
Systems biology

deepNF: deep network fusion for protein

function prediction

Vladimir Gligorijevi�c1,*, Meet Barot1 and Richard Bonneau1,2,3,*

1Center for Computational Biology, Flatiron Institute, Simons Foundation, New York, NY 10010, USA, 2Department of

Biology, Center for Genomics and Systems Biology, New York University, New York, NY 10003, USA and 3Center for

Data Science, New York University, New York, NY 10011, USA

*To whom correspondence should be addressed.

Associate Editor: Jonathan Wren

Received on November 24, 2017; revised on May 2, 2018; editorial decision on May 23, 2018; accepted on May 28, 2018

Abstract

Motivation: The prevalence of high-throughput experimental methods has resulted in an abun-

dance of large-scale molecular and functional interaction networks. The connectivity of these net-

works provides a rich source of information for inferring functional annotations for genes and pro-

teins. An important challenge has been to develop methods for combining these heterogeneous

networks to extract useful protein feature representations for function prediction. Most of the exist-

ing approaches for network integration use shallow models that encounter difficulty in capturing

complex and highly non-linear network structures. Thus, we propose deepNF, a network fusion

method based on Multimodal Deep Autoencoders to extract high-level features of proteins from

multiple heterogeneous interaction networks.

Results: We apply this method to combine STRING networks to construct a common low-dimensional

representation containing high-level protein features. We use separate layers for different network

types in the early stages of the multimodal autoencoder, later connecting all the layers into a single

bottleneck layer from which we extract features to predict protein function. We compare the cross-

validation and temporal holdout predictive performance of our method with state-of-the-art methods,

including the recently proposed method Mashup. Our results show that our method outperforms pre-

vious methods for both human and yeast STRING networks. We also show substantial improvement

in the performance of our method in predicting gene ontology terms of varying type and specificity.

Availability and implementation: deepNF is freely available at: https://github.com/VGligorijevic/

deepNF.

Contact: vgligorijevic@flatironinstitute.org or rb133@nyu.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Methods for automated protein function prediction allow us to maxi-

mize the utility of functional annotations derived from costly and time-

consuming protein function characterization and large-scale genomics

experiments. The accuracy of these methods has been improved with

the advent of high-throughput experimental methods that have enabled

construction of different types of genome-scale molecular and function-

al interaction networks, including protein–protein interaction networks,

genetic interaction networks, gene co-expression networks and meta-

bolic networks. Extracting biological information from the wiring pat-

terns (topology) of these networks is essential in understanding the

functioning of the cell and its building blocks-proteins. A key insight be-

hind this approach is that function is often shared between proteins

that physically interact (Sharan et al., 2007), have similar topological

roles in the interaction networks (Milenkovi�c and Pr�zulj, 2008), or are

part of the same complex or pathway (Chen et al., 2014).

VC The Author(s) 2018. Published by Oxford University Press. 3873

This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0/),

which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact

journals.permissions@oup.com

Bioinformatics, 34(22), 2018, 3873–3881

doi: 10.1093/bioinformatics/bty440

Advance Access Publication Date: 1 June 2018

Original Paper

https://github.com/VGligorijevic/deepNF
https://github.com/VGligorijevic/deepNF
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/bty440#supplementary-data
https://academic.oup.com/


Systematic benchmarking efforts, such as the critical assessment

of functional annotation (CAFA) (Radivojac et al., 2013) and

MouseFunc (Pe~na-Castillo et al., 2008), have shown that the current

methods for protein function prediction use diverse approaches to

train classifiers on a multitude of network-, sequence- and structure-

based data sources to make predictions (Cozzetto et al., 2013). Due

to the complementary nature of these different data sources, such

techniques have been shown to be more accurate than those that use

a single data source (Cozzetto et al., 2013; Lanckriet et al., 2004;

Wass et al., 2012). However, the heterogeneous nature of biological

networks, as well as their different levels of sparsity and noise,

makes development of such techniques challenging. Here we focus

on integrating only network-based features in order to limit the

scope of the work better isolate general results aimed at biological

networks, and to better compare to important recent works on bio-

logical network integration.

Most previous approaches for network integration either use

probabilistic methods, like Bayesian inference (Franceschini et al.,

2013; Lee et al., 2011), kernel-based methods (Yu et al., 2015) to

fuse different protein–protein network types, derived from different

proteomic and genomic data sources, into a single network. The

resulting network, along with the set of proteins’ function labels, are

fed into a kernel- or network-based classifier to derive functional

associations of annotated proteins and generate hypotheses about

unannotated proteins. For example, GeneMANIA (Mostafavi et al.,

2008; Mostafavi and Morris, 2012) is a widely used semi-supervised

network-based method that first integrates kernels of different net-

work types into a single kernel by solving a constrained linear re-

gression problem; then, it applies Gaussian label propagation on the

resulting kernel to make label predictions. However, as pointed out

by Cho et al. (2016), these methods suffer from the information loss

incurred when combining all the network types into a single net-

work. To overcome this problem, some approaches train individual

classifiers on these networks and then use ensemble learning meth-

ods to combine their predictions (Yan et al., 2010). However, such

methods do not typically take into account correlations between dif-

ferent data sources, and, unlike GeneMANIA, often suffer from

learning time and memory constraints. Previous work has also bene-

fited from considering the hierarchical structure of gene ontology

(GO) (Barutcuoglu et al., 2006), using statistical principles to choose

negative examples (i.e. proteins without a given function) (Youngs

et al., 2013) or modeling the incomplete set of protein function

annotations as a matrix completion or recommendation system

problem (Gligorijevi�c et al., 2014).

