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Background
Heart rate variability (HRV), defined as the variation of successive heartbeats (RR inter-
vals, i.e. RRi), is a non-invasive tool for autonomic modulation assessment [1, 2]. Respira-
tory-coupled oscillations in heart rate (HR) are attributed to changes in parasympathetic 
activity over the sinoatrial node [2, 3], whereas lower frequency oscillations are imputed 
to phasic modifications in the sympathetic activity over the sinoatrial node [4] and also 
to other cardiovascular regulatory mechanisms [2, 5]. In general, a decrease in HRV is 
associated with poor cardiovascular health and prognosis [6, 7]. Classical HRV analy-
ses are performed in stationary signals using time (statistical or geometrical analyses) or 
frequency (power spectral analysis) domains methods [2]. Most of the software used for 
HRV analysis employ these methods [8, 9], however the analysis of not well-behaved or 
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non-stationary signals, such as those provided by “tilt test”—a clinical maneuver where 
the subject is submitted to an orthostatic stress; or exercise becomes laborious. To over-
come this limitation, our study presents SinusCor, an user-friendly free software devel-
oped in Matlab (MathWorks, Massachusetts, USA), with a graphical interface that covers 
some functions included in others software, with additional features, such as time-vary-
ing and time–frequency analysis, different filters, windowing functions and R-peak detec-
tion algorithm for electrocardiogram (ECG) signals, with user’s manual edition.

Implementation
File extensions

This program supports inputs as RRi or ECG data with different file extensions: pure text 
(.txt),  Polar® heart rate monitor (.hrm),  Suunto® heart rate monitor (.sdf ), Data Acquisi-
tion System (.bin) [10],  Biopac® (.acq) and Axon Binary File (.abf ).

R‑peaks detection

SinusCor software uses a simple derivative-based method for R-peaks detection. Ini-
tially, the ECG signal is bandpass-filtered with a Butterworth filter with default passband 
of 5–200 Hz to remove baseline and high frequencies noises. It is possible to set different 
values for passband according to the specificity of each ECG signal. After filtering, the R 
peaks are detected if the first derivative of the filtered signal crosses zero and if that cor-
responding point of the ECG is greater than a fixed threshold, also supplied by the user. 
The fixed threshold algorithm may not detect correctly some R-peaks [11]. To deal with 
this problem, a manual edition, in which peaks can be added or removed, is available in 
our software. Figure 1 shows an example of an ECG tracing with the detected R-peaks 
and the corresponding RRi values.

Fig. 1 Example of an electrocardiogram (ECG) tracing with the R-peaks detected (upper panel) and the cor-
responding RR interval (RRi) series (lower panel)
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Filtering
During the acquisition process, artifacts or ectopic beats may contaminate the RRi 
series, affecting the HRV analysis [12]. RRi filtering is a widely used technique to remove 
non-natural beats from the tachogram [12–14]. Among existing filters, the present soft-
ware counts with moving average, moving median and quotient filters [13]. The moving 
average consists on the convolution of the RRi signal with an N-length series of 1/N fac-
tors, in which N is the order of the filter. The moving-median filter applied to a given RRi 
value replaces this point by the median of the N (odd number) size interval centered on 
the current RRi value. The removal of non-natural beats using the quotient filter follows 
a simple rule: if the variation of two consecutive RRi values exceeds 20% (Eq. 1) the filter 
removes the ectopic beat. Quotient filter was implemented following the algorithm pro-
vided by Pikorski and Guzik [13]:

where  RRin is the nth RRi value and  RRin+1 is the nth + 1 RRi value.

Stationary signal HRV analysis
The following parameters can be calculated in SinusCor (Table 1).

