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Abstract: Plants constitute a rich source of diverse classes of valuable phytochemicals (e.g., phe-
nolic acids, flavonoids, carotenoids, alkaloids) with proven biological activity (e.g., antioxidant,
anti-inflammatory, antimicrobial, etc.). However, factors such as low stability, poor solubility and
bioavailability limit their food, cosmetics and pharmaceutical applications. In this regard, a wide
range of delivery systems have been developed to increase the stability of plant-derived bioactive
compounds upon processing, storage or under gastrointestinal digestion conditions, to enhance
their solubility, to mask undesirable flavors as well as to efficiently deliver them to the target tissues
where they can exert their biological activity and promote human health. In the present review, the
latest advances regarding the design of innovative delivery systems for pure plant bioactive com-
pounds, extracts or essential oils, in order to overcome the above-mentioned challenges, are presented.
Moreover, a broad spectrum of applications along with future trends are critically discussed.
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1. Introduction

Plants produce a wide range of phytochemicals such as phenolic compounds (e.g.,
phenolic acids, flavonoids, stilbenes, tannins), terpenes (e.g., carotenoids) as well as nitrogen-
(e.g., alkaloids) and sulfur-containing compounds (Figure 1). Various biological actions,
including antioxidant, anti-inflammatory, anticancer, anti-atherosclerotic, antimicrobial, etc.,
have been assigned to plant-derived compounds. The latter ones, in the form of either isolated
molecules, extracts or essential oils, find numerous applications in food, pharmaceutical
and cosmetic industries as natural colorants, flavoring agents, antioxidants, antimicrobials,
nutraceuticals, etc. [1]. However, their direct incorporation into various products presents
certain difficulties. In particular, the majority of the plant bioactive ingredients are prone to
degradation. Factors such as light, temperature, oxygen, pH as well as the presence of metal
ions during processing, storage or upon gastrointestinal digestion can influence their stability.
Moreover, the poor aqueous solubility of hydrophobic compounds prevents their dissolution
and absorption. In the same frame, the limited diffusion and permeability of such compounds
across intestinal epithelium cells affect their bioavailability (i.e., the amount of an ingested
bioactive compound that is absorbed in the gut after digestion) [2]. In the case of essential
oils, their high volatility further limits their applications.

The above-mentioned drawbacks can often be overcome by encapsulating the bioac-
tive ingredients in appropriate delivery systems. Such systems offer various advantages
including increased processing and storage stability, enhanced bioavailability, controlled
release, effective delivery of the bioactive ingredients to specific sites-of-action where they
can exert their activity promoting human health and well-being, masking of undesired
flavors, incorporation of the bioactive ingredients into matrices without affecting quality
characteristics (e.g., color), etc. [3]. Different types of carriers, i.e., organic (such as lipids
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(e.g., fatty acids, phospholipids), proteins (e.g., caseins, whey proteins, gelatin), carbohy-
drates (e.g., starch, cellulose, chitosan, pectin)), inorganic (e.g., silver, gold, mesoporous
silica) and others (e.g., inactive viruses), have been used during the last decades in order to
develop a wide range of delivery systems (e.g., nano- and microparticles, liposomes, hy-
drogels, nanoemulsions, nanofibers, etc.) employing a variety of encapsulation techniques
(e.g., coacervation, electrospinning, emulsification, etc.) (Figure 2) [4–7].
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The current review provides an overview of the latest advances regarding the design of
innovative delivery systems for plant-derived bioactive compounds, extracts and essential
oils in order to overcome the above-mentioned challenges. Moreover, a broad spectrum of
food, cosmetic and medicinal applications, along with future trends, are critically discussed.
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2. Challenges in the Use of Plant Bioactive Ingredients

Some of the most common challenges related to the exploitation of plant bioactive
ingredients in food, cosmetic and pharmaceutical applications that are usually encountered
are summarized below.

2.1. Solubility

One of the major challenges that limit the direct incorporation of plant bioactive
ingredients into foodstuffs, beverages and cosmetic and pharmaceutical products is their
low water or oil solubility. Compounds with poor water solubility (e.g., carotenoids) cannot
readily be incorporated into aqueous-based products whereas ingredients with poor oil
solubility cannot easily be incorporated into oil-based products [1].

2.2. Bioavailability

A critical aspect regarding the fabrication of novel systems for the delivery of plant
bioactive ingredients is the increase of their bioavailability. The latter one depends on
several factors such as the molecular and physicochemical characteristics of the bioactive
compound, the interactions with other ingredients, its solubility, its stability upon gas-
trointestinal digestion conditions, etc. These are the reasons why many plant ingredients
exhibit low bioavailability along with poor pharmacokinetics and low accumulation in the
target tissues [8–12]. In this regard, the targeted design of carriers provides the possibility
to overcome the above-mentioned limitations and enhance the bioavailability of plant
ingredients, leading to more pharmacologically active formulations with increased stability,
solubility and pharmacological activity as well as lower toxic effects [12]. This can be
achieved through the control of the particle size of the fabricated delivery system, their
surface properties and the release of the encapsulated ingredient(s) toward site-specific
activity at an appropriate rate and dose [13]. Depending on the physicochemical nature
and the chemical profile of the plant molecules to be encapsulated, several kinds of for-
mulations have been used to increase their bioavailability, with lipid-based systems and
especially liposomes being the most common ones. On the other hand, non-liposomal ap-
proaches include polymeric nanoparticles [14], nanoemulsions [15–17], quantum dots [18],
micelles [19] and solid lipid nanoparticles.

2.3. Stability

Stability constitutes another important factor that may limit the food, medicinal and
cosmetics applications of plant-derived ingredients, in the form of either isolated com-
pounds, extracts or essential oils. Such compounds are prone to degradation (e.g., oxidation,
hydrolysis, crystallization, enzymatic deterioration) during processing or storage or un-
der gastrointestinal digestion conditions. Factors such as oxygen, temperature, pH, the
presence of additives, metal ions, etc., influence their stability [20]. Encapsulation offers
protection and increases the stability of various bioactive compounds. In this regard, na-
noemulsions, liposomes, phytosomes, ethosomes and nanoparticles have been used for the
increase instability of plant ingredients such as zedoary turmeric oil [21], verbascoside [22]
and tea polyphenols [10].

2.4. Release

The delivery system has to be fabricated in such a way that it allows the release of
the active ingredients at a specific site of action, at a controlled rate or as a response to
a particular environmental trigger (e.g., pH, temperature). This trigger could take place
either during food storage (e.g., release of an antimicrobial) or in the human body (e.g.,
release in the mouth, stomach, small intestine or colon) [1]. Release followed by carrier
biodegradation are often important aspects for the design of an effective delivery system.
The release mechanism of plant metabolites from a carrier involves (a) the desorption of
metabolite(s); (b) the diffusion through the matrix (followed by diffusion through the carrier
wall in some cases, e.g., nanocapsules); (c) the matrix decomposition; and (d) the combined
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decomposition/diffusion [23]. In sustained-release formulations, the metabolite(s) is re-
leased from the carrier at a continuous rate. This not only simplifies the application but also
offers predictable and reproducible pharmacokinetics [24]. Furthermore, when referring to
complex systems such as plant extracts or essential oils, rather than isolated metabolites,
the term synchronized release may apply. It refers to the controlled release of multiple
metabolites in a specific time frame while maintaining the inter-component ratio. This
approach is of importance in such systems as the different physicochemical characteristics
of the plant metabolites lead to asynchronous and non-controllable release, which usually
causes decreased bioactivity [25]. Systems that have been used so far for the controlled
release of various bioactive compounds include liposomes [26,27], nanoemulsions [28,29],
polymers, etc. [30–32].

3. Organic-Based Delivery Systems
3.1. Lipid-Based Delivery Systems

Lipid-based nanosystems represent the largest and most investigated category of
nanocarriers. Many formulations based on lipidic structures have been prepared, i.e.,
liposomes and similar carriers such as ethosomes, transfersomes, solid lipid nanoparticles,
nanostructured lipid carriers, lipid drug conjugates, etc. [33]. Usually, these carriers demon-
strate lower toxicity profiles and more reasonable cost compared to polymeric carriers [34].
They also exhibit specific desirable characteristics, such as the possibility to encapsulate
both lipophilic and hydrophilic molecules, significant encapsulation efficiency, controlled
release, biodegradability, ease of production, high bioavailability, suitability for administra-
tion via various administration routes (oral, intravenous (i.v.), topical, pulmonary, etc.) and
targeted delivery through peripheral group modification. Moreover, they may be prepared
by sustainable processes [35]. A schematic overview of the different lipid-based delivery
systems is given in Figure 3.
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Several lipids can be used for the preparation of lipidic nanosystems. Their desired
characteristics include biodegradability, biocompatibility, stability, capability to produce
nanosize particles with a low polydispersity index, high loading capacity and lack of
toxicity [36]. The lipids that are commonly used for such purposes belong mostly to the
triglyceride, partial glyceride, fatty acid and sterol categories. The major criteria for lipid
choice deal with the physicochemical nature of the ingredient(s) to encapsulate and the
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desired characteristics of the formulation, such as ideal particle size, release profile, targeted
delivery, route of administration and production cost [37].

The production methods vary. Some examples are electrospinning, gelation, layer-by-
layer deposition, extrusion and emulsification.

3.1.1. Vesicular Systems

Vesicular carriers are highly ordered systems that consist of concentric bilayers formed
as a result of the self-assembly of amphiphilic building blocks [38]. Such systems can play
a major role in the transport and targeting of encapsulated materials. The first developed
and most investigated category is liposomes, while there is constant research on newer
systems that are able to carry and provide desired characteristics to plant ingredients.
Encapsulation of such ingredients in vesicular structures may stabilize, protect and prolong
their presence in the systemic circulation, while possible toxicity may be reduced [39].

Liposomes

The oldest vesicular system, first developed in the 1960s, is liposomes (from the Greek
words “lipos” (fat) and “soma” (body)) [33]. Liposomes are highly efficient and relatively
easy to produce, have a size that ranges from a few nanometers to several micrometers
and demonstrate specific advantages for the encapsulation and targeted delivery of both
hydrophilic and lipophilic molecules. The main components of a liposomal formulation are
phospholipids or sphingolipids. In many cases, sterols, such as cholesterol, and polymers
are also used.

Several methods have been developed for liposome preparation [40]. In all of them,
temperature must be maintained above the lipid phase transition temperature. Conven-
tional preparation techniques include hydration, sonication and microemulsification, while
newer, more efficient techniques have been also developed (e.g., the heating method, the
osmotic shock method, spray drying, freeze drying, membrane-conductor method) [40].

Liposomal vesicles are usually classified based on the diameter and number of layers
as multilamellar vesicles (MLVs), i.e., those that have multiple bilayers, and unilamellar
vesicles, i.e., those that have a single bilayer. The latter ones can be further classified
into large unilamellar vesicles (LUVs) and small unilamellar vesicles (SUVs) [41]. In both
categories, the bilayer(s) enclose an aqueous core.

The main disadvantage of liposomal carriers is the production cost because usu-
ally lipidic raw materials are relatively expensive. Another main issue is the thermo-
dynamic stability of such systems. Liposomes are prone to fusion, aggregation and un-
intended/premature release of the encapsulated ingredient(s). Moreover, the lipids are
susceptible to oxidation phenomena. Finally, in the case of multiple molecule encapsula-
tion, as in the case of plant extracts or essential oils encapsulation, interaction between
incorporated ingredients at the liposomal interior is possible [42]. On the other hand, lipo-
somal formulations demonstrate specific advantages, including lack of toxicity, flexibility,
biocompatibility, biodegradability and non-immunogenicity [43].

The constant scientific research and the continuous demand for more evolved encap-
sulation nanosystems have led to advances in liposomal technology that can be categorized
into four generations, according to their function [42]:

1. First generation of liposomes. These are the oldest developed, conventional liposomes
that consist mainly of natural phospholipids and, in some cases, cholesterol. Despite
the fact that they demonstrate a series of issues, such as increased uptake by the
reticuloendothelial system (RES) and physicochemical and chemical degradation [44],
they are very common delivery systems, also for plant ingredients [45,46].