2 Related work

A recent study proposed Mashup (Cho et al., 2016), a network

integration framework, to address the challenge of fusing noisy

and incomplete interaction networks. Mashup takes as input a

collection of protein–protein association networks and applies a

matrix factorization-based technique to construct compact low-

dimensional vector representation of proteins that best explains their

wiring patterns across all networks. These vectors are then fed into a

support vector machine (SVM) classifier to predict functional labels

of proteins. The key step in Mashup is the feature learning step that

constructs informative features that have been shown to be useful in

multiple scenarios including highly accurate protein function and

protein–protein interaction prediction.

There are several challenges to learning a useful low-dimensional

network representation (also known as network embedding) while

preserving the network structure. In particular, most protein–pro-

tein association networks are characterized by diverse connectivity

patterns. Specifically, proteins with the same or similar functional

annotations in these networks often exhibit a complex mixture of

relationships, based both on homophily (close proximity to each

other in the network) and structural similarity (similar local wiring

patterns, regardless of the position in the network).

Thus, it is a challenging task to learn a low-dimensional embed-

ding of proteins that preserves non-linear network structure while

remaining predictive of protein functions. Even more challenging is

the construction of such a compact low-dimensional embedding of

proteins that is consistent across different protein functional and

molecular interaction modalities (i.e. across different types of pro-

tein–protein association networks).

The majority of previous network embedding methods use shal-

low and linear techniques that encounter difficulty in capturing

complex and highly non-linear network structure. These include

methods such as node2vec (Grover and Leskovec, 2016) and

DeepWalk (Perozzi et al., 2014) that are mainly used on social net-

works. Although it is theoretically possible for shallow neural net-

works to learn complex data structures (Ba and Caruana, 2014), it

is often in practice not feasible. On the other hand, deep learning is

a promising technique to deal with such problems, and has been

shown to work well for problems such as speech recognition, nat-

ural language processing and image classification, as well as for sev-

eral biological problems (Angermueller et al., 2016). Motivated by

the recent success of deep learning techniques in learning powerful

representations from complex data, a few recent studies propose

using deep neural networks (DNNs) for computing network embed-

dings (Cao et al., 2016; Grover and Leskovec, 2016; Wang et al.,

2016). DNNs apply multiple layers of non-linear functions to map

input data into a low-dimensional space, thereby capturing highly

non-linear network structure in efficient low-dimensional features.

A multi-layer architecture of DNN is a key to learning richer net-

work representation. The advantage of using DNNs has been dem-

onstrated in learning embeddings of large-scale social networks for

performing different tasks, such as link prediction, network cluster-

ing and multi-label classification (Cao et al., 2016; Wang et al.,

2016). However, none of these methods can construct embeddings

by handling different network modalities (i.e. types, views), i.e. these

methods cannot be used for integrative analysis. Thus, we propose

deep Network Fusion, deepNF (also pronounced deep enough), an

integrative framework for learning compact low-dimensional fea-

ture representation of proteins that (i) captures complex topological

patterns across multiple protein–protein association networks, and

that (ii) is used to derive functional labels of proteins. To explicitly

address the diversity of protein–protein interaction network types,

we use separate layers for handling each network type in the early

parts of the deep autoencoder, later connecting all the layers into a

single bottleneck layer from which we extract features to predict

protein function for different species. Similar to Mashup, in the last

phase, deepNF trains an SVM on the resulting features to predict

each protein function label.

deepNF is based on a multimodal deep autoencoder (MDA) to

integrate different heterogeneous networks of protein interactions

into a compact, low-dimensional feature representation common to

all networks. An autoencoder is a special type of neural network

that is composed of two parts: (i) an encoding part, in which the in-

put data is transformed into low-dimensional features, and (ii) a

decoding part, in which those features are mapped back to the input

data (Vincent et al., 2010). Our method, deepNF, has the following

conceptual advances: (i) it preserves the non-linear network

3874 V.Gligorijevi�c et al.



structure by applying multiple layers of non-linear functions, com-

posing the DNN architecture of deepNF, thereby learning a richer

network representation; (ii) it handles noisy links present in the net-

works, as autoencoders have also been shown to be effective denois-

ing systems capable of constructing useful representations from

corrupted data (Vincent et al., 2010); and (iii) it is efficient and scal-

able as it uses the MDA to learn low-dimensional protein features

from all networks in a fully unsupervised way and independently of

the function prediction task. This allows for the use of the entire

dataset in the training of the MDA, resulting in high-quality fea-

tures. Our method enables semi-supervised approaches to function

prediction. Here we demonstrate such a semi-supervised approach

to function prediction task by training an SVM for each function on

these features. Additionally, the reduced dimension of the extracted

features makes the training of the SVMs computationally efficient.

We apply this method on human and yeast STRING networks to

construct a compact low-dimensional representation containing

high-level protein features. For each species, we perform 5-fold cross

validation, as well as temporal holdout validation, in which we train

our method on GO annotations from 2015 and test it on those from

2017. We report the performance of our method for different DNN

architectures. We contrast the performance of our method with the

state-of-the-art network integration methods, Mashup and

GeneMANIA. We report a significant improvement of deepNF over

these methods on both yeast and human protein function annota-

tions. We also report a significant improvement in performance

when training deepNF on all STRING networks together than when

training it on each individual STRING network, demonstrating the

success of our integrative strategy.

To the best of our knowledge, this is the first method that uses a

deep multimodal technique to integrate diverse biological networks.

We demonstrate that deep learning methods offer the great advan-

tage of being able to capture non-linear information contained in

large-scale biological networks, and that using such techniques

could lead to improved network representations. Features learned

by using these methods not only lead to substantial improvements in

protein function prediction accuracy but also our temporal holdout

results indicate that our method can also be used for prioritizing

novel experimental target proteins for a given function.

3 Approach

In this section, we introduce our framework for predicting protein

functions from multiple networks, deepNF, including the prepro-

cessing step, adopted from Cao et al. (2016), and the cornerstone of

our method, the MDA. In the pre-processing step the structural in-

formation of each network is converted into a high-dimensional vec-

tor representation that is used as input to the MDA. We also

provide implementation details and a description of our testing

schemes: cross-validation and temporal holdout validation.