Time domain methods

Time domain methods use statistical parameterizations of RR intervals. The Standard 
Deviation of the Normal RR intervals (SDNN) provides information on short and long-
term variability of the signal (Eq. 2):
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Table 1 Heart rate variability parameters obtained from stationary analysis in SinusCor

Index Description

Time domain

 RMSSD (ms) Root mean squared of successive NN differences

 SDNN (ms) Standard deviation of NN intervals

 pNN50 (%) Percentage of successive NN differences greater than 50 ms

 NN50 Count of successive NN differences greater than 50 ms

 Mean RRi (ms) Mean of RRi values

 Mean HR (bpm) Mean of HR values

Frequency domain

 Total power  (ms2) Energy of the PSD from 0 to 0.4 Hz (adjustable) in absolute values

 VLF  (ms2) Energy of the PSD from 0 to 0.04 Hz (adjustable) in absolute values

 LF  (ms2) Energy of the PSD from 0.04 to 0.15 Hz (adjustable) in absolute values

 HF  (ms2) Energy of the PSD from 0.15 to 0.4 Hz (adjustable) in absolute values

 LF/HF Ratio of LF to HF

 LFn.u LF energy normalized by total power and VLF

 HFn.u HF energy normalized by total power and VLF
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where N is the count of RRi values;  RRij is the jth RRi value and RRi is the average value 
of the RRi series.

The root mean square of successive differences (RMSSD) represents the short-term 
variability (Eq. 3):

where N is the count of RRi values and  RRij is the jth RRi value.
Also, the short-term (SD1) (Eq. 4) and long-term (SD2) (Eq. 5), measurements derived 

from a Poincaré plot, give similar information of RMSSD and SDNN, respectively, in 
terms of variability [15].

where SDNN is the standard deviation of the RRi value; SDSD is the standard deviation 
of the differences between adjacent RRi values.

The pNN50 quantifies the number of successive intervals differing more than 50 ms 
 (nRRi50) divided by the total number of RR intervals (nRRi) and multiplied by 100.

Other simpler calculations are done by the software, such as the mean and the mean of 
successive differences of the RR intervals. Table 1 summarizes the indices calculated in 
time domain.

Frequency domain methods

HRV analyses in frequency domain are performed through spectral decomposition 
of the RRi signal, using Fast Fourier Transform (FFT) or Autoregressive (AR) based 
methods and then decomposed into the following frequency components in absolute 
power values  (ms2): very low frequency (VLF: 0.003–0.04 Hz), low frequency (LF: 0.04–
0.15 Hz), high frequency (HF: 0.15–0.4 Hz) and total power (TP: 0–0.4 Hz) [2]. Indices 
derived from the spectral components such as the ratio of LF to HF (LF/HF), normalized 
LF (Eq. 7) and HF (n.u.) (Eq. 8) are also calculated. All frequency domain indices calcu-
lated in SinusCor are shown in Table 1.

In the SinusCor Software, it is possible to choose power spectral density (PSD) esti-
mation through Welch’s periodogram [16] or via AR method. In Welch’s method, the 
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frequency components are calculated using the average of the estimated PSD (Eq.  9) 
from P (Eq. 10) sub segments of the original RRi series [16].

where PSD(p)

(f )
 is the estimated PSD of each RRi series subsegment.

where N is the number of samples of the tachogram; D is the segment size and S is the 
shift between adjacent segments.

When the user chooses the AR, SinusCor estimates the PSD using the Burg algorithm. 
In this method, an AR prediction model, with the default order 16, fits the RRi series 
using the least square criteria. After the signal parametrization, the PSD is estimated 
using the frequency response of the model [17].

Prior to the PSD estimation and frequency components calculation, the RRi series are 
interpolated and then resampled using a sampling frequency chosen by the user. SinusCor 
uses 4 Hz [2] as default value for resampling frequency, which can also be modified by the 
user. To reduce the influence of lower frequencies in the resulting PSD, it is possible to per-
form the detrending of the RRi series. The user can choose between linear (default), quad-
ratic or cubic polynomials to be subtracted from the tachogram. It is also possible to choose 
a custom degree polynomial. In this case, the user chooses the polynomial degree, varying 
from 1 to N − 1, where N is the number of points in the tachogram. The superior panel of 
Fig. 2 presents an example of RRi series detrending using a polynomial with degree 5.