2. Second generation of liposomes. The second generation includes more recent develop-
ments such as stealth and stimuli-responsive liposomes. Stealth liposomes are coated
by polymers for the modification of size and charge. Polyethylene glycol-covered
(PEGylated) liposomes improve the stability and reduce the probability of RES uptake,
increasing the blood half-life of the system. Stealth liposomes with interesting proper-
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ties have been developed in order to encapsulate resveratrol [47] and curcumin [48].
Stimuli-responsive liposomes are able to release their content depending on external
triggering mechanisms, such as pH or temperature change, thus being more targeted
than conventional ones. Resveratrol and curcumin have also been incorporated into
pH-sensitive systems [49,50].

3. Third generation of liposomes. These systems bear a ligand (enzyme, antibody,
vitamin, etc.) that leads to targeted transportation of the incorporated molecule(s)
due to affinity mechanisms. Upon careful design, this can lead to accumulation of
liposomes and targeted release at the desired site [51]. Galangin-loaded liposomes
have been designed to target liver tissue [52], while a curcumin liposomal system has
been developed to target cancer cells [53].

4. Fourth generation of liposomes (or theranostic liposomes) combine several strategies
to achieve site-specific delivery and, at the same time, imaging [54]. Their main
advantage is the multifunctionality—being diagnostic and therapeutic agents at the
same time. For the moment in what concerns plant extracts, the literature is very
limited. A good case study is the one by Wang et al. [55], who developed a magnetic
targeting liposomal nanocarrier, loaded with resveratrol, that with the aid of an
external magnetic field can cross the blood–brain barrier and could prove helpful for
the treatment of cerebral disease.

Since their first appearance in the literature, liposomal systems have been widely
investigated for the incorporation of plant ingredients. Liposomal incorporation has been
proved to tackle several issues associated with natural products, such as low bioavailability,
solubility and instability, as well as to provide desired characteristics including targeted
delivery and controlled release rate. Plant ingredients for liposomal incorporation may be
crude or fractionated extracts, essential oils or isolated compounds.

One of the most studied categories of metabolites to be encapsulated in liposomal for-
mulations is polyphenols—plant secondary metabolites with many applications in human
health. Polyphenols demonstrate several challenges, mainly instability and low bioavail-
ability, which are the reasons for liposomal encapsulation [56]. In particular, quercetin,
a flavonol found mostly in onions, grapes, berries, cherries, broccoli and citrus fruits,
is one of the most investigated polyphenols for liposomal incorporation because of its
diverse bioactivity that ranges from anti-inflammatory to anticancer [57]. Cellular pro-
tective effects of liposomes against oxidative stress were reported for quercetin-loaded
liposomes [58]. The study also found enhanced internalization by cells for the liposomal
system. In another study [56], liposomal encapsulation of quercetin led to very high 2,2-
diphenyl-1-picrylhydrazyl (DPPH) scavenging and lipid peroxidation inhibition capacity,
along with desired stability characteristics. High antioxidant capacity, through various
techniques including DPPH, was proved by Hao et al. [59] for chitosan-coated quercetin-
loaded liposomes. The system also presented high stability, solubility and biocompatibility.
Quercetin has also been co-encapsulated with temozolomide in a liposomal system that
proved effective in the treatment of glioma [60]. In another study utilizing tumor-bearing
mice, quercetin-loaded liposomes treatment reduced the tumor growth compared to its free
form [61]. The system did not cause any adverse effects in the liver and kidney of the mice.
Curcumin is a polyphenolic compound isolated from Curcuma longa (turmeric) rhizomes.
It exhibits significant bioactive properties such as chemopreventive, anti-inflammatory
and anticancer, while its use is limited because of stability, low solubility and bioavailabil-
ity issues. Thus, liposomal systems have been developed by several groups in order to
increase the molecule’s health benefit potential. Compared to free curcumin, liposomal
systems have been proved to provide enhanced anti-inflammatory activity, sustained-
release properties and increased antioxidant activity [62,63]. Kianvash et al. [64] studied
curcumin-propylene glycol-loaded liposomes for burn healing applications. The formula-
tion caused the significant recovery of burned rat skin in 8 days—a result very similar to
a potent silver sulfadiazine cream. Liposomal curcumin demonstrated better hepatopro-
tective effects against dimethylhydrazine-induced hepatic dysfunction in mice compared
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to free form and cyclodextrin complexed curcumin [65]. Liposomal curcumin has also
provided some promising results against many types of cancer such as skin cancer [66,67],
liver cancer [68], lung cancer [69,70] and brain cancer [71,72]. Resveratrol is one of the
most studied stilbenes due to its pharmacological activities, which include antioxidant,
anti-aging, anti-inflammatory, antidiabetic, cardioprotective, anticancer and neuropro-
tective properties [73]. The common polyphenol problems of instability, bioavailability
and solubility limit its health applications. Resveratrol-loaded PEGylated liposomes were
prepared by Caddeo et al. [47]. The study revealed long-term stability and biocompatibility
as well as enhanced protection against oxidative stress in ex vivo human erythrocytes. In
another study, transferrin-targeted resveratrol liposomes were prepared for the treatment
of glioblastoma [74]. The results demonstrated a significant therapeutic effect, which was
also increased compared to non-targeted resveratrol liposomes. Chitosan-coated liposomes
were prepared to improve resveratrol’s topical delivery [75]. The in vitro study proved
that resveratrol-loaded liposomal formulations can significantly improve the antioxidant
and anti-inflammatory activity in comparison with free resveratrol. Orthosiphon stamineus
exhibits significant bioactive properties such as diuretic, hepatoprotective, anti-angiogenic
and anticancer [76–78], which have limited applications because the plant’s constituents
have low water solubility. Aisha et al. [79] prepared nanoliposomes incorporating the
plant’s ethanolic extract, resulting in enhanced solubility, absorption and finally antiox-
idant activity compared to the non-encapsulated plant. Similarly, tea polyphenols have
been proved to benefit from liposomal encapsulation, by gaining enhanced bioavailability,
stability and controlled release properties [9,80–82]. Liposomes have been used, among
other targets, for the increase of bioavailability of Panax notoginseng saponins [83,84]. The
saponins are poorly absorbed from the digestive tract when administered orally, probably
because of decomposition in the stomach and low membrane permeability (attributed
to high hydrophilicity and high molecular weight). Zhang et al. [83] developed a core-
shell hybrid liposomal system that incorporated P. notoginseng saponins, increasing their
bioactivity after oral administration in rats.

Besides isolated metabolites, liposomes loaded with various extracts have been also
prepared. In particular, liposomes loaded with anthocyanins from a hibiscus extract
(Hibiscus sabdariffa) have been fabricated [85]. The encapsulation efficiency was found to
be high, and in parallel, the extract enhanced the stability of the lipids against oxidation.
Asparagus racemosus root extract has also been incorporated into liposomes to assess the
anti-inflammatory activity in the monocytic leukemia cell line THP 1 [86]. The system
was found to be effective for topical and/or transdermal anti-inflammatory applications.
Manconi et al. [87] encapsulated a polyphenol-rich grape pomace extract in liposomes
associated with polymers for oral delivery. The system exerted antioxidant properties
in Caco-2 cells while it resisted the low gastric pH. Pomegranate peel extract along with
collagen hydrolysate, and shrimp lipid extract were encapsulated in liposomes that were
subjected to freeze drying and subsequent incorporation in squid surimi gels. The gel
proved to be stable—a fact attributed to the liposomes—while the antioxidant activity was
maintained after in vitro gastrointestinal digestion [88]. Liposomes containing Psidium
extracts have also been examined for their hepato-protective antioxidant activity in rats.
Liposomal Psidium guajava leaves exhibited significant restorative properties in the liver
tissue compared to silymarin [89]. In a different application, Pinila and Brandelli [90]
incorporated nisin and garlic extract into a liposomal formulation that was proved to inhibit
the growth of Listeria monocytogenes, Staphylococcus aureus, Escherichia coli and Salmonella
enteritidis in milk, exhibiting potential as a natural antimicrobial agent and preservative.

Several studies have demonstrated the increased antimicrobial potential of liposome
encapsulated essential oils. Liposomal Zataria multiflora essential oil exhibited lower
minimum inhibitory concentration than free essential oil against E. coli [91]. In a study
by Gortzi et al. [92], the antimicrobial activity of liposomal Origanum dictamnus extracts
was found to be higher compared to the free form. Thymus essential oil has also been



Plants 2021, 10, 1238 8 of 56

incorporated into liposomes to study the antimicrobial activity against Streptococcus mutans
and Candida albicans. The results were promising for the treatment of caries [93].

Transfersomes, Ethosomes, Phytosomes and Niosomes

Since the 1990s, newer vesicular lipid vesicles with interesting properties have been
developed. By chronological order, the main categories are transfersomes, ethosomes,
phytosome and niosomes [94].

In particular, transfersomes are deformable vesicles that find mainly skin applications as
their elastic properties favor transdermal penetration by either intracellular or transcellular
route [95]. They have a liposomal structure, with the use of surfactants being the major
difference. Surfactants provide flexibility and act as membrane-softening and destabilizing
agents [96]. A transfersome carrier loaded with caffeine and minoxidil has been developed
for the treatment of alopecia by Ramezani et al. [97]. The results showed an increase in hair
length and weight in vivo that was attributed to improved encapsulation efficiency, release
rate and stability. Transfersomes, loaded with apigenin, have demonstrated enhanced
stability, permeability and prolonged release characteristics [98]. Moreover, a system
consisting of epigallocatechin-3-gallate (from Camellia sinensis) and hyaluronic encapsulated
in transfersomes exhibited improved in vitro solubility and stability as well as ex vivo skin
permeability along with antioxidant and anti-aging properties [98].

Ethosomes have been developed as effective vesicles for topical, transdermal and
systemic applications. They are formed from phospholipids, water and high concentrations
of alcohols (ethyl alcohol or isopropanol) [99] that provide elastic properties to the vesicles
as well as increase the encapsulation efficiency of lipophilic molecules, especially compared
to conventional liposomes. Halan et al. [100] prepared ethosomes incorporating caffeic acid
for transdermal delivery. The study revealed that the encapsulation efficiency of caffeic
acid was greater compared to other systems described in the literature and that caffeic acid
was stabilized, maintaining its antioxidant potential for prolonged time. Ginsenoside Rhl
derived from Panax ginseng has been also incorporated into ethosomes [101]. Enhanced
skin permeation, retention and deposition in vitro using human cadaver skin was observed,
even though transfersomes were found to be superior for this application.

Phytosomes are produced by the interaction of metabolites contained in plant extracts
with phosphatidylcholine. The formulations exhibit good solubility and bioavailability
properties [102]. Isolated compounds (e.g., silymarin, curcumin) as well as extracts (e.g.,
milk thistle, green tea, grape seed, Ginkgo biloba) have been complexed in phytosomes
exhibiting enhanced properties compared to free forms [103].

Niosomes are surfactant vesicles which are made of synthetic non-ionic surfactants and
lipids, mainly cholesterol [104]. Niosome structure, which is essential for its pharmacokinetic
properties, depends on several parameters, such as the temperature of lipids hydrations, type
and concentration of surfactant and method of preparation [105]. Plant ingredients may benefit
from niosome formulations as the latter may provide increased solubility, resulting in higher
bioavailability, controlled release and stability. Innovative herbal niosome formulations appear
to have beneficial properties in crossing the blood–brain barrier offering targeted delivery [105].
In particular, Myrtus communis extract has generally limited applicability due to its low solubility
and permeability. However, upon its incorporation into stable multilamellar niosomes, it was
found to exhibit higher antimicrobial activity than the free extract. The system also demonstrated
in vitro release loading efficiency characteristics [106]. The lipophilic flavonoid morusin has
been incorporated into niosomes, resulting in increased solubility and encapsulation efficiency,
controlled release and anticancer activity against various types of cancer [107]. Similar results
were described in a study regarding the encapsulation of the naphthoquinone lawsone, derived
from henna [108]. Marigold extract [109], curcumin [110–112] and essential oils [113–115] are
some of the plant-derived materials that have successfully been incorporated into niosomes.

Extracellular vesicles are a novel diverse category of delivery systems that are able
to efficiently encapsulate natural products [116]. Microparticles, exosomes and apoptotic
bodies isolated from different cell types have been investigated as their engineered ver-



Plants 2021, 10, 1238 9 of 56

sions seem to enhance the bioavailability and stability of plant ingredients. In particular,
microparticles range between 100 and 1000 nm and are generated by plasma membrane
blebbing. Exosomes, which are further categorized as small exosomes, large exosomes and
exomeres, originate from the endosomal system and range from 30 to 150 nm [117]. Apop-
totic bodies have a size range of 50 to 5000 nm and are generated by plasma membrane
blebbing during apoptosis [116,118].