4 Materials and methods

We consider a set of N¼6 undirected weighted STRING networks

whose connectivity patterns are represented by a set of symmetric

adjacency matrices fAð1Þ;Að2Þ; . . . ;AðNÞg. Each matrix, AðjÞ 2 Rn�n,

is constructed over the same set of proteins. deepNF learns low-

dimensional latent feature representation of n proteins, Hc 2 Rdc�n

(where dc � n), shared across all networks. In order to do so, the

method follows three steps (see Fig. 1): (i) it converts structure of

each network into a high-quality vector representation by first

applying the Random Walk with Restarts (RWR) method and then

constructing a Positive Pointwise Mutual Information (PPMI) ma-

trix capturing structural information of the network; (ii) it fuses

PPMI matrices of networks by using the MDA, and from the middle

layer extracts a low-dimensional feature representation of proteins;

(iii) it predicts protein function by training an SVM classifier on the

low-dimensional features computed in the previous step. An outline

of the procedure is provided in Supplementary Algorithm S1. We

provide details of each step below.

4.1 Random walk-based network representation
To capture network structural information and to convert it to high-

dimensional protein vector representation suitable for input to the

MDA, we adopt the approach of Cao et al. (2016) and further mod-

ify it for multiple networks. For each network j 2 f1; . . . Ng we con-

struct high-quality vector representations of proteins, XðjÞ 2 Rn�n,

preserving potentially complex, non-linear relations among the net-

work nodes. To do so, we first use the RWR model to capture net-

work structural information and to characterize the topological

context of each protein. We chose the RWR method for converting

network structure into initial node vector representations over the

previously proposed sampling-based procedure in node2vec (Grover

and Leskovec, 2016) and DeepWalk (Perozzi et al., 2014), because

these methods are computationally more intense and require add-

itional hyperparameter fitting. The RWR approach can be formu-

lated as the following recurrence relation:

p
ðtÞ
i ¼ ap

ðt�1Þ
i

bA þ ð1� aÞpð0Þi ; (1)

where p
ðtÞ
i is a row vector of protein i, whose kth entry indicates the

probability of reaching the kth protein after t steps, p
ð0Þ
i is the initial

one-hot vector, a is the probability of restart controlling the relative

influence of local and global topological information of a network

represented by adjacency matrix, A, and bA is the one-step probabil-

ity transition matrix obtained by applying row-wise normalization

of the adjacency matrix.

To compute the node representation, ri, we adopt the strategy

proposed by Cao et al. (2016), which is given by the following

formula:

ri ¼
XT

t¼1

p
ðtÞ
i ; (2)

where T is the total number of RW steps. Repeating this process for

every node i 2 f1; . . . ng in the network j, results in a representation

matrix R 2 Rn�n, characterizing the probability of co-occurrence of

network nodes. Such a representation captures high-order proxim-

ities of network nodes. To best see this, we can choose a ¼ 1, and,

by using Equation (2), show that the representation matrix has the

following form:

R ¼ bA þ bA2
þ � � � þ bAT

;

where bAk
¼ bA � bA . . . � bA|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}

k

is the k-order proximity matrix.

Next, from the probabilistic co-occurrence matrix, RðjÞ, of net-

work, j, we construct a vector representation of proteins by comput-

ing the PPMI matrix defined as:

X
ðjÞ
lm ¼ max 0; log 2

R
ðjÞ
lm

P
l

P
mR
ðjÞ
lmP

lR
ðjÞ
lm

P
mR
ðjÞ
lm

 ! !
: (3)

It is important to note that this process occurs as a first step and

thus the RWR representation is mitigating the sparsity of some

deepNF: deep network fusion for protein function prediction 3875

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/bty440#supplementary-data


individual network types prior to the deeper integration described in

next steps below.

4.2 Integrating networks with MDA
Although the above approach is fast, it results in protein features

that still represent individual networks in a high-dimensional space.

As such, these features cannot be readily used for protein function

prediction. Here, we propose to use MDA for integrating multiple

networks represented by PPMI matrices, reducing their dimension

and creating protein features, extracted from all networks that

are more suitable for training a classifier and predicting protein

functions.

The MDA constructs a low-dimensional feature representation

of n proteins, that best approximates all networks, j 2 f1; . . . ;Ng,
by projecting their PPMI matrices, XðjÞ 2 Rn�n, using multiple

non-linear activation functions, into a common feature space,

Hc 2 Rdc�n (i.e. a common bottleneck layer in DNN architecture of

the MDA, see Fig. 1). Following the standard definition of autoen-

coders (Vincent et al., 2010), we formulate the encoding and decod-

ing part of the MDA as follows:

• Encoding: in the first hidden layer of the MDA, we first compute

low-dimensional non-linear embedding, HðjÞ 2 Rdj�n, for each

network j 2 f1; . . . ;Ng:

H
ðjÞ
encode ¼ rðWðjÞ

encodeX
ðjÞ þ B

ðjÞ
encodeÞ;

where W
ðjÞ
encode 2 Rdj�n and B

ðjÞ
encode 2 Rdj�n are weight and bias

matrices, respectively, and rðxÞ ¼ 1
1þe�x is the sigmoid activation

function. We compute a common feature representation by

applying multiple non-linear functions (i.e. by stacking a series

of hidden layers in the MDA) on the feature representation

obtained by concatenating features from all networks obtained

in the previous step (i.e. the previous layer):

Hc;1 ¼ rðW1½Hð1Þ; . . . ;HðNÞ� þ B1Þ;

where ½Hð1Þ; . . . ;HðNÞ� are the concatenated activation matrices

(one for each network) of the previous layers. There can be L

layers after this step that would be described using the follow-

ing equation:

Hc;lþ1 ¼ rðWlHc;l þ BlÞ;

where l 2 f1; . . . ;Lg is the layer number for the successive inte-

grated embeddings.