In the Welch’s method, the segment and overlap size can be adjusted. The default val-
ues are 256 and 128 (i.e. 50% of overlap), respectively. It’s also possible to apply different 
window functions (hanning, hamming, kaiser, blackman and triangular) to avoid spec-
tral leakage. When AR method is chosen, the default value of the model order of 16 can 
be modified to fit different purposes. To achieve higher PSD (Fig.  2) resolutions, it is 
possible to use a zero-padding function. The area under the curve of each band can be 
calculated by the spectrum integration using trapezoidal approximation, with the fre-
quency limits specified by the user. The adjustable frequency band makes the software 
useful for different applications [2, 18].

Non‑stationary signal HRV analysis
Since the RRi series may present non-stationary behavior, shorter segments can better 
represent the RRi changes over time [19–21]. SinusCor presents two methods for HRV 
analysis in non-stationary signals.

Time‑varying

Time-varying analysis refers to the analysis of typical time domain indices of HRV in 
successive short segments [19, 21, 22]. In the SinusCor software, the user can set a seg-
ment and overlap size. All of the above listed time domain indices of HRV (Table 1) can 
be calculated using this tool. Figure 3 shows a typical example of RMSSD values over 
time with 30 s segments without overlap.
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Fig. 2 Example of a RR interval (RRi) series during rest period, detrended with a 5 degree polynomial (upper 
panel) and the corresponding power spectral density (PSD) function estimated with Welch’s method (lower 
panel)

Fig. 3 Non-stationary RR interval (RRi) series during an incremental exercise (upper panel) and the resulting 
RMSSD index calculated within 30 s segments without overlap (lower panel)
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Time–frequency

The time–frequency technique allows the estimation of spectral components of RRi time 
series with FFT- or AR-based methods over time [20, 23]. The algorithm works similar 
to the Welch’s method, but instead of calculating the average of all estimated PSD, the 
time–frequency method results in a 3D map (time, frequency and PSD) with the PSD 
for each sub-segments displayed over time (Fig. 4). Afterwards, the spectral components 
(Table 1) are calculated for each estimated PSD. The user may set the boundaries of each 
spectral component, the size of each RRi segment and the respective overlap size. AR 
method’s model order and the window function are also modifiable. For the sake of a 
better visualization of the spectrogram, in all methods a zero-padding option is also 
available. To visualize the resulting 3D map from the time–frequency analysis, the user 
can choose between a surface plot or an image with scaled colors (Fig. 4).

Exporting results
The results from time and frequency domain analyses are displayed in the main inter-
face, as shown in Fig.  5. Two options are available for accessing the results from the 
time-varying and time–frequency analyses: first, exporting all results to a.csv (comma-
separated values) file as illustrated in Fig.  6 or; second, SinusCor provides two tables 
placed in different windows, one containing the results of the time-varying and the other 
containing the results of time–frequency analysis (Fig. 7).

Fig. 4 Non-stationary RR interval (RRi) series during a maximal effort exercise (a) and the resulting scaled 
colors map (b) and surface plot (c). PSD power spectral density



Page 8 of 15Bartels et al. BioMed Eng OnLine  (2017) 16:110 

Results
Analysis of stationary and non‑stationary RRi series

To test the feasibility of SinusCor, we firstly analyzed HRV from a young male at rest 
and during an incremental exercise test in cycle ergometer (Ergo-Fit, Ergo Cycle 167, 
Pirmasens, Germany). For resting measurements, the subject remained 10  min in 
supine position, with spontaneous breathing. The exercise test was preceded by 3 min 
of pre-exercise measurements. The test workload was initially set to 25  W, and then 
was increased 25 W every minute until the subject’s exhaustion. Cycling was performed 
within a cadence of 55–65  rpm. After the test, the subject remained seated on cycle 
ergometer for 5 min in inactive recovery. RRi was monitored during the whole proto-
col using a heart rate monitor (PolarTM, S810, Finland; sampling frequency = 1000 Hz). 
After experimental session, data was imported into SinusCor for HRV analysis.

Fig. 5 SinusCor interface with a non-stationary RR interval (RRi) series (upper panel) and the resulting time–
frequency analysis represented as a scaled color map (middle and lower panels)

Fig. 6 Exported.csv file containing the results from the analyses
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Resting HRV was calculated using conventional time and frequency domain analy-
ses in the last 5 min of the 10-min resting. The exercise HRV was calculated using the 
time-varying and time–frequency analyses. For time-varying analysis, we calculated the 
RMSSD index for successive 30 s segments, without overlap, during the whole exercise 
test. Time–frequency analysis was estimated via Welch’s method in 512 samples seg-
ment with 50% overlap. The hanning window was applied and the signal was detrended 
using a linear polynomial fit.

