe (Fig. 2), which is the most prevalent CDV genotype in southern
Brazil and Uruguay (Budaszewski et al., 2014; Fischer et al., 2016;
Sarute et al., 2014) and is also reported in Argentina (Panzera et al.,
2012). Other CDV genotypes as South America 2, 3 and 4 are frequently
reported in other South American countries as Argentina, Ecuador and
Colombia (Espinal et al., 2014; Panzera et al., 2014; Panzera et al.,
2012; Sarute et al., 2014). The CDV sequences detected in crab-eating
foxes of the present study were assigned as closely related to CDV in-
fecting domestic dogs from southern Brazil in both nucleocapsid and
hemagglutinin sequencing. CDV infection causes high mortality in do-
mestic and wild dogs (Beineke et al., 2015), and it is a common cause of
wildlife population declines (Cleaveland et al., 2000; Roelke-Parker
et al., 1996; Viana et al., 2015). Additionally, CDV was determined to
be the cause of death of crab-eating foxes in Brazil (Megid et al., 2009)
and Argentina (Ferreyra et al., 2009). Our data reinforce that crab-
eating foxes may be wild reservoirs of CDV and suggest a possible
spillover between crab-eating foxes and domestic dogs.

CPV-2 was reclassified as carnivore protoparvovirus 1 (genus
Protoparvovirus, subfamily Parvovirinae, family Parvoviridae) by the
International Committee of Taxonomy of Viruses (ICTV) (Cotmore
et al., 2014). In the present study, CPV-2 genome segments were found
in one Pampas fox and two crab-eating foxes from Brazil. These se-
quences were subtyped as CPV-2b and -2c. CPV-2b and CPV-2c strains
are more frequently found in domestic dogs from Brazil, where CPV-2c
substituted CPV-2b as the most prevalent CPV-2 subtype (Pinto et al.,
2012). Additionally, the CPV-2 fox sequences were closely related to
those reported in domestic dogs of the same Brazilian region. Wild
canids are also likely to act as reservoirs of CPV-2 infection for domestic
canine populations (Truyen et al., 1998; Van Arkel et al., 2019), and
CPV-2-positive serology was previously reported in Pampas and crab-
eating foxes from southern Brazil (de Almeida Curi et al., 2010; Hiibner
et al., 2010). CPV-2 is the most frequent canine pathogen worldwide
(Alves et al., 2018b; Decaro et al., 2011; Decaro and Buonavoglia,
2012) and an important cause of severe diarrhea in puppies (Decaro
and Buonavoglia, 2012). Moreover, CPV-2 is highly stable in the en-
vironment and can persist in domestic dog populations due to its in-
direct faecal-oral transmission and circulation in susceptible dogs (Van
Arkel et al., 2019). Our data reinforce that Pampas and crab-eating
foxes may be wild reservoirs of CPV-2. However, more studies are re-
quired to understand the impact of CPV-2 on these two wildlife species.

CBoV was detected in one Pampas fox from Brazil in the present
study (Fig. 3). This sequence was closely related to bocaparvoviruses
reported in domestic dogs presenting respiratory disease (Kapoor et al.,

2012). This CBoV is genetically different from CBoV-1 and CBoV-2,
which were reclassified as carnivore bocaparvovirus 2 (CBPV-2) in the
genus Bocaparvovirus of the subfamily Parvovirinae and family Parvo-
viridae (Cotmore et al., 2014). Apparently, the CBoV sequence from the
present study is from a new species within the genus Bocaparvovirus.
This putative new genus was only reported in domestic dogs from the
United States (Kapoor et al., 2012) and China (Guo et al., 2016). To the
best of our knowledge, this report is the first to describe these geneti-
cally divergent CBoVs in South America and in canids other than do-
mestic dogs.