• Decoding: we first compute the larger common representation

Hc;Lþ1 from the last encoding common layer Hc;L described by

the same equation above, with the same number of decoding

layers as the number of encoding layers L. We then compute in-

dividual representations for each network H
ðjÞ
decode described in

the following equation:

H
ðjÞ
decode ¼ rðWðjÞ

decode;1Hc;2L þ B
ðjÞ
decode;1Þ:

We then compute reconstructed PPMI matrices, bXðjÞ, for each

network, j 2 f1; . . . ;Ng, by mapping the individual representa-

tions, H
ðjÞ
decode 2 Rdc�n to the original space, by applying the

following equation:

bXðjÞ ¼ rðWðjÞ
decode;2H

ðjÞ
decode þ B

ðjÞ
decode;2Þ:

Please also refer to Figure 1 for an example of a seven-layer

MDA with corresponding notations.

The aim of the MDA method is to find optimal bh that minimizes

the reconstruction loss, LðhÞ, between each original and recon-

structed PPMI matrix:

bh ¼ argmin
h

LðhÞ ¼ argmin
h

XN
j¼1

lðXðjÞ; bXðjÞÞ; (4)

where lð�Þ is the sample-wise binary cross-entropy function and

h ¼ fWðjÞ
encode;B

ðjÞ
encode;W

ðjÞ
decode;B

ðjÞ
decode;Wl;Blg, for j 2 f1; . . . ;Ng

and l 2 f1; . . . ; 2Lg is the set of all parameters in both the encoding

and decoding parts of our model to be learned in the training process.

A key step of our approach is the second step in the encoding

part of the MDA that constructs a common feature representation

Fig. 1. Method overview. In the first step networks are converted into vectors after the RWR method (left). After this preprocessing step, the networks are com-

bined via our MDA (right). Low-dimensional features are then extracted from the middle layer of the MDA and used to train a final classifier (bottom)

3876 V.Gligorijevi�c et al.



by first denoising each individual network (by constructing their

corresponding low-dimensional feature representations) and then

projecting them into a common feature space.

The loss function (Equation 4) can be optimized by standard

back-propagation algorithm. We use mini-batch stochastic gradient

descent with momentum for training the MDA. We also explore the

performance of the MDA with different batch sizes, learning rates

and different architectures (i.e. number and sizes of hidden layers).

Values of all hyperparameters are provided in Supplementary

Section S3. After the training of the MDA is done, we extract the

low-dimensional features, Hc;L 2 Rdc�n, from its bottleneck layer.

4.3 Predicting protein function from multiple networks
We model the problem of protein function prediction as a multi-

label classification problem. We use the compressed features, Hc;L,

computed in the previous step, to train an SVM classifier to predict

probability scores for each protein. We use the SVM implementation

provided in the LIBSVM package (Chang and Lin, 2011). To meas-

ure the performance of the SVM on the compressed features, we

adopt two evaluation strategies: (a) 5-fold cross validation and

(b) temporal holdout validation.

In the 5-fold cross validation, we split all annotated proteins into

a training set, comprising 80% of annotated proteins, and a test set,

comprising the remaining 20% of annotated proteins. We train the

SVM on the training set and predict the function of the test proteins.

We use the standard radial basis kernel (RBF) for the SVM and per-

form a nested 5-fold cross validation within the training set to select

the optimal hyperparameters of the SVM (i.e. c in the RBF kernel

and the weight regularization parameter, C) via grid search. All per-

formance results are averaged over 10 different CV trials.

In the temporal holdout validation, we use the protein GO anno-

tations from 2015 and 2017 to form training, validation and test

sets. We form the training set from proteins whose annotations did

not change from 2015 to 2017. We form the test set from the

proteins that did not have any annotations in 2015 but gained anno-

tations in 2017. We use the same setup for the SVM classifier as in

5-fold cross validation. To fit the hyperparameters of the SVM, we

created a validation set comprising proteins who had annotations in

2015 but also gained new annotations in 2017. We choose the

optimal hyperparameters based on the SVM performance on the

validation proteins, and report the final results on the test proteins.

The performance results are averaged over 1000 bootstraps of the

test set.

We compare the performance of our method with two state-of-

the art methods, Mashup and GeneMANIA. For each method, we

apply the validation strategies described earlier. We use the follow-

ing metrics to evaluate the prediction performance: (i) Accuracy

(ACC), that measures the percentage of test proteins that were

correctly predicted (i.e. a protein is correctly predicted if the set of

its predicted functions exactly match the set of its known functions);

(ii) Micro-averaged F1 score (F1) is computed in the same way

as in Cho et al. (2016); (iii) Micro-averaged area under the

precision-recall curve (m-AUPR) is computed by first vectorizing the

protein–function matrices of predicted scores and known binary

annotations, and then computing the AUPR by using these two vec-

tors; Macro-AUPR (M-AUPR) is computed by first computing the

AUPR for each function separately, and then averaging these values

across all functions. Here, we do not consider receiver operating

characteristic curves as protein labels are highly skewed, and AUPR

is less biased in that case and thus better choice (Davis and

Goadrich, 2006).

4.4 Data pre-processing
To make the cross-validation performance comparison of deepNF

with Mashup fair, we use the exact same dataset (i.e. the six

STRING networks and functional annotations) used in the Mashup

paper (Cho et al., 2016). The basic network measures and properties

of the STRING networks are provided in Supplementary Table S1.

Also, we report the results of the methods on both yeast and human

STRING networks. The functional annotations for yeast are taken

from Munich Information Center for Protein Sequences (MIPS)

[again, this is done to make a perfect comparison to validations per-

formed in Cho et al. (2016)] and they are organized into three func-

tional categories: Level 1 (consisting of 17 most general functional

categories), Level 2 (consisting of 74 functional categories) and

Level 3 (consisting of 153 most specific functional categories). All

functional annotations for human are taken from GO. Similar to

yeast, they were arranged into three functional categories, i.e. cate-

gories containing GO terms annotating 11–30 (covering 153 mo-

lecular function (MF), 262 biological process (BP) and 82 cellular

component (CC) GO terms), 31–100 (covering 72 MF, 100 BP and

48 CC GO terms) and 101–300 (covering 18 MF, 28 BP and 20 CC

GO terms) proteins, respectively.