Table 2 presents the resting HRV of the subject. Figure 8 shows the RRi series (panel 
a) and the resulting RMSSD (panel b) and total power (panel c) from the subject along 
the exercise test. At pre-exercise, the subject presented a mean RRi of 984.56 ms (cor-
responding to a heart rate of 61.70 bpm), a RMSSD of 66.41 ms, and a total power of 
7300.87  ms2/Hz. Once the subject started the exercise, the RRi and HRV presented a 
progressive decrease, and, at the end of exercise, RRi was 338.34 ms (corresponding to 
a heart rate of 176.85  bpm), RMSSD was 2.95  ms, and total power was 3.79  ms2/Hz. 
During the recovery, RRi and HRV presented an exponential increase, and final RRi was 
606.12  ms (corresponding a heart rate of 99.13  bpm), RMSSD was 7.53  ms, and total 
power was 14.73 ms2/Hz.

Validation against standard software

To validate the results provided by SinusCor, we used RRi signals from 10 healthy sub-
jects during rest in the supine position during 900 s, and analyzed time and frequency 
domain HRV using SinusCor and Kubios (v 3.0.1, Biosignal Analysis and Medical Imag-
ing Group, Finland), a widely used software for HRV assessment [9]. For time domain 
analysis, we performed calculations of RMSSD, SDNN, PNN50, NN50, mean RRi and 
mean HR. For frequency domain, we calculated total power, absolute and normal-
ized LF and HF spectral bands, and LF/HF. In order to provide the same parameters 

Fig. 7 Tables containing the results from time-varying (upper panel) and from time–frequency (lower panel) 
analyses
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for frequency domain analysis, in both software we used the Welch’s method of power 
spectrum estimation. In Kubios, the segment size was set to 300 s, with 50% overlap and 
5 Hz sampling frequency. Once SinusCor offers segment size and overlap customization 
based on the number of samples instead of seconds, we chose a segment length of 1500 
samples, 50% overlap, and 5 Hz resampling. For each segment, a hanning window was 
applied to avoid spectral leakage. Because the analysis considered the whole RRi series, 
five PSD estimation were averaged to obtain the final density function. The linear trend 
was removed in all signals in both programs, and no artifact correction nor any preproc-
essing method despite interpolation and resampling was applied to the signals. To assess 
the agreement between the software, the mean and standard deviation, mean difference 
and limits of agreement (LOA; 1.96 × standard deviation of differences) were calculated 
and shown in Table 3. For better visualization Fig. 9 shows a Bland–Altman [24] plot for 
LF, HF, LFn.u and HFn.u. No difference was found for time domain indices, whereas a 
slight tendency for bias was present in total power and absolute LF and HF indices on 
frequency domain, with lower values for SinusCor software.

Discussion
This study presented and validated the SinusCor software, a user-friendly and free soft-
ware for HRV analysis that includes the classical time- and frequency domain indices 
and also techniques for non-stationary data analyses. To test the feasibility of our soft-
ware, we analyzed resting and exercise HRV data of a young male. In this sense, all rest-
ing indices were within the normal range of HRV for healthy adults [25]. In addition, 
the progressive decrease in RRi and HRV during incremental exercise tests has been 
extensively demonstrated in literature [26–29]. These responses result from the typical 
autonomic responses occurring during exercise, i.e. a decrease in parasympathetic and 
an increase in sympathetic activity [30]. Likewise, the exponential increase in RRi and 
HRV at the recovery phase is an ordinary response and is attributed to the fast parasym-
pathetic reactivation occurring at this phase [21]. Therefore, the results presented above 
are consistent with the expected physiological responses of the heart rate variability 

Table 2 Resting HRV indices of a healthy young male

Index Value

Time domain

 RMSSD (ms) 73.10

 SDNN (ms) 88.59

 PNN50 (%) 47.99

 NN50 489

 Mean RRi (ms) 891.47

 Mean HR (bpm) 67.30

Frequency domain

 Total power  (ms2/Hz) 5499.53

 LF  (ms2/Hz) 1895.67

 HF  (ms2/Hz) 1616.05

 LF/HF 1.17

 LFn.u 53.98

 HFn.u 46.02
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indices during and after exercise, which indicates the ability of SinusCor to capture such 
responses.