Exosomes derived from cells treated with curcumin and epigallocatechin gallate have been
shown to increase polyphenol bioactivity against cellular models of disease such as reverses LPS-
induced pro-inflammatory gene expression in buffalo granulosa cells [119], increases exosomal
TCF21, thus suppressing exosome-induced lung cancer [120], etc. [119–124]. Exosomes have also
been investigated for their ability to incorporate curcumin, acting as delivery systems. The
results seem very promising in terms of efficacy and bioavailability enhancement [125–128].
Anthocyanins, cyanidin, delphinidin, petunidin, peonidin and malvidin have also been
shown to benefit from exosome encapsulation [129,130] in terms of efficacy.

3.1.2. Non-Vesicular Systems

Non-vesicular delivery systems include solid lipid-based nanocarriers. They are col-
loidal particles with size that ranges from 50 to 1000 nm [131] and are produced using
various methods either of high energy, such as high-pressure homogenization, high-speed
homogenization, emulsification–evaporation and ultrasounds, or of low energy, e.g., utiliz-
ing solvents and microemulsion/double emulsion techniques [132]. Due to their versatility,
non-vesicular lipid-based nanocarriers have been studied for a variety of medicinal ap-
plications such as gene transfer, bioimaging, antimicrobial activity, etc. Being highly
biocompatible, they can be administered via various routes, e.g., orally, intravenously, topi-
cally [131]. Various plant isolated compounds as well as extracts have been encapsulated
in such delivery systems.

Solid Lipid Nanoparticles

Solid Lipid Nanoparticles (SLNs) are colloidal carriers produced by adding non-ionic
emulsifiers to stabilize the dispersion of melted (at room and human body temperatures)
solid lipids in water. Large surface area, high encapsulation efficiency, controlled release
and targeted delivery are some of the characteristics that have made SLNs one of the
most investigated nanocarriers during the last years [133]. SLNs demonstrate several
advantages: in particular, the lipophilic matrix they provide allows the encapsulation of
a wide range of compounds of different lipophilicity. Moreover, SLN formulations may
improve plant ingredient stability and reduce possible adverse effects [3], they do not
demonstrate toxicity, they are highly biodegradable, and they have a wide flexibility in
terms of size, surface functionalization as well as increased cellular uptake. They can
be also easily produced on a large scale and yield solid final formulations that enhance
stability and facilitate industrial logistics issues [134].

SLNs are categorized into three types: Type I is the homogeneous matrix model, where
the bioactive compound(s) is dispersed in the lipid core, Type II is called the drug-enriched
model, where a drug-free lipid core is formed and an exterior solid shell contains both lipid
and the bioactive compound, and Type III is the drug-enriched model, where the bioactive
compound(s) concentration is close to its saturation solubility in the lipid. This causes its
precipitation in the core and a lipid cover is formed. Slight changes in the manufacturing
process may alter drastically the functionality of SLNs of all types, making them very
versatile [135].

SLNs have been widely investigated for the encapsulation of plant bioactive com-
pounds. In particular, cationic SLNs loaded with epigallocatechin-3-gallate (EGCG) have
been studied for the activity against different cell lines (i.e., Caco-2, HepG2, MCF-7, SV-80
and Y-79). EGCG produced concentration- and time-dependent antiproliferative effects,
depending on the cell line, while toxicity/biocompatibility issues were raised [136]. SLNs
from cocoa butter and surfactants have also been loaded with EGCG for food applica-
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tions. The stability of EGCG was found to be enhanced while controlled release was
achieved [137]. In a similar system, the pharmacokinetic parameters of EGCG were signif-
icantly improved, based on bioavailability, stability and controlled release studies [138].
SLNs have also been fabricated by the use of tristearin and polyethylene glycol (PEG)ylated
emulsifiers for the encapsulation of curcumin aiming at increasing its oral bioavailability.
Indeed, the bioaccessibility of curcumin was found to be increased under gastrointesti-
nal digestion conditions [139]. Moreover, the oral bioavailability of curcumin loaded in
long-PEGylated SLNs was found to be increased [139] and depended on the type and
concentration of the emulsifier. Enhanced solubility, stability, permeability and bioavail-
ability have also been reported for curcumin-loaded SLNs [140]. The authors suggested
that these properties could be exploited for anti-inflammatory and anticancer applications.
In the same frame, the oral absorption of quercetin-loaded SLNs has also been investigated
employing in situ perfusion in rats [141]. Its bioavailability was found to be 5-fold higher
compared to that of the free molecule. SLNs loaded with resveratrol have also been re-
ported in literature. In particular, resveratrol-loaded stearic acid-based SLNs have also
been orally administered in Wistar male rats. This lipid formulation was found to improve
the oral bioavailability of resveratrol compared to that of a resveratrol suspension [142].
Moreover, resveratrol-loaded SLNs have been found to inhibit cardiotoxicity associated
with the administration of the anticancer agent doxorubicin in mice [143]. SLNs using
Theobroma grandiflorum seed butter have also been prepared for topical applications of
resveratrol. The results revealed increased antioxidant activity, permeation and retention of
resveratrol in the human skin, as well as controlled release [144]. Resveratrol has been also
loaded in SLNs in a study against insulin resistance through improving the hypoglycemic
effect and up-regulating the expression of diabetes-related proteins. The formulation was
administered to rats and the results revealed promising hypoglycemic properties [145].
SLNs loaded with (+)-limonene 1,2-epoxide have also been produced using glycerol monos-
tearate by means of hot high-pressure homogenization [146]. The prepared SLNs were
found to ameliorate lipid peroxidation and cytotoxicity in the spontaneously transformed
aneuploid HaCaT keratinocyte cell line from adult human skin.

Apart from isolated compounds, plant extracts have been encapsulated in SLNs as well.
In particular, a pomegranate extract, containing ≥30% punicalagin, was encapsulated in
SLNs. The formulation procedure was optimized in terms of various parameters including
lipid and surfactant type and concentration, co-surfactant concentration, sonication time,
particle size, polydispersity index, zeta potential, entrapment efficiency and cumulative
drug release [147]. Additionally, SLN functionalized anti-transferrin receptor monoclonal
antibodies were loaded with grape seed and skin extracts. Extracts were found to be more
effective on the inhibition of Aβ(1–42) fibril formation compared to isolated resveratrol.
Experiments on human brain-like endothelial cells demonstrated that the cellular uptake of
functionalized SLNs was more efficient than that of non-functionalized ones and that SLNs
that were functionalized with an unspecific antibody could potentially find application in
Alzheimer’s disease treatment.

A variety of essential oils has also been encapsulated in SLNs [148]. In particular,
SLNs loaded with Z. multiflora essential oil have been prepared [149]. The obtained delivery
system demonstrated higher in vitro antifungal activity than the free essential oil. SLNs
have also been loaded with Yuxingcao essential oil aiming at pulmonary sustained delivery.
Upon nebulization, the obtained SLN systems exhibited in vitro reparability and appeared
to extend the essential oil retention as well as to improve pulmonary availability [150]. In
another study, SLNs were used for the encapsulation of Peppermint essential oil. Even
though this system showed promising results related to gastrointestinal health and an-
timicrobial capacity, the authors suggested that its application is limited due to its strong
odor [151].
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Nanostructured Lipid Carriers

Nanostructured lipid carriers (NLCs) constitute colloidal delivery systems, similar to
SLNs with the difference that they are composed of a mixture of solid and liquid lipids.
This leads to the formation of an unorganized core matrix that is covered by one or more
surfactants [152]. The low ordered matrix prevents early compound release and achieves
high encapsulation efficiency. This fact, in combination with the good biodegradability and
biocompatibility of the lipids used, constitute NLCs a highly advantageous system for the
enhancement of stability, loading and controlled release of plant ingredients [153]. Three
morphological types of NLCs have been described in literature: NLC type I (imperfect
crystal model), which is described by high loading efficiency but no sustained release
due to highly disordered lipid matrix; NLC type II (multiple type) or oil/lipid/water
type, which offer both high loading capacity and controlled release; and NLC type III
(amorphous model), which is described by the creation of an amorphous lipid matrix of
high homogeneity based on the choice of lipids [152,154].

NLCs have been prepared for the encapsulation of silymarin, which exerts low
bioavailability due to its lipophilicity. After its loading in the NLCs, the absorption of
silymarin was increased and it demonstrated physicochemical stability [153]. Moreover,
quercetin has been loaded in NLCs and SLNs for brain delivery and the results demon-
strated higher loading efficiency and bioavailability for the NLC formulations [155]. For
the enhancement of cell penetration of curcumin in photodynamic therapy of cancer, NLCs
have been prepared. Increased anticancer activity was noticed under both dark and light
conditions [156]. In vitro digestion and release studies were performed for curcumin-
loaded NLCs that were found to exhibit controlled release while the system was found to
be stable under the simulated digestion conditions for 2 h [157]. For the increase in the
(low) antiplasmodial activity of free curcumin due to its low bioavailability, NLCs were
developed and the results were found to be promising for the treatment of malaria [158].
Partially hydrolyzed ginsenoside was used for the modulation of the in vitro release and
bioavailability of curcumin-loaded NLCs [159]. H. sabdariffa extract was incorporated into
NLCs and quercetin and anthocyanins were entrapped in high concentration while the
systems developed were physicochemically stable. Furthermore, various essential oils have
been encapsulated in NLCs toward their protection and increased bioavailability [160–163].

An overview of the different lipid-based delivery systems that have been employed
for the encapsulation of either pure plant bioactive compounds, extracts or essential oils, is
given in Table 1.
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Table 1. Overview of different lipid-based delivery systems that have been used for the encapsulation of various pure plant bioactive compounds, extracts and essential oils.

Type of Lipidic Carrier Encapsulated Material Target of Encapsulation Size of the Obtained Delivery System Application Reference

Liposome Quercetin Solubility 107–139 nm Oxidative stress and enhanced
internalization by cells [57]

Liposome Quercetin Solubility 75–150 nm Antioxidant activity and stability [56]

Liposome Curcumin Solubility, stability and
biocompatibility 350–600 nm Antioxidant activity and stability [59]

Liposome Quercetin Solubility 50–300 nm Anticancer and treatment of glioma [60]

Liposome Curcumin Solubility, stability and
bioavailability 100–200 nm

Anti-inflammatory activity,
sustained-release properties and

increased antioxidant activity
[61]

Liposome Curcumin Solubility 200 nm Antioxidant activity and
anti-inflammatory [62]

Liposome Curcumin Solubility 182.4 ± 89.2 nm Anti-inflammatory [63]

Liposome Curcumin Bioavailability 147 ± 6 nm Wound healing, antibacterial
activity and biocompatibility [64]

Liposome Curcumin Solubility and bioavailability 121.81 ± 9.78 nm Hepatoprotective [65]

Liposome Curcumin Solubility and bioavailability 82.37 ± 2.19–92.42 ± 4.56 nm Anticancer (skin) [66]

Liposome Curcumin Bioavailability and stability 51.75–140.35 nm Anticancer (skin) [67]

Liposome Curcumin Bioavailability >270 nm Anticancer [69]

Liposome Curcumin Solubility and delivery 420–600 nm Anticancer (cytotoxicity in lung
and colon cancer) [70]

PEGylated liposomes Resveratrol Stability and biocompatibility 86 ± 2.7–171 ± 27.8 nm Oxidative stress (in vitro and ex
vivo) [47]

Liposome Resveratrol Bioavailability and solubility 182.3 ± 12.1–211.2 ± 0.8 nm Anticancer (brain) [74]

Liposome Resveratrol Solubility and bioavailability 206 ± 10–225 ± 10nm Antioxidant activity and
anti-inflammatory [75]

Liposome O. stamineus extract Solubility 152.5 ± 1.1 nm Antioxidant activity [79]

Liposome Green tea polyphenols Stability, bioavailability and
biotransformation 64.5–252 nm Antioxidant activity and controlled

release [80]
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Table 1. Cont.