To compile function annotation data for temporal holdout valid-

ation, we use a similar strategy as proposed in the CAFA challenge

(Jiang et al., 2016; Radivojac et al., 2013). We obtain protein anno-

tation data for 2015 (release 145) and 2017 (release 167) year from

UniProt-GOA (Huntley et al., 2015) database. For each ontology

(i.e. MF, BP and CC) and each model organism (i.e. yeast and

human), we create our training, validation and test sets of proteins

as described above, specifically: the training set is formed of proteins

whose annotations did not change from 2015 to 2017, the test set

comprises proteins who did not have any annotations in 2015 and

gain at least one new annotation in 2017, and the validation set

comprises proteins that had annotations in 2015 but also gained

new annotations in 2017. We consider only GO terms that gained at

least 10 test and 10 validation proteins in 2017 and that have be-

tween 10 and 300 training proteins. The number of training, valid-

ation and test proteins, as well as the number of functions for MF,

BP and CC, for yeast and human, are summarized in Supplementary

Table S2.

5 Results

Here, we use cross-validation and temporal holdout to evaluate

deepNF and compare its performance to GeneMANIA and Mashup.

In all of our experiments, we set a ¼ 0:98 in the RWR step of our

method as this leads to the best performance results on the valid-

ation set across all function label types and architectures tested for

both organisms. Other choices of a (e.g. a ¼ 1:0) have been shown

to result in lower quality of extracted features (see Section 4.1) (Cao

et al., 2016). Regarding the number of RW steps (T), for many dif-

ferent real-world networks the choice of T ¼ 3 has been shown to

lead to the best performance as suggested by Cao et al. (2016) and

Mostafavi et al. (2012). After conducting the same empirical study

(for T ¼ 2, 3, 4, 5), we have also selected T ¼ 3, in all our experi-

ments, as it leads to the best performance (data not shown).

In the training of the MDA, we explore different layer configura-

tions (also known as architectures) and regularization parameters.

Values of all the hyperparameters and the details of the MDA train-

ing strategy as well as of the SVM training are provided in

Supplementary Section S3.

deepNF: deep network fusion for protein function prediction 3877

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/bty440#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/bty440#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/bty440#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/bty440#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/bty440#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/bty440#supplementary-data


5.1 Cross-validation performance
To evaluate the quality of the low-dimensional features extracted

from the bottleneck layer of the MDA (Fig. 1), we run the same

5-fold cross-validation procedure as in the Mashup paper (Cho

et al., 2016). We train the MDA for different layer configurations

for Yeast and Human STRING networks. The performance of our

method in yeast and human for different architectures is provided in

Supplementary Figures S2 and S4, respectively.

We find that the features obtained from the five-layer architec-

ture (two encoding, one feature layer and two decoding layers) of

the MDA, trained on the Yeast STRING networks, lead to the best

performance in terms of the m-AUPR across all three levels of MIPS

ontology. Performance of the same model on different annotation

levels of the MIPS hierarchy, in comparison to GeneMANIA and

Mashup, is summarized in Figure 2. We observe that deepNF signifi-

cantly outperforms (rank-sum P-value < 0.01) (Note here that using

the rank-sum test could sometimes lead to over-optimistic results as

the GO terms are not fully independent.) both Mashup and

GeneMANIA in terms of m-AUPR at different levels of MIPS hier-

archy. Consistent improvement of deepNF is also achieved in terms

of accuracy (i.e. the percentage of test proteins with all the predicted

functions exactly matching the corresponding known functions).

Namely, deepNF accurately assigns known functions to 31.3% of

proteins, as opposed to 23.6% for GeneMANIA and 25.5% for

Mashup in Level 1 of MIPS annotations. Note that this is a more

rigorous measure than the accuracy measure used in the Mashup

paper by Cho et al. (2016), which only considers top predicted func-

tions for each protein. Although we observe clear improvements in

terms of m-AUPR across all levels of MIPS annotations, however, in

terms of M-AUPR in Levels 2 and 3 of MIPS annotations, deepNF

performs comparably to Mashup.

The cross-validation performance of the seven-layer MDA (three

enconding, one feature layer and three decoding) applied on Human

STRING networks in comparison to Mashup and GeneMANIA is

shown in Figure 3. Our method significantly outperforms the other

two methods, in terms of all four measures, for the MF-GO terms

belonging to the most specific (i.e. annotating between 11 and 30

proteins) categories. For the MF-GO terms belonging to the most

general (i.e. annotating between 101 and 300 proteins) categories,

we observe significantly higher performance in all measures except

in accuracy. Specifically, in terms of accuracy, GeneMANIA signifi-

cantly outperforms both deepNF and Mashup (rank-sum P-value ¼
0.004 < 0.01). The performance of our method for MF-GO terms

with between 31 and 100 proteins annotated in the training set) is

comparable to Mashup, except in terms of F1 measure for which

our method achieves significantly better performance.

Similar results are also observed for both BP and CC ontologies

(shown in Supplementary Fig. S6). The observed improvement in ac-

curacy of our method in comparison to Mashup can be partially

attributed to the high quality of protein features extracted from the

complex topology of STRING networks in the hierarchical manner.

Unlike Mashup, which utilizes a shallow matrix factorization-based

technique to construct compact protein feature representation,

deepNF utilizes a hierarchical way of feature construction by incor-

porating intermediate layers in the MDA architecture (see Fig. 1).