The Anelloviridae members represent nonenveloped ssDNA viruses
comprised of more than 65 species grouped in 16 genera (ICTV, http://
www.ictvonline.org/virusTaxonomy.asp), where some anelloviruses
remain unassigned (Nishizawa et al., 2018). The anellovirus-related
sequences were the most abundant viral sequences detected by HTS in
the present study (Table 1). The predominance of anelloviruses in the
mesenteric lymph nodes and spleen of both wild canid species is similar
to what was reported in the serum of domestic dogs (Weber et al.,
2018a, 2018b). Moreover, we described two complete genomes (Fig. 4A
and B) and five additional sequences that displayed the complete ORF1
gene, comprising five putative new genera within the Anelloviridae fa-
mily (Fig. 4C). The present study expands the host range of this viral
family and suggests that novel anelloviruses of marked diversity can be
found in wild canids. It is important to emphasize that anellovirus pa-
thogenicity in canids has not been examined in depth (Lan et al., 2011;
Sun et al., 2017; Weber et al., 2018a, 2018b).

We also detected sequences related to Rep and capsid (Cap) proteins
of different circular ssDNA viruses (Table 1). One of these sequences
presented the complete Rep protein that is used for the classification of
the so-called CRESS-DNA viruses (Fig. 5). This sequence was genetically
distinct from the other reported genomes and apparently was not
classified in any assigned viral family. CRESS DNA viruses were pre-
viously described as novel circovirus-like viruses, since these viruses
present Rep and Cap genes in agreement with Circoviridae members
(Rosario et al., 2012b). Recently, with the recognition of its diversity
and low degree of genome similarity with members of the family Cir-
coviridae, the term CRESS-DNA viruses was proposed (Rosario et al.,
2012a). These viruses have been detected in samples from a number of
widely different sources, including samples from humans and other
mammals, fishes, and insects, as well as from the environment (L6pez-
Bueno et al., 2016; Rosario et al., 2012a; Steel et al., 2016; Weber et al.,
2018a, 2018b). Apparently, CRESS viruses were not reported in pre-
vious works that analyzed the virome of domestic (Moreno et al., 2017;
Weber et al., 2018a, 2018b) and wild canids (Conceicao-Neto et al.,
2017; Lojki¢ et al., 2016), which may suggest that these viruses were
not abundant in those animal species.

5. Conclusion

The present study categorized the virome of crab-eating and Pampas
foxes. We reported viruses commonly detected in domestic dogs,
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genus Cyclovirus
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ALE29688 Dragonfly larvae associated circular virus-3
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a3r YP 009109615 Po-Circo-like virus 21
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Circoviridae
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ATP66707 Rodent circovirus
AKNS50602 Kirkovirus Equl

ATP66718 Rodent circovirus

ATP66712 Rodent circovirus
ATP66715 Rodent circovirus
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101 AXK90322 Bo-Circo-like virus CH
AER30023 Po-Circo-like virus 22

AER30027 Po-Circo-like virus 41
APG55807 unidentified circular ssDNA virus
AIY31253 Dromedary stool-associated circular ssDNA virus

ASH99030 Human fecal virus Tarto
YP 009389529 Human fecal virus Jorvi2
ATP66713 Rodent circovirus

100 I:ACU33855 Sclerotinia sclerotiorum hypovirulence associated DNA virus 1

AFH54232 Cassava associated gemycircularvirus 1

100 NP 066185 Horseradish curly top virus
99 iABP96793 Ageratum yellow vein virus
"L NP 803557 Chilli leaf curl virus

Kirkoviridae (proposed potential family)

} Genomoviridae

Geminiviridae

Fig. 5. Amino acid phylogenetic reconstruction of complete putative replicase-associated (Rep) protein of CRESS DNA virus members highlighting the sequence
detected in the present study. Sequences were analyzed through maximum-likelihood method applied with the JTT + G + I model. All analyses were conducted with
1000 bootstrap replicates, and the percentage of replicate trees in which the sequences clustered together have been depicted adjacent to the branches. Bootstrap
values for each node have been demonstrated if they were > 50%. The sequence detected in the present study has been highlighted with @. The sequence generated
in the present study was deposited in GenBank database under accession number MT013549.

including the pathogenic and prevalent ones CDV and CPV-2, that may
impact wildlife. Moreover, the reported CDV and CPV-2 sequences were
closely related to genomes reported in domestic dogs from southern
Brazil. The present study also expands the host range of CBoV, CRESS
DNA viruses and anelloviruses of marked diversity. The results of this
study contribute to the body of knowledge regarding the wild canid
virome and viral agents that are potentially transmitted through do-
mestic and wild canids.
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