Type of Lipidic Carrier Encapsulated Material Target of Encapsulation Size of the Obtained Delivery System Application Reference

Liposome (soy lecithin
liposomes)

Green tea polyphenols
(catechin and

epigallocatechin gallate)
Stability and shelf- life - a Stability [81]

Liposome Curcumin Solubility and bioavailability 45–130 nm Anticancer (brain) [72]

Liposome P. notoginseng saponins Bioavailability, stability and
in vitro release 337.8 ± 40.2–117.1 ± 9.7 nm Edema of brain and reduce the

infarct volume [83]

Liposome P. notoginseng saponins Bioavailability 40nm Absorption from intestinal tract in
rats [84]

Liposome H. sabdariffa extract Stability 46 nm Higher oxidative stability [85]

Transfersomes Caffeine and minoxidil Stability and release - a Alopecia [97]

Transfersomes Apigenin Stability and release 35.41 nm Skin cancer [98]

Transfersomes
Epigallocatechin-3-

gallate (from C. sinensis)
and hyaluronic

Solubility and stability 101.2 ± 6.0 nm

Antioxidant and anti-aging
properties (antioxidant and

anti-aging effects in UV radiation
induced skin damage)

[164]

Ethosomes Caffeic acid Stability 200 nm Antioxidant [100]

Ethosomes Ginsenoside from P.
ginseng Delivery 108.5 to 322.9 nm Enhanced skin permeation,

retention and deposition in vitro [101]

Niosomes Herbal constituents Solubility, bioavailability,
controlled release and stability - a Blood–brain barrier targeted

delivery [105]

Niosomes M. communis Solubility and permeability 5.3 ± 0.3 to 15.9 ± 2.2 µm Antimicrobial activity [106]

Niosomes Flavonoid morusin Solubility and controlled release 400–500 nm (479 nm) Antimicrobial activity [107]

Liposomes Apigenin Bioavailability 304.10–361.46 nm Anti-inflammatory [165]

Nanocrystals Apigenin Bioavailability 439 ± 20 nm Antioxidant activity [166]

Solid Lipid Nanoparticles
Epigallocatechin-3-

gallate
(EGCG)

Biocompatibility and toxicity 144–134 nm Antiproliferative effect [136]

NLC Silymarin Bioavailability, controlled release 213.6 ± 16.0 nm Used as model [153]

NLC and SLN Quercetin Bioavailability, loading efficiency 67.46–74.61 nm Brain cancer [155]
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Table 1. Cont.

Type of Lipidic Carrier Encapsulated Material Target of Encapsulation Size of the Obtained Delivery System Application Reference

NLC Curcumin Cell penetration 100–1250 nm Breast cancer [156]

NLC Curcumin In vitro digestion, controlled
release 225.8 ± 2.3 nm Used as model [157]

NLC Curcumin In vivo antiplasmodial activity,
controlled release 145 nm Malaria [158]

NLC Curcumin and partially
hydrolyzed ginsenoside Bioavailability, controlled release 150–200 nm Used as model [159]

NLC H. sabdariffa extract Bioavailability, encapsulation
efficiency, stability 470 ± 8–344 ± 12 nm Used as model [160]

NLC Cinnamon essential oil Protection and stability 100 ± 1–120 ± 10 nm Food beverages [161]

NLC Peppermint essential oil Bioavailability, protection 40–250 nm Antimicrobial, wound healing [162]

NLC Sucupira essential oil Controlled release 148.1 ± 1 nm Diabetes mellitus [163]
a Not mentioned.
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3.2. Protein-Based Delivery Systems

Apart from their nutritional value, proteins are macromolecules that, based on their
biocompatibility, biodegradability, their ability to self-associate as well as their emulsifying,
foaming and gelation properties, are appropriate candidates for the encapsulation of
both hydrophilic and hydrophobic bioactive ingredients such as phenolic compounds,
carotenoids, polyunsaturated fatty acids, vitamins, etc. A wide variety of protein-based
delivery systems, including hydrogels, micro- and nanoparticles, films, etc., have been
reported in literature. Various approaches have been used for their formulation such
as coacervation, i.e., a process based on the electrostatic attraction between oppositely
charged groups of different biopolymers (e.g., a protein and a carbohydrate), cold gelation,
i.e., a process used to form protein-based hydrogels at ambient temperature involving
various steps, spray drying, electro-hydrodynamic processes (e.g., electrospinning and
electrospraying) that are based on the use of electrical charges to produce fibers and
particles, as well as the antisolvent precipitation method that is used to produce protein
nanoparticles [167]. The proteins that are most commonly used as wall materials for the
design of food-grade delivery systems can be either of animal origin, e.g., casein, whey
proteins, gelatin or of plant origin such as those obtained from soy, cereals (e.g., zein) and
legumes (e.g., pea) [168].

Regarding proteins of animal origin, caseins (αs1, αs2, β and κ types), the major
milk proteins (~80% of total protein content), have gained attention as carriers for various
bioactive compounds based on their natural tendency to self-assemble as spherical colloidal
nanoforms, namely micelles, as well as on their emulsifying and stabilizing properties [168].
Indeed, casein-based nanoparticles and re-combined casein micelles have been prepared for
the delivery of epigallocatechin gallate and folic acid [169]. The authors suggested that the
encapsulation of these molecules resulted in their increased stability against heat-induced
degradation at 74 ◦C for 20 s. The encapsulation of resveratrol in casein nanoparticles
prepared by a coacervation process followed by spray drying has also been examined [170].
Upon oral administration of the resveratrol-loaded casein nanoparticles to rats, its bioavail-
ability was found to be ten times higher compared to that after its administration as an
oral solution. The encapsulation of β-carotene via hydrophobic interactions in aggregated
casein and re-assembled casein micelles has been also reported [171]. The encapsulated
β-carotene showed enhanced stability upon storage at 11% and 75% relative humidity for
21 days. The preparation of re-assembled casein particles loaded with vitamin D has also
been investigated [172]. The authors concluded that encapsulated vitamin D was found
to be more stable during storage for 42 days at ambient temperature compared to the
control. Re-assembled casein micelles and casein nanoparticles have also been prepared
for the encapsulation of the hydrophobic compounds quercetin and curcumin [173]. After
encapsulation, their aqueous solubility was found to be higher than that of the respective
free molecules, whereas they also exhibited cytotoxic effects against the MCF-7 breast
cancer cell line.

Regarding the other major milk protein representatives, i.e., whey proteins, which
are derived from whey, a by-product of cheese production, they have also received grow-
ing attention for the preparation of delivery systems based on their safety, low cost as
well as gel-forming and emulsifying properties. They are composed of various glob-
ular proteins such as α-lactalbumin, β-lactoglobulin, bovine serum albumin, etc. The
most widely known whey protein products are the whey protein concentrates (WPCs)
that are obtained via the ultrafiltration of whey and the whey protein isolates (WPIs)
that are obtained after further processing including diafiltration of ion exchange [174].
Mixed hydrogels composed of whey protein aggregates prepared by cold gelation in
the presence of k-carrageenan have been designed to protect curcumin under gastroin-
testinal digestion conditions [175]. The authors concluded that these gels prevented the
degradation of curcumin in the upper gastrointestinal tract and may be suitable for its
colon-specific delivery. Whey protein nanofibrils have also been used as carriers for cur-
cumin by the same research group [176]. The nanofibrils were produced by heating (85 ◦C)
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whey protein isolate solution at pH 2.0 for 5 h. Loading of the formulated whey protein
nanofibrils with curcumin was found to improve its aqueous solubility at acidic conditions
(pH = 3.2), to decrease its sedimentation during storage for one month as well as to increase
its in vitro antioxidant activity using the DPPH assay. Whey protein concentrates and
whey protein isolates have also been employed as nanocarriers of curcumin [177]. The
nanoparticles formulated using whey protein concentrate as wall material showed the high-
est antimicrobial activity against Bacillus subtilis, S. aureus, Pseudomonas aeruginosa, E. coli
and C. albicans using the agar well diffusion method. On the other hand, the nanoparticles
prepared using whey protein isolate exhibited the highest anticancer activity against the
HepG2 cell line. In both cases the effects were found to be dose-dependent. Nanoemulsions
using whey protein isolate or polymerized whey protein isolate loaded with lutein have
also been prepared with the aid of high intensity ultrasounds [178]. The whey protein
isolate-based nanoemulsion system was found to be stable during storage at 4 ◦C for four
weeks with lutein being reduced by only 4%. Whey protein concentrate has also been
used for the preparation of an oil-in-water emulsion containing flaxseed oil, a rich source
of n-3 fatty acids, e.g., α-linolenic acid [179]. The obtained emulsion was found to be
stable at 4–7 ◦C for 28 days with no indication of phase separation. Moreover, a lower
increase in peroxide value (~21%), an indicator of oxidation, was observed for the flaxseed
oil emulsions compared to that of the free oil (~44.3%). Apart from pure compounds,
flavonoids from various citrus peel extracts have also been encapsulated in whey protein
concentrate nanoparticles [180]. The authors suggested that the encapsulation delayed the
release of flavonoids under in vitro gastrointestinal conditions, whereas their antioxidant
activity was improved compared to the free citrus peel extracts. The encapsulation of spray-
dried beetroot extract in whey proteins and certain oligosaccharides, i.e., maltodextrin
and inulin, has also been reported [181]. It was shown that the simultaneous use of whey
protein isolate and inulin resulted in enhanced stability and antioxidant activity of the
beetroot extract powder upon storage at 60 ◦C. Whey proteins have also been employed
for the encapsulation of various essential oils apart from pure compounds and extracts. In
particular, whey protein isolate-based edible films loaded with thyme or clove essential
oils have been formulated via homogenization [182]. The application of these films on
Kashar cheese resulted in the reduction of E. coli O157:H7, L. monocytogenes and S. aureus
counts after 60 days of storage at 4 ◦C. Moreover, whey protein isolate-based films loaded
with oregano or garlic essential oils prepared employing homogenization were applied on
sliced Kashar cheese [183]. The authors found that the examined cheese product exhibited
microbial stability against E. coli O157:H7, S. enteritidis, L. monocytogenes, S. aureus and
Penicillium spp. during storage.

The acid or alkaline hydrolysis of the protein collagen, which is found in nature
as the major constituent of skin, bones and connective tissue, results in another animal-
based biopolymer, namely gelatin. The latter finds application as wall material for the
development of delivery systems for pure bioactive compounds, plant extracts and es-
sential oils [167]. Particularly, curcumin has been encapsulated in electrospun gelatin
nanofibers [184]. The authors suggested that the use of cationic cetyltrimethyl ammonium
bromide as a surfactant facilitated the release of curcumin, resulting in a higher in vitro rad-
ical scavenging activity (DPPH assay) and ferric reducing antioxidant power (FRAP assay),
as well as a stronger antimicrobial activity against S. aureus compared to control nanofibers
without curcumin. Cardamom extract-loaded gelatin nanoparticles have also been pre-
pared by a two-step desolvation method [185]. The prepared nanoparticles were tested as a
drug delivery system to treat glioblastoma and were found to effectively eradicate human
U87MG glioblastoma cells. Regarding the encapsulation of essential oils, chitosan-gelatin
coatings containing nano-encapsulated tarragon essential oil have been produced [186].
The obtained coatings were applied on pork slices during refrigerated storage for 16 days
and were found to inhibit their quality deterioration, contribute to the sustained release
of the tarragon essential oil and cause an improvement in antioxidant, antibacterial and
sensory properties. Orange essential oil has also been loaded in electrospun gelatin and
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gelatin-cross-linked tannic acid nanofibers [187]. The results suggested that the prepared
gelatin nanofibers provided controlled release of orange essential oil and improved its
storage stability at 25 ◦C and 33% relative humidity.

Taking into account that the global population is expected to reach 9.5 billion by 2050,
the animal protein demand is estimated to double during this period in order to cover the
needs. Considering that the increasing production and consumption of animal proteins
is linked with environmental concerns related to land and water requirements as well as
greenhouse gas emissions, plant protein production that requires the consumption of less
natural resources constitutes a sustainable alternative approach. In this view, the devel-
opment of plant protein-based delivery systems could result in the production of novel
functional foods, nutraceuticals, cosmetics, etc. of importance to certain consumer groups,
e.g., vegans [188]. Regarding plant-based proteins, soy proteins have been employed for the
fabrication of delivery systems for different bioactive compounds taking advantage of their
gelation and emulsifying properties as well as their tendency to aggregate, etc. [189]. Apple
and red grape pomace extracts rich in polyphenols have been encapsulated in soy protein
nanocapsules [190] using a nanoemulsification process. Enhanced in vitro antioxidant
activity was observed for the encapsulated extracts. Resveratrol has also been encapsu-
lated in soy protein isolate nanoparticles using a rotary evaporation technique [191]. The
obtained resveratrol-loaded nanoparticles exhibited more than two times higher solubility
with significantly increased dissolution and stability compared to the unencapsulated
resveratrol. Additionally, soy protein isolate nanoparticles loaded with curcumin have
also been fabricated [192]. The formation of these nanoparticles enhanced the solubility
of curcumin in water compared to the unencapsulated form and improved its storage
stability and bioaccessibility as determined by in vitro simulated digestion experiments.
Soybean protein isolate nanoparticles containing β-carotene have been prepared by the
homogenization–evaporation method [193]. The cellular antioxidant activity of β-carotene
in the obtained nanoparticles was found to be improved compared to the free molecule.