The de-noising property of the multimodal autoencoder underlying

our method leads to better detection of relevant features from indi-

vidual networks and, ultimately, to a better final integrated feature

representation. To further demonstrate the usefulness of such an ap-

proach in feature construction, we also apply our method on indi-

vidual STRING networks (i.e. without integration). Namely, we

train a deep autoencoder on each STRING network, separately, and

further assess the quality of the extracted low-dimensional features

of each individual network in predicting protein functions. The inte-

grative performance and the performance on individual networks of

Fig. 2. Cross-validation performance of our method in integrating yeast net-

works. Performance of our method, with the MDA architecture [6 � n, 6 �
2000, 600], in 5-fold cross validation in comparison to function prediction

performance of the state-of-the-art integration method, Mashup, and

GeneMANIA. The notation ‘6 � Z ’, where Z is the number of features for each

network, indicates that the embeddings for each network are separate,

whereas single integers mean that the layers have already been concaten-

ated. Performance is measured by the area under the precision-recall curve,

summarized over all GO terms both under the micro-averaging (m-PR)

and macro-averaging (M-PR) schemes; F1 score and accuracy (ACC).

Performance of the methods is shown separately for MIPS yeast annotations

for Level 1 (left), Level 2 (middle) and Level 3 (right). The error bars are com-

puted based on 10 trials. Asterisks indicate where the performance of deepNF is

significantly higher than the performance of Mashup (rank-sum P-value < 0.01)

Fig. 3. Cross-validation performance of our method in integrating human net-

works. Performance of our method, with the MDA architecture [6 � n, 6 �
2500, 9000, 1200], in 5-fold cross validation in comparison to function predic-

tion performance of the state-of-the-art integration method, Mashup, and

GeneMANIA. Performance is measured by the area under the precision-recall

curve, summarized over all GO terms both under the micro-averaging

(m-AUPR) and macro-averaging (M-AUPR) schemes; F1 score and accuracy

(ACC). Performance of the methods is shown separately for all three ontolo-

gies of GO, i.e. MF, BP and CC, where each ontology is further divided into

three levels annotating 101–300, 31–100 and 11–30 proteins, respectively

3878 V.Gligorijevi�c et al.

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/bty440#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/bty440#supplementary-data


our method in comparison to Mashup is shown in Figure 4 for both

yeast and human STRING networks.

5.2 Temporal holdout performance
Unlike the cross-validation procedure, which randomly divides pro-

tein set into folds used for training and testing the model, the tem-

poral holdout procedure divides proteins into training and test sets

based on their annotations at two different widely separated time

points, where older annotations are used for training and newer

ones are used for testing the model. The temporal holdout approach

ensures a more ‘realistic’ scenario of function prediction. The study

of individual MDA architectures shows that the five-layer architec-

ture of the MDA in yeast and seven-layer architecture of the MDA

in human yields the best performance in terms of M-AUPR across

different GO ontologies (see Supplementary Figs S2 and S4). The

temporal holdout validation performance of our method with these

architectures is shown in Figures 5 and 6, for yeast and human data,

respectively. The performance of both methods on MF terms is

higher than for BP terms, which is in line with the findings reported

by previous studies (Jiang et al., 2016; Radivojac et al., 2013).

We observe that deepNF substantially outperforms both Mashup

and GeneMANIA in temporal holdout validation. We observe clear

improvements in both yeast and human data across all three types of

ontologies. Interestingly, unlike in cross-validation, where Mashup

significantly outperforms GeneMANIA, GeneMANIA achieves

higher performance results than Mashup in temporal holdout valid-

ation, especially for the CC ontology for both yeast and human

data. This could be due to the very high density of CC annotations;

i.e. there are on average 2.42 CC-GO terms per protein in the train-

ing set (out of total 11 CC-GO terms), as opposed to 2.54 MF-GO

terms (out of total 20 MF-GO terms) and 3.77 BP-GO terms per

protein (out of total 43 BP-GO terms), in the temporal holdout set

in yeast, which can be handled better by label propagation frame-

work, such as GeneMANIA, than by Mashup. However, the high

density of annotations per protein is more suitable for a deep

learning technique, such as our method, which achieves higher per-

formance, across all metrics, than both GeneMANIA and Mashup.

We further explored the performance of our method on specific

individual GO terms used in the temporal holdout study. The AUPR

values of the 20 MF-GO terms computed from the features of Yeast

STRING networks are shown in Figure 7. From the figure, we can

observe that deepNF achieves higher AUPR performance than

Mashup for the majority of MF-GO terms. We observe similar

results also for BP- and CC-GO terms (see Supplementary Fig. S8),

and also for Human STRING networks in all three ontologies (see

Supplementary Fig. S9). Specifically, we observe that the majority of

MF-GO terms considered in our temporal holdout set that were

descendants of the GO term ‘binding’ perform better with a deep

architecture (i.e. deepNF) than with a shallow one (i.e. Mashup),

whereas, the quite opposite situation is observed with MF-GO terms

Fig. 4. Integrating multiple networks outperforms individual networks in pro-

tein function prediction. We compare the cross-validation performance of our

method applied on individual STRING networks, measured by m-AUPR, with

the performance of Mashup. The upper panel shows the performance results

on the most specific MIPS terms (Level 3) for each individual STRING network

of yeast, whereas, the bottom panel shows the performance results on the

most specific MF-GO terms for each individual STRING network of human.

The low-dimensional features of these networks are extracted from the

bottleneck layer of autoencoders trained on each individual network. We use

architecture [n, 2000, 600] for yeast STRING networks, and architecture [n,

2500, 9000, 1200] for human STRING networks. In addition to individual net-

work performance, we also show the integrative performance of both

methods

Fig. 5. Temporal holdout validation performance of our method in integrating

Yeast STRING networks. Performance of our method with the MDA architec-

ture [6 � n, 6 � 2000, 600], in temporal holdout validation in comparison to

function prediction performance of GeneMANIA and Mashup. Performance is

measured by the area under the precision-recall curve (AUPR) both under

micro-averaging (m-AUPR) and macro-averaging (M-AUPR) and F1 score.