In order to perform a preliminary validation of SinusCor, we analyzed the agreement 
of resting time and frequency domain HRV indices between SinusCor and Kubios, a 
widely used software for HRV analysis [9]. When compared to Kubios, there were no dif-
ferences in time domain indices, whereas the frequency domain indices presented small 
differences between software. Regarding the agreement analysis, the time domain indi-
ces presented a perfect agreement, whereas slight bias were found for absolute frequency 
domain indices, with lower values for SinusCor. The fact that time domain indices are 
calculated with simple statistical equations and do not depend on preprocessing tech-
niques nor on different methods for estimation can explain these findings. Although we 

Fig. 8 RR interval (RRi) series during a maximal incremental exercise and recovery (a) and the resulting 
RMSSD (b) and total power (c) from a healthy young male
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provided the same parameters for frequency domain analysis in both software, Kubios 
does not inform some settings parameters that can lead to slight differences in frequency 
domain indices, such as Window function and integration method. Despite that, it is 
worth mentioning that differences in frequency domain indices were clearly small com-
pared to the magnitude of the indices (i.e. 1–2%) and, interestingly, when the indices 
were exposed in normalized units (LFn.u, HFn.u and LF/HF), these differences and bias 
were not present anymore. All these results together indicate that SinusCor presents 
reliable results for both time and frequency domain analysis of resting HRV.

Table 3 HRV indices difference and LOA provided by SinusCor and Kubios

Index Mean ± SD SinusCor Mean ± SD Kubios Bias ± LOA

Time domain

 RMSSD (ms) 93.96 ± 41.55 93.96 ± 41.55 0.00 ± 0.00

 SDNN (ms) 101.29 ± 29.03 101.29 ± 29.03 0.00 ± 0.00

 PNN50 (%) 49.98 ± 18.32 49.98 ± 18.32 0.00 ± 0.00

 NN50 448.30 ± 140.16 448.30 ± 140.16 0.00 ± 0.00

 Mean RRi (ms) 1009.76 ± 112.98 1009.76 ± 112.98 0.00 ± 0.00

 Mean HR (bpm) 60.13 ± 7.08 60.13 ± 7.08 0.00 ± 0.00

Frequency domain

 Total power  (ms2/Hz) 9740.55 ± 4884.26 9850.13 ± 4921.08 −109.58 ± 136.42

 LF  (ms2/Hz) 3614.12 ± 2171.14 3682.07 ± 2.193.50 −67.95 ± 66.87

 HF  (ms2/Hz) 3661.61 ± 3056.75 3706.82 ± 3074.75 −45.21 ± 68.38

 LF/HF 1.38 ± 1.08 1.38 ± 1.07 0.00 ± 0.00

 LFn.u 50.42 ± 19.76 50.56 ± 19.56 −0.14 ± 0.55

 HFn.u 49.57 ± 19.76 49.38 ± 19.56 0.19 ± 0.55

Fig. 9 Bland–Altman plots (systematic bias ± limits of agreement) for a absolute LF. b Absolute HF. c Normal-
ized LF; and d normalized HF
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The present paper describes a software for advanced HRV analysis developed in Mat-
lab. SinusCor allows the calculation of the most common indices of HRV in both time 
and frequency domains for stationary RRi data. It is also possible to analyze non-station-
ary HRV signals using time-varying analysis, which allows the calculation of classical 
time domain indices in RRi signals with amplitude and frequency variations; and time–
frequency analysis, for spectral decomposition over time, using FFT or AR based meth-
ods. Time-varying and time–frequency analysis can be useful for researchers working 
with non-stationary HRV signals, such as the exercise or other physiological maneuvers.