Besides soy proteins, zein is the major storage protein in corn, accounting for 35–60%
of total proteins, and it is entirely found in endosperm. It has the ability to self-assemble
in the presence of polar solvents, such as water, in order to form various structures as
delivery vehicles for bioactive molecules [194]. For example, zein nanoparticles loaded
with quercetin have been fabricated employing an antisolvent precipitation method [195].
In this way, the photochemical stability and the ABTS+ scavenging ability of quercetin were
found to be enhanced. The same encapsulation method was also used for the preparation
of curcumin-loaded zein nanoparticles [196] that were found to increase its bioaccessibility
examined using an in vitro gastrointestinal digestion model. Zein nanoparticles loaded
with curcumin and stabilized with dextran sulfate have also been prepared using an
antisolvent precipitation method [197]. The authors concluded that curcumin loaded into
the fabricated zein nanoparticles exhibited increased storage stability and bioaccessibility.
Zein fibers loaded with curcumin have been prepared by the electrospinning technique
as well [198]. The obtained curcumin-loaded fibers exhibited antibacterial activity against
S. aureus and E. coli and the authors suggested that they could find use in active food
packaging applications. Lutein has also been encapsulated in zein nanoparticles via
solvent-induced nanoprecipitation [199]. The incorporation of lutein into zein nanoparticles
resulted in its increased digestive stability, compared to aqueous lutein dispersions. The
protection against chemical degradation as well as the controlled release of lutein after its
encapsulation in zein nanoparticles stabilized with surfactants has also been reported [200].
Apart from zein nanoparticles, zein fibers have been prepared as well for the entrapment
of various bioactive molecules. In particular, Yerba mate extract has been encapsulated
in electrospun zein fibers [201]. Zein fibers loaded with 5% of this extract showed high
antioxidant activity, greater thermal stability compared to the unencapsulated extract as
well as the release of approximately 49% of extract within 50 h in a hydrophilic food
simulant medium. Moreover, ribbon-like zein nanofibers containing Barije essential oil,
known for its antidiabetic and antioxidant properties, have been prepared using the
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electrospinning technique [202]. The manufactured zein nanofibers showed α-glucosidase
and α-amylase inhibition activity as well as release behavior into simulated stomach media
described by a first-order model.

Pea proteins that are extracted from pea seeds consist of a mixture of different types
of globular proteins e.g., globulins, albumins and glutelins. They possess gel-forming
and emulsifying properties that make them suitable candidates for the fabrication of
delivery systems either alone or in combination with various polysaccharides [167]. Pea
protein–high-methoxyl pectin–rhamnolipid ternary complexes have been fabricated for the
co-encapsulation of curcumin and resveratrol [203]. These complexes were found to retard
light and thermal degradation of both compounds, provide a protective effect under gastric
conditions and control their release in the intestine phase. The same research group has
also fabricated ternary complexes composed of pea protein isolate, high-methoxyl pectin
and individual surfactants such as rhamnolipid, tea saponin and ethyl lauroyl arginate for
the delivery of resveratrol [204]. Pea protein isolate nanoparticles, fabricated with calcium-
induced cross-linking, have been used as potential nanocarriers for protecting resveratrol
from degradation, as well as improving its in vitro antioxidant activity [205]. The obtained
complexes were found to retard photo- and thermal degradation of resveratrol as well as to
delay its release during in vitro digestion. Encapsulation of quercetin in pea protein isolate
and mesquite gum complexes has also been reported in the literature and resulted in its
protection against UV degradation and its physical and chemical stability compared to
free quercetin [206]. Pea protein nanoemulsions and nanocomplexes have been formed to
protect cholecalciferol (vitamin D3) against UV radiation [207]. The authors suggested that
the prepared nanostructures were found to increase the stability of cholecalciferol upon
storage for 30 days as well as to enhance its recovery in micelles upon in vitro digestion.
Moreover, a mixture of pea protein and maltodextrin as wall materials has been used for the
encapsulation of rice bran oil [208] as well as black pepper seed oil [209]. Pea proteins have
been used as wall materials also for the microencapsulation of propolis extract by spray
drying [210]. The obtained microparticles exhibited improved thermal stability. A pea
protein-modified starch complex has been used as wall material for the microencapsulation
of canola oil containing docosahexaenoic acid (DHA) [211]. The utilization of this protein–
polysaccharide complex resulted in the preservation and improvement of the oxidative
stability of DHA during storage at room temperature for 30 days compared to the free oil.
Moreover, conjugated linoleic acid (CLA) has been microencapsulated by spray drying in
pea protein isolate, pea protein concentrate as well as their mixtures with maltodextrin
and carboxymethylcellulose [212]. Encapsulated CLA was found to be stable at room
temperature for 60 days, whereas the carbohydrate addition was not found to affect its
stability. The design of lycopene-loaded oil-in-water emulsions stabilized by pea proteins
has also been reported in literature [213]. The authors concluded that lycopene was found
to be stable after 14 days of storage in a refrigerator.

In spite of the increasing number of publications related to protein-based delivery
systems as well as their well-investigated role in enhancing the solubility, stability and
bioavailability of a variety of plant-derived bioactive compounds, there are still challenges
in this field. In particular, the majority of the relevant published studies have been carried
out on a laboratory scale due to the lack of cost-effective methods to scale up production.
In this regard, emphasis should be given to the development of large-scale production
methods that, along with standardization, will assist in the commercialization of the
formulated plant bioactive-loaded protein-based delivery systems [176].

3.3. Carbohydrate-Based Delivery Systems

Carbohydrates, along with lipids and proteins, are natural macromolecules that find
applications as building blocks of delivery systems based on their unique characteristics,
including water solubility, biocompatibility, biodegradability, binding ability via functional
groups and molecular structure, which allow them to entrap a variety of hydrophilic and
hydrophobic molecules. Moreover, carbohydrates are considered to be more thermally
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stable compared to lipid- and protein-based delivery systems, which can be melted or
denaturated, respectively [214]. Taking into account all the above, carbohydrate-based
delivery systems find numerous applications in food, pharmaceutical and cosmetic indus-
tries. Different carbohydrates have so far been exploited toward the preparation of delivery
systems either in their natural or modified form after physical, chemical or enzymatic
treatment [215].

In particular, starch, the most abundant storage carbohydrate in plants, is a biodegrad-
able, biocompatible, low-cost biopolymer that consists of two macromolecules, namely
amylose, which is linear, and amylopectin, which is branched. Starch finds numerous
applications as an encapsulating material. Its hydrophilic nature, however, limits its use
regarding the encapsulation of hydrophobic compounds, whereas another limitation in its
use stems from its sensitivity to amylase activity that may begin to take place in the mouth.
However, these drawbacks can be tackled through its modification using enzymatic (e.g.,
a-amylase), physical (e.g., extrusion,) or chemical (e.g., acid hydrolysis) methods [214] in
order to extend its industrial applicability. Various starch-based delivery systems, including
nanoparticles, nanocrystals and nanofibers, have been designed employing a variety of
methods such as self-assembly, nanoprecipitation, ultrasonication, electrospinning, extru-
sion, microfluidization, etc. [216]. The partial hydrolysis of starch results in the production
of other valuable polysaccharides, namely maltodextrins, which is more hydrophilic com-
pared to starch. Maltodextrins are categorized by their dextrose equivalents (DE) that
represent the amount of reducing sugars that is present in the molecule. Maltodextrins
are biocompatible biopolymers that also find numerous applications as wall material in
delivery systems of different bioactive compounds. Moreover, the enzymatic conversion of
starch results in the production of cyclodextrins (CDs), which are cyclic oligosaccharides
that typically contain six, seven or eight D-(+)-glucopyranose units (i.e., α-, β- and γ-CD,
respectively) linked by α-1,4 glycosidic bonds. Cyclodextrins have a hydrophobic central
cavity and a hydrophilic outer surface, a structure that allows them to form inclusion
complexes with a variety of bioactive compounds via non-covalent forces (e.g., van der
Waals forces, hydrogen bonds). The inclusion complexation is based on co-precipitation,
which occurs after the addition of a guest molecule to a cyclodextrin aqueous solution upon
stirring, sonication and/or heating. β-CD is the most commonly used among all cyclodex-
trins. It can be modified (e.g., hydroxypropyl-β-CD, hydroxyethyl-β-CD, methyl-β-CD)
in order to tackle drawbacks related to low aqueous solubility, such as other polysac-
charides [214,217]. It is worth mentioning that aqueous solutions of cyclodextrins have
been used also as enhancers for the green extraction of polyphenols of a variety of plant
materials, e.g., pomegranate fruit [218], Sideritis scardica [219], oak acorn husks [220], etc.
Chitosan is a natural, non-toxic, biodegradable, biocompatible, cationic polysaccharide that
derives from the alkaline deacetylation of chitin. The latter is the second-most abundant
polymer in nature, after cellulose, and it is of low cost as it is obtained from marine waste.
It possesses antimicrobial and antioxidant activities, whereas its mucoadhesive proper-
ties make it a good candidate as an absorption enhancer across intestinal epithelium for
drugs, proteins, etc. Modified forms of chitosan can be prepared via three main reactions,
namely depolymerization (e.g., acid hydrolysis, deamination), substitution (e.g., methyla-
tion, acylation) and chain elongation (e.g., cross-linking, graft copolymerization) toward
improving its functional properties. The wide range of molecular weight and percentage
of deacetylation of chitosan broaden its applications. A variety of carriers prepared with
chitosan, such as nanoparticles, nanofibers and nanocomposites, have been reported in
the literature employing different encapsulation approaches including nanoprecipitation,
emulsion–ionic gelation, spray drying, etc. [221]. Another promising wall material is
pectin, which is an anionic, water-soluble polysaccharide, naturally found in cell walls
of plants. Its major sources are apple pomace and citrus peels as well as wastes derived
from citrus processing. However, various plant materials have been used for pectin ex-
traction, such as pomegranate peels, grapefruit peels, banana peels, mango peels, passion
fruit peels, etc. [222]. Pectin consists of linear a-(1-4)-D-galacturonic acid units that are
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usually esterified. Based on the degree of esterification (DE), pectin can be divided into
high-methoxyl pectin (HMP) (more than 50% DE) and low-methoxyl pectin (LMP) (less
than 50% DE) [214]. It is worth mentioning that depending on the DE, pectin has a different
hydrophobicity. In particular, high-methoxyl pectins are highly hydrophobic and can thus
interact with hydrophobic molecules. Moreover, pectin is poorly absorbed in the upper
gastrointestinal tract (i.e., mouth, stomach and small intestine), but it can be absorbed
in the colon, after its digestion, by pectinolytic enzymes produced by colonic microflora.
This makes it a suitable vehicle for colon-targeted bioactive compounds [223,224]. Various
encapsulation techniques (e.g., nanocomplex formation, emulsification, spray drying) have
been employed for the preparation of pectin-based vehicles such as nanohydrogels, na-
noemulsions, nanoliposomes, etc. Gums constitute a class of hydrophilic polysaccharides
that can interact with water to form viscous solutions, emulsions and gels. Considering
their biodegradability, biocompatibility as well as the availability of reactive groups for
molecular interactions, gums have been used as wall materials for the encapsulation of
a variety of bioactive compounds. The most commonly used gums include gum Arabic,
xanthan, carrageenan, etc., whereas gums from non-traditional sources, e.g., cress seed,
basil seed, etc. (native gums) are also used considering their technological and functional
properties (e.g., emulsifying, thickening) along with their low cost. Various gum-based
structures, such as nanoparticles, nanofibers, nanocomplexes and nanoemulsions, have
been fabricated using electrospinning, coacervation, antisolvent precipitation and emulsifi-
cation techniques [225]. The most abundant polysaccharide on Earth that constitutes the
major component of plant cell walls is cellulose, which also finds application as building
block for delivery systems. Like other carbohydrates, cellulose can be physically, chemi-
cally or enzymatically modified to tackle some of its drawbacks including its low water
solubility [214]. Cellulose nanocrystals as well as cellulose nanofibers have been fabricated
as cellulose-based delivery systems. The preparation of the former ones involves several
steps, including enzymatic or acid hydrolysis as well as mechanical treatment or oxidation,
that aim at separating the amorphous domains of cellulose, which can derive from various
sources (e.g., wood, cotton), and collecting the crystalline ones. The preparation of cellulose
nanofibers requires the same steps as those for the preparation of nanocrystals, i.e., a
mechanical treatment such as high-pressure homogenization, ultrafine friction grinding,
cryocrushing, blending, etc., with or without a pretreatment step, e.g., acid hydrolysis,
enzymatic fractionation, carboxymethylation, etc. The major difference between cellulose
nanocrystals and cellulose nanofibers is that the former are exclusively of crystalline nature
whereas nanofibers are composed of both amorphous and crystalline parts [226,227]. An
overview of the different carbohydrates, alone or in combination, that have been employed
as building blocks for the encapsulation of either pure plant bioactive compounds, extracts
or essential oils, along with the encapsulation process that was employed and the morpho-
logical characteristics of the obtained delivery systems, is given below (Table 2). Emphasis
is given to research articles published from 2015 till today.