The results are averaged over 1000 boostraps of the test set; asterisks indi-

cate where the performance of deepNF is significantly better than the per-

formance of Mashup (rank-sum P-value < 0.01)

Fig. 6. Temporal holdout validaton performance of our method in integrating

Human STRING networks in comparison to GeneMANIA and Mashup.

Performance of our method, with the MDA architecture [6 � n, 6 � 2500,

9000, 1200], in temporal holdout validation in comparison to function predic-

tion performance of GeneMANIA and Mashup. Performance is measured by

the area under the precision-recall curve (AUPR) both under micro-averaging

(m-AUPR) and macro-averaging (M-AUPR) and F1 score. The results are aver-

aged over 1000 boostraps of the test set; asterisks indicate where the per-

formance of deepNF is significantly better than the performance of Mashup

(rank-sum P-value < 0.01)

deepNF: deep network fusion for protein function prediction 3879

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/bty440#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/bty440#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/bty440#supplementary-data


that were descendants of ‘transporter activity’. Surprisingly, this is

in contrast with one of the findings reported in Radivojac et al.

(2013), where the authors observe that most function prediction

methods consistently perform worse on the ‘binding’ related terms

than on the ‘transporter activity’ related terms. This indicates that

our method provides complementary results in comparison to the

methods presented in the paper. Furthermore, by looking into CC-

GO terms (Supplementary Fig. S8), we observe that the majority of

CC-GO terms associated with ‘membrane’ perform better with our

method than with Mashup, whereas the situation is opposite for

CC-GO terms associated with ‘vesicle’.

To further strengthen the performance of our method, we con-

duct an additional comparison study of our method with three base-

line methods whose results are provided in Supplementary Section

S7. In particular, to show the importance of the MDA step, as a first

baseline method (termed SVM-PPMI), we train the SVM on the

high-dimensional protein vectors (i.e. n-dimensional, where n is the

number of nodes in the network) obtained from the PPMI matrices.

We use the same grid search procedure for choosing the optimal

parameters (c of the RBF kernel, and the regularization parameter C)

as in deepNF. As a second baseline method, we implement a linear-

SVM trained on the random projections of the input PPMI vectors

(termed SVM-RND_proj). We adopt Gaussian random projection

method (Ailon and Chazelle, 2009) to reduce the dimensionality of

the input vectors by projecting the original input space (PPMI matri-

ces) on a randomly generated matrix with components drawn from

the Gaussian distribution, N 0; 1
ndim

� �
, where ndim ¼ 600 (for Yeast)

and ndim ¼ 1200 (for Human). And finally, to show the importance

of the PPMI step and the difference between our preprocessing step

and the Mashup’s preprocessing step, we run our method on the

RWR diffusion states (with restart probability 0.5) generated by

Mashup’s preprocessing step (deepNF-mRWR). The performance of

these baseline methods together with the performance of deepNF on

the MF, BP and CC ontologies for both Human and Yeast STRING

networks are shown in Supplementary Fig. S10. The performance of

deepNF-mRWR is much lower than deepNF and all other baseline

methods. This is not surprising given that the deepNF cost function

(i.e. binary cross entropy) is more suitable for PPMI profiles than it

is for RWR diffusion probabilities (for which the authors of the

Mashup paper use KL-divergence). The results indicate that the per-

formance of the SVM on the raw PPMI features is surprisingly good

(even comparable in some cases with the performance of the SVM

on the autoencoder features). Given that deepNF outperforms both

SVM-RND_proj and SVM-PPMI baseline methods, we can say,

with high certainty, that the embeddings learned by MDA, that cap-

ture the topological information of all N ¼ 6 networks, are not trivi-

ally memorizing the input vectors and are not random projections.

6 Conclusion

Recent wide application of high-throughput experimental techni-

ques has provided complex high-dimensional complementary pro-

tein association data; the wide availability of this data has in turn

driven a need for protein function prediction methods that can take

advantage of this heterogeneous data. We present here, for the first

time, a deep learning-based network fusion method, deepNF, for

constructing a compact low-dimensional protein feature representa-

tion from a multitude of different networks types. These features

allow us to use out-of-the-box machine learning classifiers

such as SVMs to accurately annotate proteins with functional labels.

deepNF extracts features that are highly predictive of protein

function, which is attributed to the fact that the method relies on a

deep learning technique that can more accurately capture relevant

protein features from the complex, non-linear interaction networks.

However, Mashup, an innovative previous method that combines

protein networks to generate features for function prediction, can-

not extract features that have this quality.

We present an extensive performance analysis comparing our

method with competing protein function prediction methods. In

addition to cross-validation, the analysis includes a temporal hold-

out validation evaluation similar to the measures in CAFA. Double-

blind field-wide validation efforts (like CAFA) have demonstrated

the utility of such temporal holdouts and established them as the

most accepted way of performance comparison for protein function

prediction methods. We show that deepNF outperforms previous

methods (Mashup and GeneMANIA) in both human and yeast

organisms, in multiple levels of specificity of GO and MIPS terms.

Given that the features generated by deepNF are task-

independent, they can be used for other applications besides protein

function prediction. Additionally, our method is not limited to only

network integration: in future work, we hope to explore integrating

other data types such as protein sequences and structures, repre-

sented as similarity networks, using our framework in order to

make more accurate predictions of protein function.

Acknowledgements

The authors would like to thank Da Chen Emily Koo for enlightening discus-

sions and help with construction of the temporal holdout validation sets. We

thank Ian Fisk, Nicholas Carriero and Dylan Simon of the Simons

Foundation for discussion and help with high performance computing.