SinusCor was developed to meet the demand of physiologists working with HRV 
in both clinical and research fields. This software allows the user to perform the most 
common and clinically validated analyses of stationary and non-stationary HRV analy-
ses [21]. The graphical interface offers a user-friendly experience which makes param-
eter changing intuitive and easy for users. For conventional time and frequency domain 
analyses, SinusCor provides all of the preprocessing customization required in most of 
the guidelines for HRV analysis. For non-stationary time-dependent analyses, SinusCor 
provides options for specific customization, including setting the segment and overlap 
sizes and adjusting the spectral boundaries. Furthermore, SinusCor allows the separated 
visualization of the results of time-varying and time–frequency analyses, which makes 
the user interpretation clearer and easier. These features are not provided by any other 
software, therefore limiting the HRV evaluation in situations such as physical exercise. 
All figures that SinusCor generates can be exported to be embedded in scientific papers 
or patient reports. The results can also be exported as .csv tables or in separated win-
dows for later analyses.

This paper herein presents the first version of SinusCor. Many other features will be 
implemented in the future based on the users’ feedback and suggestions. SinusCor is 
freely available for both academic and clinical use and can be downloaded on http://bit.
ly/sinuscor, where tutorial videos and example files can also be found in order to help 
users.

Conclusion
SinusCor is a useful tool for classical heart rate variability analysis and for RRi signals 
with non-stationary behavior. New versions of will continue to be developed offering 
new features and better performance.

Abbreviations
HRV: heart rate variability; HR: hear rate; ECG: electrocardiogram; FFT: Fast Fourier Transform; AR: Autoregressive; RRi: RR 
intervals; RMSSD: root mean square of successive differences; SDNN: standard deviation of normal RR intervals; SD1: 
short-term beat-to-beat R–R variability from the Poincaré plot; SD2: long-term beat-to-beat R–R variability from the Poin-
caré plot; pNN50: percentage of successive NN differences greater than 50 ms; NN50: count of successive NN differences 
greater than 50 ms; VLF: very low frequency; LF: low frequency; HF: high frequency; TP: total power; PSD: power spectral 
density; LFn.u: low frequency in normalized units; HFn.u: high frequency in normalized units; csv: comma-separated 
values; LOA: limits of agreement.

Authors’ contributions
RB worked on the manuscript, developed the codes of the user’s interface, the code for time and frequency domain 
analyses and worked on the code organization. LN contributed for time–frequency and Poincaré Analyses. TP worked on 
the manuscript writing and on the interface design. ARSC participated in the code validation for all types of analysis and 
is the Project coordinator. All authors read and approved the final manuscript.

Author details
1 Pulmonary Engineering Laboratory, Biomedical Engineering Program, COPPE, Federal University of Rio de Janeiro, 
Cidade Universitária, Rio de Janeiro, Brazil. 2 School of Physical Education and Sport, University of São Paulo, São Paulo, 

http://bit.ly/sinuscor
http://bit.ly/sinuscor


Page 14 of 15Bartels et al. BioMed Eng OnLine  (2017) 16:110 

Brazil. 3 Laboratory of Respiration Physiology, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de 
Janeiro, Cidade Universitária, Rio de Janeiro, Brazil. 

Acknowledgements
The authors are grateful to CAPES (Coordenadoria de Aperfeiçoamento de Pessoal de Nível Superior), FAPERJ (Fundação 
de Amparo à Pesquisa do Estado do Rio de Janeiro), FAPESP (Fundação de Amparo à Pesquisa do Estado do São Paulo) 
and CNPq (Conselho Nacional de Desenvolvimento Científico e Tecnológico) for financial support.

Competing interests
The authors declare that they have no competing interests.

Availability of data and materials
Project Name: SinusCor

Project Home Page: http://bit.ly/sinuscor
Operating System: Platform Independent
Programming Language: Matlab
Other Requirements: Matlab Signal Processing Toolbox
License: Freeware
Any restriction to use by non-academics: No restrictions
The datasets generated and/or analysed during the current study are available in: http://bit.ly/sinuscor.

Consent for publication
Not applicable.