Plants 2021, 10, 1238 21 of 56

Table 2. Overview of different carbohydrates that have been used as wall materials for the encapsulation of various pure plant bioactive compounds, extracts and essential oils.

Carbohydrate as
Wall Material

Carbohydrate Origin and
Characteristics Core Material Encapsulation

Process
Type of the Obtained

Delivery System
Morphological Characteristics of

the Obtained Delivery System Application Reference

Starch
Starch from water chestnut
seeds, horse chestnut seeds and
lotus stem

Resveratrol Ultrasonication
method Nanocapsules 419, 797 and 691 nm, increased

amorphous character

• Controlled released in
intestinal juice

• Anti-obesity and
anti-diabetic activity after
digestion compared to that
of free resveratrol

[228]

Starch Starch from horse chestnut,
water chestnut and lotus stem Catechin Ultrasonication Nanoparticles 322.7, 559.2 and 615.6 nm

• Increased bioaccessibility
upon in vitro digestion
and cell permeability of
catechin

[229]

Starch Starch from pea, corn and potato Quercetin
(standard) Nanoprecipitation Nanoparticles

Non-uniformly shaped and
nanofiber-like nanoparticles (500
nm) from pea, corn and potato
starch, respectively

• Increased in vitro
antioxidant activity [230]

Starch
High-amylose corn starch with
70% amylose and low-amylose
potato starch

Vitamin D3 Ultrasonication Nanoparticles 32.0–99.2 nm • Increased thermal stability [231]

Starch Modified (extruded) H. sabdariffa
extract Spray drying Microparticles Oval or round, <10 µm

• Antimicrobial activity
mainly against L.
monocytogenes, E. coli, S.
aureus and S.
tiphymurium

[232]

Starch Modified from rice starch
Anthocyanin
extract from
purple rice bran

Spray drying Microparticles Spherical, 6.4 µm

• Storage stability of
anthocyanins at 4 ◦C, then
at 25 ◦C, for 90 days

• Effect on the steady-shear
rheology of the rice dough

[233]
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Table 2. Cont.

Carbohydrate as
Wall Material

Carbohydrate Origin and
Characteristics Core Material Encapsulation

Process
Type of the Obtained

Delivery System
Morphological Characteristics of

the Obtained Delivery System Application Reference

Starch

Dafozhi, damaling and daguo
starches (amylose contents of
33.5%, 26.7% and 29.8%,
respectively)

G. biloba extracts Nanoprecipitation Nanospheres Spherical, 255–396 nm

• Improved sustained
release in artificial gastric
and intestinal juices
compared to the free
extracts

[234]

β-Cyclodextrin β-Cyclodextrin (purity 98%) Curcumin Inclusion
complexation Particles 2–3 µm

• Enhanced aqueous
solubility

• Sustained release of
curcumin over a period of
5 h

[235]

β-Cyclodextrin Methylated-β-cyclodextrin, Mw
= 1191 Da Resveratrol Inclusion

complexation Particles Irregular shape

• Improved solubility
• Antibacterial activity

against Campylobacter spp.
• Preservation of the

antioxidant activity

[236]

β-Cyclodextrin
with β-glucan - a Saffron

anthocyanins Spray drying Microcapsules Irregular shape, <124 µm

• Release of the maximum
amount of anthocyanins
during 2 h of simulated
intestinal conditions

[237]

Maltodextrin Maltodextrin Saffron aqueous
extract

Nano-spray
drying Nanoparticles Spherical, 1.5–4.2 µm

• Enhanced stability under
in vitro digestion
conditions compared to
unencapsulated saffron
extracts

[238]

Maltodextrin Commercial maltodextrin, 4-7
DE

Pineapple peel
hydroalcoholic
extract

Spray drying Microparticles Spherical, 18.2 µm
• Stable antioxidant activity

upon storage for six
months at 5 ◦C

[239]
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Table 2. Cont.

Carbohydrate as
Wall Material

Carbohydrate Origin and
Characteristics Core Material Encapsulation

Process
Type of the Obtained

Delivery System
Morphological Characteristics of

the Obtained Delivery System Application Reference

Chitosan Low molecular weight chitosan Curcumin Ionic gelation Nanoparticles Spherical, 167.3–251.5 nm

• Enhanced:
• drug release
• transdermal permeation

and
• % cell viability of human

keratinocyte (HaCat) cells

[240]

Chitosan and pectin

Low molecular weight chitosan
from shrimp (deacetylation
degree 94.87%) and commercial
grade low-methoxy pectin from
citrus peel (degree of
esterification 2.9%)

Garlic and holy
basil essential oils Ionic gelation Hydrogel beads Globular, smooth bead surface,

1.65–2.86 mm

• Antimicrobial activity
against B. cereus, C.
perfringens, E. coli,
Pseudomonas fluorescens,
L. monocytogenes and S.
aureus

[241]

Chitosan and gum
Arabic Deacetylation degree 93% Curcumin Polyelectrolyte

complexation Nanoparticles Spherical and smooth, 250–290 nm

• Increased in vitro
antioxidant activity
(DPPH, FRAP assays) of
curcumin

• Delayed release of
curcumin in simulated

• gastrointestinal conditions

[242]

Chitosan
Medium molecular weight
chitosan (deacetylation degree
75–85%)

Cardamom
essential oil Ionic gelation Nanoparticles 50–100 nm

• Non-hemolytic and
non-cytotoxic behavior on
human corneal epithelial
cells and HepG2 cell lines

• Antimicrobial potential
against extended spectrum
β lactamase producing E.
coli and methicillin
resistant S. aureus

[243]

Chitosan
Medium molecular weight
chitosan (deacetylation degree
75–85%)

Lime essential oil Nanoprecipitation Nanoparticles Spherical, 6.1 ± 0.4 nm

• Antibacterial activity
against the food-borne
pathogen Shigella
dysenteriae

[244]
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Table 2. Cont.

Carbohydrate as
Wall Material

Carbohydrate Origin and
Characteristics Core Material Encapsulation

Process
Type of the Obtained

Delivery System
Morphological Characteristics of

the Obtained Delivery System Application Reference

Chitosan
Medium molecular weight
chitosan (deacetylation degree
84.8%)

Peppermint and
green tea
essential oils

Emulsification-
ionic
gelation

Nanoparticles Spherical, 20–60 nm

• Increased antioxidant
activity by ~2 and 2.4-fold
for peppermint and green
tea essential oils,
respectively

• Antibacterial activity
against S. aureus and E. coli

[245]

Chitosan
Medium molecular weight
chitosan (deacetylation degree
75–85%)

Mentha piperita
essential oil Sol-gel method Nanogel 567.1–575.6 nm

• Inhibitory effect on biofilm
formation against S.
mutans on the dental
surface and potential use
as antibiofilm agent in
toothpaste or mouth
washing formulations

[246]

Pectin and zein Citrus peel pectin Resveratrol

Antisolvent
precipitation and
electrostatic
deposition

Nanoparticles Spherical, 235 nm

• Higher in vitro
antioxidant activity
compared to free
resveratrol

• Higher antiproliferative
activity against human
hepatocarcinoma Bel-7402
cells compared to free
resveratrol

[247]

Pectin with whey
protein concentrate

Citrus low-methoxyl pectin (DE
16–20%) D-Limonene Nanocomplex

formation Nanoparticles Spherical, 100 nm
• Protection during

processing and storage
• Controlled release

[248]

Pectin, zein and
sodium caseinate Citrus peel pectin Eugenol

Nanocomplex
formation and
nano-spray
drying

Nanoparticles Spherical, 140 nm
• Stability upon storage at

room temperature for 56
days

[249]
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Table 2. Cont.

Carbohydrate as
Wall Material

Carbohydrate Origin and
Characteristics Core Material Encapsulation

Process
Type of the Obtained

Delivery System
Morphological Characteristics of

the Obtained Delivery System Application Reference

Pectin and egg yolk
low density
lipoprotein

Citrus peel pectin Curcumin
Heat-induced
nanocomplex
formation

Nanogels Spherical, <60 nm

• Increased stability under
simulated gastrointestinal
conditions

• Controlled release of
curcumin

[250]

Pectin and pea
protein isolate

High-methoxyl citrus pectin (DE
90%), beet pectin (DE 62%),
low-methoxyl citrus pectin (DE
29%), apple pectin (DE 78%)

Curcumin Nanocomplex
formation Nanoparticles Spherical, 559.2 ± 6.2 nm

• Protection of curcumin
against UV light and
thermal degradation

• Delayed release of
curcumin upon in vitro

• gastrointestinal digestion

[251]

Pectin Citrus pectin Citrus peel
flavonoids Ionic gelation Nanoparticles Spherical, 271.5 ± 5.3 nm

• Controlled release in
gastrointestinal

• fluids
• Improved antioxidant

activity

[252]

Pectin with whey
protein concentrate
(WPC)

Citrus high-methoxyl pectin (DE
71.1%) Olive leaf extract Double-layered

emulsification Nanoemulsions 1443 nm
• Slower release rate during

20 days storage at 30 ◦C [253]

Pectin with whey
protein concentrate

Citrus high-methoxyl pectin (DE
71.1%) Saffron extract

Double-layered
emulsification
and spray drying

Nanoparticles Spherical, 482.3–536.3 nm [254]

Cellulose Microcrystalline cellulose Origanum vulgare.
essential oil

Ammonium
persulfate
hydrolysis

Cellulose
nanocrystals 1.2–2.9 µm

• Antimicrobial activity
against S. aureus, B. subtilis,
E. coli and S. cerevisiae

[255]
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Table 2. Cont.

Carbohydrate as
Wall Material

Carbohydrate Origin and
Characteristics Core Material Encapsulation

Process
Type of the Obtained

Delivery System
Morphological Characteristics of

the Obtained Delivery System Application Reference

Cellulose Bacterial cellulose produced by
Komagataeibacter sucrofermentans

Cinnamon
essential oil Emulsification Cellulose

nanocrystals Spherical and rod-like, 350–550 nm

• Preparation of solid
nanoparticles of biological
origin as carriers of
cinnamon essential oil that
could be mixed directly
into the food matrix or as
films and coatings

[256]

Cellulose with
alginate beads Cellulose nanocrystals Thyme essential

oil Emulsification Cellulose
nanocrystals <200 nm

• Antimicrobial effect
against Listeria innocua via
in vitro and in situ tests

• Reduction of the
mesophilic total flora on
ground meat, packed
under vacuum in
combination with gamma
irradiation, during storage

[257]

Cellulose Cellulose nanocrystals extracted
from pistachio shells Peppermint oil

Drop-wise
addition of a
peppermint oil
ethanolic solution
in cellulose
nanocrystals
suspension

Cellulose
nanocrystals Rod-like and spherical, 36.6–55.5 nm

• Controlled release upon
simulated saliva for 160
min

[258]

a Not mentioned.
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3.4. Polymeric Systems
3.4.1. Polymer-Based Nanoparticles

Polymeric nanoparticles (PNPs) are colloidal solid particles or particulate dispersions
with size that ranges from 1 to 1000 nm [259–261] that allows them to cross biological
barriers [262]. The active compounds can be surface-adsorbed onto the polymeric core
or entrapped within, and due to their high biocompatibility and ability to encapsulate
compounds of different physicochemical properties, they are considered important carriers
for plant ingredients [263]. Furthermore, they can improve the stability of the encapsulated
molecules, protect volatile compounds, reduce their degradation rate, and offer slow
and controlled release [264]. Polymeric nanoparticles can be generally divided into (a)
nanocapsules, in which the active compounds are confined in a cavity surrounded by
a polymer membrane and (b) nanospheres, in which the active compounds are evenly
distributed in the matrix of the system [260,263,265–268]. The polymers that are used for
the preparation of PNPs can be natural or synthetic. Natural polymers (biopolymers) are
isolated from natural sources such as plants, algae, fungi, bacteria and animals, whereas
synthetic polymers are often used to modify and improve the structure of natural ones [269].
Moreover, the use of hydrophilic polymers as a matrix for the development of modified-
release nanoparticles (MRNs) has also been reported in the literature. The latter provide
a controlled and predictable drug release in order to avoid random fluctuations in blood
concentration. This can be achieved with the aid of mathematical models that allow the
determination of the pharmacokinetics of drugs loaded in nanoparticles toward improving
their bioavailability [270].