Fig. 7. Temporal holdout validation shows significant difference in the per-

formance of our method vs. Mashup in predicting individual yeast MF-GO

terms. For each MF-GO term we show the Mashup’s and deepNF’s perform-

ance (five-layer MDA), measured by the AUPR. The lower panel shows the

difference in the performance of these two methods. The names of the GO

terms are shown on the x-axis

3880 V.Gligorijevi�c et al.

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/bty440#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/bty440#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/bty440#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/bty440#supplementary-data


Funding

This work was supported by the Simons Foundation, the National

Institutes of Health, the National Science Foundation (NSF) and NYU for

supporting this research, particularly NSF [MCB-1158273, IOS-1339362,

MCB-1412232, MCB-1355462, IOS-0922738, MCB-0929338] and National

Institutes of Health [2R01GM032877-25A1].

Conflict of Interest: none declared.

References

Ailon,N. and Chazelle,B. (2009) The fast Johnson Lindenstrauss transform

and approximate nearest neighbors. SIAM J. Comput., 39, 302–322.

Angermueller,C. et al. (2016) Deep learning for computational biology. Mol.

Syst. Biol., 12, 878.

Ba,J. and Caruana,R. (2014) Curran Associates, In: Conference Proceedings:

Advances in Neural Information Processing Systems, Curran Associates,

Inc., Montreal, Canada, pp. 2654–2662.

Barutcuoglu,Z. et al. (2006) Hierarchical multi-label prediction of gene func-

tion. Bioinformatics, 22, 830–836.

Cao,S. et al. (2016) Deep neural networks for learning graph representations.

In: Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence,

AAAI’16, pp. 1145–1152. AAAI Press, Phoenix, AZ, USA.

Chang,C.-C. and Lin,C.-J. (2011) Libsvm: a library for support vector

machines. ACM Trans. Intell. Syst. Technol., 2, 1–27.

Chen,B. et al. (2014) Identifying protein complexes and functional modules:

from static ppi networks to dynamic ppi networks. Brief. Bioinformatics,

15, 177–194.

Cho,H. et al. (2016) Compact integration of multi-network topology for func-

tional analysis of genes. Cell Syst., 3, 540–548.e5.

Cozzetto,D. et al. (2013) Protein function prediction by massive integration

of evolutionary analyses and multiple data sources. BMC Bioinformatics,

14, S1.

Davis,J. and Goadrich,M. (2006) The relationship between precision-recall

and roc curves. In: Proceedings of the 23rd International Conference on

Machine Learning, ICML’06, pp. 233–240, ACM, New York, NY, USA.

Franceschini,A. et al. (2013) String v9.1: protein-protein interaction networks,

with increased coverage and integration. Nucleic Acids Res., 41,

D808–D815.

Gligorijevi�c,V. et al. (2014) Integration of molecular network data recon-

structs gene ontology. Bioinformatics, 30, i594–i600.

Grover,A. and Leskovec,J. (2016) Node2vec: scalable feature learning for net-

works. In: Proceedings of the 22Nd ACM SIGKDD International

Conference on Knowledge Discovery and Data Mining, KDD ’16, pp.

855–864, ACM, New York, NY, USA.

Huntley,R.P. et al. (2015) The goa database: gene ontology annotation

updates for 2015. Nucleic Acids Res., 43, D1057–D1063.

Jiang,Y. et al. (2016) An expanded evaluation of protein function prediction

methods shows an improvement in accuracy. Genome Biol., 17, 184.

Lanckriet,G.R. et al. (2004) A statistical framework for genomic data fusion.

Bioinformatics, 20, 2626–2635.

Lee,I. et al. (2011) Prioritizing candidate disease genes by network-based

boosting of genome-wide association data. Genome Res., 21, 1109–1121.

Milenkovi�c,T. and Pr�zulj,N. (2008) Uncovering biological network function

via graphlet degree signatures. Cancer Informatics, 6, CIN.S680.

Mostafavi,S. and Morris,Q. (2012) Combining many interaction networks to

predict gene function and analyze gene lists. Proteomics, 12, 1687–1696.

Mostafavi,S. et al. (2008) GeneMANIA: a real-time multiple association network

integration algorithm for predicting gene function. Genome Biol., 9, S4.

Mostafavi,S. et al. (2012) Labeling nodes using three degrees of propagation.

Plos One, 7, e51947–e51910, 12.

Pe~na-Castillo,L. et al. (2008) A critical assessment of mus musculusgene func-

tion prediction using integrated genomic evidence. Genome Biol., 9, S2.

Perozzi,B. et al. (2014) Deepwalk: online learning of social representations. In:

Proceedings of the 20th ACM SIGKDD International Conference on

Knowledge Discovery and Data Mining, KDD ’14, pp. 701–710. ACM,

New York, NY, USA, 2014.

Radivojac,P. et al. (2013) A large-scale evaluation of computational protein

function prediction. Nat. Methods, 10, 221–227.

Sharan,R. et al. (2007) Network-based prediction of protein function. Mol.

Syst. Biol., 3, 1–13.

Vincent,P. et al. (2010) Stacked denoising autoencoders: learning useful repre-

sentations in a deep network with a local denoising criterion. J. Mach.

Learn. Res., 11, 3371–3408.

Wang,D. et al. (2016) Structural deep network embedding. In: Proceedings of

the 22Nd ACM SIGKDD International Conference on Knowledge

Discovery and Data Mining, KDD ’16, pp. 1225–1234. ACM, New York,

NY, USA.

Wass,M.N. et al. (2012) Combfunc: predicting protein function using hetero-

geneous data sources. Nucleic Acids Res., 40, W466–W470.

Yan,H. et al. (2010) A genome-wide gene function prediction resource for

drosophila melanogaster. PLoS One, 5, 1–11.

Youngs,N. et al. (2013) Parametric bayesian priors and better choice of nega-

tive examples improve protein function prediction. Bioinformatics, 29,

1190–1198.

Yu,G. et al. (2015) Predicting protein function using multiple kernels.

IEEE/ACM Trans. Comput. Biol. Bioinformatics, 12, 219–233.

deepNF: deep network fusion for protein function prediction 3881