Ethics approval and consent to participate
The study conformed to the standards set by the Declaration of Helsinki and the protocol was approved by the Ethics 
Committee of University Hospital Clementino Fraga Filho, from the Federal University of Rio de Janeiro (Protocol Num-
ber: 20595013.9.0000.5257).

Funding
The Brazilian Agencies CNPq, CAPES, FAPERJ and FAPESP provided partial financial support for this study.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Received: 11 May 2017   Accepted: 7 September 2017

References
 1. Kamath MV, Fallen EL. Power spectral analysis of heart rate variability: a noninvasive signature of cardiac autonomic 

function. Crit Rev Biomed Eng. 1993;21(3):245–311.
 2. TASK-FORCE: Heart rate variability. Standards of measurement, physiological interpretation, and clinical use. Task 

Force of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology. Eur 
Heart J. 1996;17(3):354–381.

 3. Akselrod S, Gordon D, Ubel FA, Shannon DC, Berger AC, Cohen RJ. Power spectrum analysis of heart rate fluctuation: 
a quantitative probe of beat-to-beat cardiovascular control. Science. 1981;213(4504):220–2.

 4. Malliani A, Lombardi F, Pagani M. Power spectrum analysis of heart rate variability: a tool to explore neural regula-
tory mechanisms. Br Heart J. 1994;71(1):1–2.

 5. Moak JP, Goldstein DS, Eldadah BA, Saleem A, Holmes C, Pechnik S, Sharabi Y. Supine low-frequency power of heart 
rate variability reflects baroreflex function, not cardiac sympathetic innervation. Heart Rhythm. 2007;4(12):1523–9.

 6. Kleiger RE, Miller JP, Bigger JT Jr, Moss AJ. Decreased heart rate variability and its association with increased mortality 
after acute myocardial infarction. Am J Cardiol. 1987;59(4):256–62.

 7. Tsuji H, Larson MG, Venditti FJ Jr, Manders ES, Evans JC, Feldman CL, Levy D. Impact of reduced heart rate variability 
on risk for cardiac events. The Framingham Heart Study. Circulation. 1996;94(11):2850–5.

 8. Carvalho JLAd, Rocha AFd, Nascimento FAdO, Neto JS, Junqueira LF. Development of a Matlab software for analysis 
of heart rate variability. In: 2002 6th international conference on signal processing, vol. 1482, pp. 1488–1491, 26–30 
Aug 2002.

 9. Tarvainen MP, Niskanen JP, Lipponen JA, Ranta-Aho PO, Karjalainen PA. Kubios HRV—heart rate variability analysis 
software. Comput Methods Programs Biomed. 2014;113(1):210–20.

 10. Pino AV, Kagami LT, Jandre FC, Gianella A. DAS—Um programa de aquisição e processamento de sinais para engen-
haria pulmonar. In: 3º Congresso Latino Americano de Engenharia Biomédica. João Pessoa, PB, Brazil: Anais do 3º 
Congresso Latino Americano de Engenharia Biomédica. 2004: 765–768.

 11. Kew HP, Jeong DU. Variable threshold method for ECG R-peak detection. J Med Syst. 2011;35(5):1085–94.
 12. Storck N, Ericson M, Lindblad L, Jensen-Urstad M. Automatic computerized analysis of heart rate variability with 

digital filtering of ectopic beats. Clin Physiol. 2001;21(1):15–24.
 13. Piskorski J, Guzik P. Filtering poincare plots. Comput Methods Sci Technol. 2005;11(1):39–48.
 14. Karlsson M, Hornsten R, Rydberg A, Wiklund U. Automatic filtering of outliers in RR intervals before analysis of heart 

rate variability in Holter recordings: a comparison with carefully edited data. Biomed Eng Online. 2012;11:2.

http://bit.ly/sinuscor
http://bit.ly/sinuscor


Page 15 of 15Bartels et al. BioMed Eng OnLine  (2017) 16:110 

•  We accept pre-submission inquiries 

•  Our selector tool helps you to find the most relevant journal

•  We provide round the clock customer support 

•  Convenient online submission

•  Thorough peer review

•  Inclusion in PubMed and all major indexing services 

•  Maximum visibility for your research

Submit your manuscript at
www.biomedcentral.com/submit

Submit your next manuscript to BioMed Central 
and we will help you at every step:

 15. Brennan M, Palaniswami M, Kamen P. Do existing measures of Poincare plot geometry reflect nonlinear features of 
heart rate variability? IEEE Trans Biomed Eng. 2001;48(11):1342–7.