Different methods can be employed to produce polymeric nanoparticles, depending
on the type of active ingredient(s) to be loaded and the desired characteristics of the final
formulation [271]. The polymerization of monomers and the dispersion of preformed
polymers are the two main ways of preparation [272,273]. For nanocapsule prepara-
tion, the method of choice is nanoprecipitation whereas for nanosphere preparation, the
most commonly used techniques are solvent evaporation, nanoprecipitation, emulsifi-
cation/reverse salting-out, emulsification/solvent diffusion [274,275]. The first method
developed for the formation of polymers was the evaporation of the solvent, where an
oil-in-water (o/w) emulsion is first prepared and then nanospheres are produced [276–278].
The polymer is dissolved in a polar solvent and the active ingredient(s) is incorporated
by dispersion or dissolution. For application in biomedicine, toxic solvents (chloroform
and dichloromethane) have been replaced by less toxic ones (ethyl acetate) [279,280]. With
the aid of a surfactant, the organic solution is emulsified in the aqueous phase and then
homogenized using ultrasounds or high shear [281]. The solvent gets evaporated at room
temperature and the nanoparticles are collected and lyophilized [282]. Another method is
emulsification/solvent diffusion where an o/w emulsion is formed between a water phase
(with TA surfactant) and a water-miscible solvent that contains the active compounds and
the polymer. The internal phase consists of a partially hydro-miscible organic solvent,
previously mixed with water at room temperature so that the two phases are thermo-
dynamically balanced [136,283]. The formation of colloidal particles is created from the
dispersion of the droplets in the external phase, when a large quantity of water is added
and diffusion is caused. The nanospheres generated range in size from 80 to 900 nm. This
method is often used despite its great need for water [284,285]. The emulsification/reverse
salting-out method creates nanospheres when a hydro-miscible solution is separated from
an aqueous one by a salting-out effect. The formation of the o/w emulsion is carried
out at room temperature with continuous and intense stirring and then diluted with an
aqueous solution which allows the diffusion of the organic solvent, the exterior phase
and the precipitation of the polymer. The remaining solvent and the salting-out agent are
removed by cross-flow filtration. This method creates nanospheres of size between 170 and
900 nm [286,287].
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After preparation, characterization of the polymeric nanoparticles is performed mainly
by dynamic light scattering (DLS) or photon correlation spectroscopy (PCS), electron
microscopy, electrophoresis, near-infrared spectroscopy and chromatography [288–290].

3.4.2. Micelles

Polymeric micelles are formed when amphiphilic polymeric molecules bind to an aque-
ous medium to form vesicles or core-shell structures. Hydrophobic bioactive compounds
can be encapsulated in the nucleus and are widely used for passive targeting [291,292].
10-Hydroxycamptothecin isolated from the plant Camptotheca acuminata has been loaded in
polymeric micelles and the obtained system demonstrated an inhibitory effect on the activ-
ity of glutathione S-transferase with enhanced pharmacokinetics and targeting in liver [293].
The active compound shikonin has been isolated from the plant Lithospermum erythrorhizon
and loaded into thermosensitive micelles, resulting in its increased biodegradability and
solubility as well as its activity against breast cancer cells by temperature regulation [294].
Sesbania grandiflora extract has also been encapsulated in polymeric micelles, showing
antibacterial activity in an in vitro study against S. aureus. The system also offered stability,
increased solubility and controlled release [295]. Moreover, an extract of Posidonia oceanica,
a marine plant rich in carbohydrates and polyphenols that has been shown to exhibit
anticancer properties as it inhibits the migration of cancer cells, has been encapsulated in
Soluplus polymeric micelles (PM) and chitosan nanoparticles (NP) toward enhancing its
bioactivity, aqueous solubility and storage stability [296].

3.4.3. Dendrimers

Dendrimers consist of an inner core and highly branched peripheric structures. Their
characteristic is that the active compounds can be incorporated both in the branched sur-
faces and inside the core by mainly electrostatic or covalent interaction. Their size can be
from 1 to 100 nm [292,297]. Dendrimers are characterized by several advantages such as
increased solubility, targeting ability, increased half-life, stability, ability to deliver a variety
of different active compounds and improved efficiency of delivery [292,298–300]. But
above all their unique advantages is that they are monodisperse, offering very repeatable
pharmacokinetic characteristics [301]. However, the release of the active compounds is
ineffective, and the loading of hydrophobic molecules is unstable and poor [302], whereas
the production cost remains very high [301]. To address these drawbacks, new categories
have been developed such as dendronized polymers or dendrimers incorporating a degrad-
able link [292,297,302]. Curcumin has been incorporated into poly(amidoamine) (PAMAM)
dendrimers [303]. An increase in the solubility of curcumin was observed when it was
encapsulated in PAMAM, while the system offered controlled release, resulting in a better
effect on the antiproliferative activity against lung cancer cells [303,304]. Moreover, in an
in vitro study performed on Plasmodium falciparum, it was shown that curcumin loaded
in dendrimers could be considered an effective anti-Plasmodium compound [305]. Silybin,
a natural flavonolignan derived from the milk thistle plant, has been encapsulated in
PAMAM dendrimers. This resulted in its increased stability, release time and aqueous
solubility with a concomitant decrease of the inherent dendrimer cytotoxicity [306]. Black
carrot anthocyanins, isolated from Daucus carota, have been loaded into silica-PAMAM
dendrimers, resulting in the improvement of their solubility and stability as well as their
controlled release and cytotoxicity against the neuroblastoma cell line [307]. The bioactive
compound liquiritin, isolated from Glycyrrhiza uralensis, has been loaded into PAMAM,
improving the solubility, stability, biocompatibility and permeability of intestinal absorp-
tion [308]. Gallic acid enriched antioxidant dendrimer (GAD) has been used for loading
essential oils [309]. Essential oil from the plant Origanum majorana has been loaded in
PAMAM G4.0 dendrimer and antifungal activity against Phytophthora infestans [310]. More-
over, essential oils from the plants Cymbopogon winterianus and Cinnamomum zeylanicum
were encapsulated in four bio-sourced dendrimers. The authors suggested that such deliv-
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ery systems could find applications in agricultural, food and pharmaceutical industries
where the slow release of the active ingredients is required [311].

3.4.4. Polymeric Nanoparticles and Nanogels

Polymeric nanoparticles are colloidal soft particles and their structures can be shell,
branched or spherical, with a size ranging from 10 to 100 nm [312]. Nanogels are structures
with excellent biocompatibility and targeted bioactive compounds delivery. They are devel-
oped in two ways, i.e., the chemical and the physical one [292]. Essential oil derived from
the plant Cymbopogon citratus has been loaded in poly(D,L-lactide-co-glycolide) nanoparti-
cles and was found to exhibit in vitro anti-herpetic activity and controlled release [313].

3.4.5. Nanocapsules

Nanocapsules are nanocolloidal dispersions that have a core-shell structure. The active
compounds are encapsulated into a cavity that is externally surrounded by a polymeric
coating or polymer membrane. The active compounds may be present in the cavity in
aqueous or oily form, in a solid or liquid form. The structure and composition of the
core-shell determine its characteristics and the release of the active ingredient it contains.

Depending on the method of preparation, they may be hydrophobic or lipophilic. The
main goal is to increase the bioavailability of hydrophilic active ingredients. In addition,
they demonstrate high encapsulation efficiency of the active substance due to the increase
of solubility of the active compound in the nucleus, low polymer content, protection
of polymer shell toward the active substance against degrading agents—such as light,
pH—and reduction of tissue irritation due to polymer shell coating [314–316]. Extract
from the plant Plumbago europaea was loaded in poly (lactic acid) (PLA) nanocapsules
and antibacterial efficiency was shown: for E. coli the efficiency was more than 30% and
for S. aureus up to 80% [317]. The essential oil from the plant Achyrocline satureioides
incorporates antioxidant molecules that can be used against oxidative stress, which can
cause heart injury during Trypanosoma evansi infection. In a study carried out in essential
oils encapsulated in nanocapsules, their protective effect against the oxidative stress caused
by T. evansi was shown [318,319].

3.4.6. Nanospheres

Nanospheres are colloidal aqueous solutions of crystalline or amorphous nature with
size from 10 to 200 nm [320]. The main advantage of nanospheres is that they are stable in
biological fluids and may improve the bioavailability and control the active compound’s
release. Furthermore, nanospheres have reduced toxicity and improvement of entrap-
ment of the bioactive compounds [234]. In an in vivo study in mice, nerolidol, an active
ingredient isolated from the ginger plant, was loaded into nanospheres. Its therapeutic
efficacy and solubility were improved, and it was able to penetrate the blood–brain bar-
rier [320]. Essential oil from the plant Zanthoxylum riedelianum was loaded into nanospheres
and the system exhibited improved stability as well as solubility, with controlled release
and less photodegradation. The system had insecticidal and insect repellent properties
against the species Bemisia tabaci [321]. Menthol, an active metabolite isolated from various
plants of the Lamiaceae family, was loaded into PLGA nanospheres, gaining enhanced
biodegradability as well as controlled release [322].

3.4.7. Nanofibers

Nanofibers are solid polymeric fibers with a small pore size, a large surface area and
a size range between 10 and 1000 nm [323]. They have the ability to prevent infection,
they have the potential for wound healing, regeneration of damaged tissue and may also
demonstrate adhesive features [324,325]. Moreover, anticancer properties of nanofibers
upon loading with natural compounds as well as their strong ability to bind to cancer cells
have also been shown [226,326,327]. In an in vitro study, nanofibers loaded with an Aloe vera
extract, intensification of the wound-healing process and repair of the skin were observed,
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as well as an improvement of the biocompatibility on fibroblast cells [226]. In an in vitro
study carried out on nanofibers loaded with an Lycium barbarum extract, neuroprotective
and peripheral nerve regeneration properties were shown [326]. In another in vitro study,
Cissus quadrangularis was loaded on nanofibers and an increase of osteogenic differentiation,
proliferation and adhesion of mesenchymal stem cells (MSCs) was observed [327].

3.4.8. Polymersomes

Polymersomes are nanospheric vesicles formed by self-assembly of amphipathic
block co-polymers. Despite their similarities to liposomes, they are less permeable and
more stable. They have the ability to bind to antibodies and to incorporate proteins
and non-hydrophilic and hydrophilic bioactive compounds and even DNA and RNA
fragments in their membrane [227,328]. Polymersomes loaded with an extract from the
plant Bacopa monniera demonstrated a significant improvement in memory loss as well as
improved targeting of the active compounds in the brain [329]. In another study carried
out in mice, curcumin was loaded into polymersomes and showed an affinity for neurons,
neuroprotective properties and improved cognitive impairment [330]. An overview of the
different polymeric carriers that have been employed for loading either pure bioactive
compounds, plant extracts or essential oils is given in Table 3.
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Table 3. Overview of different polymeric carriers that have been used for the encapsulation of various pure plant bioactive compounds, extracts and essential oils.