 16. Welch P. The use of fast Fourier transform for the estimation of power spectra: a method based on time averaging 
over short, modified periodograms. IEEE Trans Audio Electroacoust. 1967;15(2):70–3.

 17. Marple SL. Digital spectral analysis: with applications. Englewood Cliffs: Prentice-Hall; London: Prentice-Hall Interna-
tional; 1987.

 18. Kuwahara M, Yayou K, Ishii K, Hashimoto S, Tsubone H, Sugano S. Power spectral analysis of heart rate variability as a 
new method for assessing autonomic activity in the rat. J Electrocardiol. 1994;27(4):333–7.

 19. Goldberger JJ, Le FK, Lahiri M, Kannankeril PJ, Ng J, Kadish AH. Assessment of parasympathetic reactivation after 
exercise. Am J Physiol Heart Circ Physiol. 2006;290(6):H2446–52.

 20. Mainardi LT, Bianchi AM, Cerutti S. Time-frequency and time-varying analysis for assessing the dynamic responses of 
cardiovascular control. Crit Rev Biomed Eng. 2002;30(1–3):175–217.

 21. Peçanha T, Bartels R, Brito LC, Paula-Ribeiro M, Oliveira RS, Goldberger JJ. Methods of assessment of the post-exercise 
cardiac autonomic recovery: a methodological review. Int J Cardiol. 2017;227:795–802.

 22. Ng J, Sundaram S, Kadish AH, Goldberger JJ. Autonomic effects on the spectral analysis of heart rate variability after 
exercise. Am J Physiol Heart Circ Physiol. 2009;297(4):H1421–8.

 23. Keselbrener L, Akselrod S. Selective discrete Fourier transform algorithm for time-frequency analysis: method and 
application on simulated and cardiovascular signals. IEEE Trans Biomed Eng. 1996;43(8):789–802.

 24. Bland JM, Altman DG. Statistical methods for assessing agreement between two methods of clinical measurement. 
Lancet. 1986;1(8476):307–10.

 25. Nunan D, Sandercock GR, Brodie DA. A quantitative systematic review of normal values for short-term heart rate 
variability in healthy adults. Pacing Clin Electrophysiol. 2010;33(11):1407–17.

 26. Tulppo MP, Makikallio TH, Seppanen T, Laukkanen RT, Huikuri HV. Vagal modulation of heart rate during exercise: 
effects of age and physical fitness. Am J Physiol. 1998;274(2 Pt 2):H424–9.

 27. Cottin F, Papelier Y, Escourrou P. Effects of exercise load and breathing frequency on heart rate and blood pressure 
variability during dynamic exercise. Int J Sports Med. 1999;20(4):232–8.

 28. Macor F, Fagard R, Amery A. Power spectral analysis of RR interval and blood pressure short-term variability at rest 
and during dynamic exercise: comparison between cyclists and controls. Int J Sports Med. 1996;17(3):175–81.

 29. Casadei B, Moon J, Johnston J, Caiazza A, Sleight P. Is respiratory sinus arrhythmia a good index of cardiac vagal tone 
in exercise? J Appl Physiol. 1996;81(2):556–64.

 30. White DW, Raven PB. Autonomic neural control of heart rate during dynamic exercise: revisited. J Physiol (Lond). 
2014;592(12):2491–500.


	SinusCor: an advanced tool for heart rate variability analysis
	Abstract 
	Background: 
	Results: 
	Conclusions: 

	Background
	Implementation
	File extensions
	R-peaks detection

	Filtering
	Stationary signal HRV analysis
	Time domain methods
	Frequency domain methods

	Non-stationary signal HRV analysis
	Time-varying
	Time–frequency

	Exporting results
	Results
	Analysis of stationary and non-stationary RRi series
	Validation against standard software

	Discussion
	Conclusion
	Authors’ contributions
	References