Type of Polymeric Carrier Encapsulated Material Target of Encapsulation Size of the Obtained Delivery
System Application Reference

Micelles 10-Hydroxycamptothecin Solubility, stability and controlled
release 340 nm

Inhibitory effect on the activity of glutathione
S-transferase with enhanced pharmaco-kinetic
and targeting in liver

[293]

Micelles Shikonin (from Lithospermum
erythrorhizon)

Solubility, stability and controlled
release 53–98 nm Targeting to breast cancer cells by temperature

regulation [294]

Micelles S. grandiflora extract Solubility, stability and controlled
release 24.95 ± 0.34 nm Antibacterial activity in an in vitro study against

S. aureus. [295]

Micelles P. oceanica extract Bioavailability, solubility and
stability 252–55.74 nm Anticancer properties as it inhibits the migration

of cancer cells [296]

Dendrimers (PAMAM) Curcumin (from C. longa) Solubility and controlled release -a Better effect on the antiproliferative activity
against lung cancer cells [303]

Dendrimers (PAMAM) Curcumin Bioavailability, solubility ~150 nm -a [304]

Dendrimer G2 Curcumin Solubility 239 nm Effective anti-Plasmodium compound—against
malaria [305]

Dendrimers (PAMAM) Silybin (from milk thistle plant) Solubility, stability and controlled
release -a Drug solubilization/inherent dendrimer

cytotoxicity was reduced [306]

Dendrimers (PAMAM) Black carrot anthocyanins (from
D. carota plant)

Solubility, stability,
biocompatibility and controlled
release

134.8 nm Cytotoxicity against neuroblastoma cell line [307]

Dendrimers (PAMAM) Liquiritin (from G. uralensis
plant)

Solubility, stability and
biocompatibility - a Permeability of intestinal absorption [308]

Dendrimers (PAMAM) O. majorana essential oil Solubility, stability and volatility 20–30 nm Action against the fungus P. infestans [310]

Dendrimers C. zeylanicum and C. winterianus
essential oil Controlled release - a Biopesticides [311]

Nanoparticles C. citratus Controlled release 217.1 ± 19.9 nm In vitro anti-herpetic activity [313]

Nanocapsules (PLA) P. europaea extract Controlled release 271.2 ± 13–1750 ± 305 nm Antibacterial efficiency [317]

Nanocapsules A. satureioides essential oil - a 235.9 nm Oxidative stress [318]
a Not mentioned.
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3.5. Nanoemulsions

Nanoemulsions are colloidal dispersion systems with droplet size up to 100 nm.
They are transparent or translucent, optically single isotropic and thermodynamically
stable [331]. They can be prepared from aqueous and oily phase and stabilized using
surfactants and co-surfactants. They are categorized into oil-in-water (o/w), water-in-oil
(w/o) and bi-continuous nanoemulsions [332].

Encapsulation of plant isolated ingredients, extracts and essential oils can enhance
their stability and effectiveness and make them more effective [333–335]. The preparation
of nanoemulsions requires a large amount of energy and surfactant as they are non-
equilibrated formulations. The technique to prepare nanoemulsions with high energy
is the traditional method of making emulsions as well. With high kinetic energy, the
size of the microdroplets is reduced to nanodroplets [336]. High-pressure homogenizers,
microfluidizers and ultrasounds are used. Other techniques use low energy to prepare
nanoemulsions [337]. Low-energy methods are divided into two major categories: those in
which the emulsification takes place spontaneously and with an inverse emulsion phase
(isothermal) and those that are formed by phase inversion temperature (thermal). The
isothermal method does not require a change of temperature or the use of specialized
homogenization equipment for the production of fine droplets. The thermal method, on
the other hand, requires a change of temperature in order to form a nanoemulsion [338].
Factors influencing the preparation of the nanoemulsions by the low-energy method are
the types of surfactants used, the addition of co-surfactant, the ratio of the surfactant to
the solvents, the presence of a co-solvent, the type of oil and the conditions of preparation.
Nanoemulsions have many advantages, including the improvement of the absorption,
dissolution and solubility of the incorporated bioactive ingredients, as well as the potential
for prolonged controlled release. They may also facilitate the penetration of bio-membranes
and increase the bioavailability of the bioactive compounds that exhibit low solubility,
which may be due to the large interfacial area and the nanosize of the droplets. The use of
nanoemulsions is generally safe for human health as lipids and oils can be biodegradable,
biocompatible and non-mutagenic. Nanoemulsion formulations are also able to reduce
the concentration of the bioactive ingredient(s), thus reducing toxicity and offering greater
effectiveness [339].

Hydroxysafflor yellow A, isolated from Carthamus tinctorius, has been incorporated
into a water-in-oil nanoemulsion, showing improved systemic absorption, bioavailability
and transport of digested microemulsions [340]. An oil-in-water nanoemulsion loaded
with quercetin isolated from nuts and various parts of plants has also been developed.
Quercetin was found to be stable with increased skin permeability reaching the systemic
circulation [341]. Moreover, in an in vitro study, quercetin was loaded in an oil-in-water
nanoemulsion, resulting in enhanced bioavailability in mice when these were tested for
anti-obesity efficacy [342]. Quercetin loaded in nanoemulsions has also been examined in
other studies, showing enhanced bioavailability, penetration in blood–brain barrier, higher
drug release and increased antioxidant activity [343–345]. Nanoemulsions loaded with
emodin were tested when administered orally and showed enhanced oral bioavailabil-
ity and transcellular permeation [346]. Nanoemulsions loaded with emodin have been
administered orally and showed enhanced bioavailability and transcellular permeation
through inhibition of UGT metabolism [346]. Catechin-loaded nanoemulsions have also
been administered orally and transdermally and exhibited improved bioavailability, skin
permeability and sustained release [347]. In an in vitro study, nanoemulsions loaded
with betulinic acid, an antioxidant and hepatoprotective compound, were tested when
administered orally. The results revealed enhanced bioavailability, gastrointestinal per-
meability and sustained release of active compounds [348]. Improved in vivo and in vitro
bioavailability and solubility have also been reported for curcumin after its encapsulation
in nanoemulsions [349]. β-Elemene showed enhanced in vivo and in vitro antitumor ac-
tivity against Hep3B cancer cells and solubility after its loading in nanoemulsions [350].
An oil-in-water nanoemulsion loaded with elemene oil obtained from Curcuma species
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showed improved bioavailability and better stability when administered orally compared
to the free form [345]. A nanoemulsion loaded with O. vulgare oil has been tested for
antimicrobial action in food and appeared to reduce the growth of the bacteria E. coli, S.
typhimurium and L. monocytogenes [351]. Moreover, a nanoemulsion loaded with basil oil
from the plant Ocimum basilicum showed antibacterial activity against E. coli [352]. Many
types of nanoemulsions have been used for the increase of the physical and storage stability
of polyphenols [353]. Curcumin isolated from C. longa (turmeric) rhizomes, known for its
chemopreventive, anti-inflammatory and anticancer properties [354], has been incorpo-
rated into various nanoemulsions [355,356]. In particular, Ma et al. [357] examined several
emulsifier types and surfactant-to-oil ratios and assessed the stability of the systems. The
authors concluded that the nanoemulsions prepared using Tween-80 as emulsifiers and
higher surfactant-to-oil ratios showed improved curcumin storage stability. In a recent
study [358], emulsions and nanoemulsions have been used to enhance the chemical stability
of curcumin. The authors postulated that droplet size plays the most important role in the
degradation of curcumin encapsulated in emulsions; a fact that may affect its bioactivity
in various food and beverage products. Resveratrol’s chemical stability may be increased
by its incorporation into nanoemulsion compared with that of free (aqueous or ethanolic
extract) resveratrol [359]. Phytosterols, such as stigmasterol, β-sitosterol and campesterol,
have been proved to inhibit the absorption of dietary cholesterol but demonstrate degra-
dation issues related to oxidation [360]. Their incorporation into nanoemulsions can help
overcome this issue. Chuanxun et al. [361] proved the reduction of oxidation degradation
of phytosterols caused during storage by using nanoemulsions while Acevedo-Estupiñan
et al. [362] prepared phosphatidylcholine and lysophosphatidylcholine nanoemulsions
incorporating phytosterols and achieved the increase of their chemical stability as well
as their water solubility. Borba et al. [363] prepared β-carotene nanoemulsions by high-
pressure homogenization, with an average size of 300 nm [363]. The formulations exhibited
increased encapsulation efficiency and stability against droplet coalescence upon storage
under different conditions. Qian et al. investigated the influence of temperature, pH,
ionic strength, and emulsifier type on the stability of nanoemulsions incorporating β-
carotene [364]. Nanoemulsions loaded with D-a-tocopherol (vitamin E) have also been
formulated with the aid of high-pressure homogenization [365]. Based on in vitro studies
using the Caco-2 cell line in which the prepared nanoemulsions exhibited >90% cell via-
bility, the authors suggested that this system could be used for the delivery of vitamin E
after in vivo administration. An overview of the different nanoemulsions that have been
employed for loading either pure bioactive compounds, plant extracts or essential oils is
given in Table 4.
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Table 4. Overview of different nanoemulsions that have been used for the encapsulation of various pure plant bioactive compounds, extracts and essential oils.

Type of
Nanoemulsion Encapsulated Material Target of Encapsulation Size of the Obtained

Delivery System Application Reference

W/O a Hydroxysafflor yellow A Bioavailability 53.3 nm Oral bioavailability [340]

O/W b Emodin Oral bioavailability 116 ± 6.5 nm Inhibition of UGT metabolism [346]

W/O a Catechin Bioavailability 98.6 ± 1.01 nm Photoprotection against UVA-induced
oxidative stress [347]

W/O a and O/W b Betulinic acid Bioavailability and solubility 150.3 ± 0.56 nm Hepatoprotective and in vivo
antioxidant efficacy activity [348]

O/W b Curcumin Oral bioavailability 11.2 nm Enhancement in Cmax [349]

W/O a β-Elemene Solubility 52.68 nm Antitumor activity [350]

O/W b Quercetin Bioavailability and solubility 19.3 ± 0.17 nm Contribute to preventing weight gain [366]

O/W/O Quercetin Bioavailability and solubility 180–200 nm (candidate for the treatment of obesity) [367]

O/W b Curcumin and quercetin
Simultaneous drug administration
and protection of the encapsulated
compounds from degradation

112.33 ± 1.51 nm Protecting against lipid oxidation
(chicken paté) [368]

O/W b Curcumin and quercetin Solubility, high encapsulation
efficiency and long-term stability 175.44 nm Thermal stability, higher bioavailability

and consequently drug effectiveness [369]

O/W b Quercetin
Poor water solubility and high
susceptibility to chemical
degradation

207–289 nm Drug delivery system [370]

W/O a Quercetin Solubility 38.9–266.67 nm Antioxidant and antibacterial activity [371]

O/W b Oregano oil Solubility 148 nm Antimicrobial activity in food [351]

O/W b Pterodon emarginatus Solubility 125 nm Larvicidal property against Aedes aegypti [372]

O/W b Garcinia mangostana extract Bioavailability and solubility 181 nm (167.3–222.0 nm) - c [373]

O/W b Pimpinella anisum essential oil Solubility 440 nm Antimicrobial activity [374]

- c Anthocyanin Bioavailability and stability - c Antimicrobial activity [375]

- c 2,4,6-triphenylaniline (TPA) Stability and bioavailability - c Therapeutic drug delivery system in
diabetes mellitus [376]

a Water-in-oil emulsion; b oil-in-water emulsion; c not mentioned.
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4. Inorganic-Based Delivery Systems

Besides the organic-based delivery systems described in detail above, inorganic ma-
terials have also attracted the interest of the scientific community as potential carriers in
novel delivery systems for food, pharmaceutical and medicinal applications. However,
the use of inorganic delivery systems is still rather limited compared to the organic ones.
Some of the most commonly used inorganic carriers are the inorganic nanoparticles, the
mesoporous silica nanoparticles (MSNs) as well as the super paramagnetic iron oxide
nanoparticles (SPIONs) [377]. Regarding inorganic nanoparticles, they constitute an im-
portant class of nanomaterials that due to their small size, high surface area, stability and
antimicrobial, antifungal, antivirus and anticancer activity etc., find numerous applications
in various fields including food packaging, quality sensing, catalysis, delivery of bioactive
compounds etc. [378]. The underlying principle of their synthesis is based on the reduction
of the metal ions of a precursor salt solution to zero-valent metal atoms by reducing agents
(activation phase). Afterwards, new nanoparticles are formed during the nucleation phase
which is followed by the growth phase during which nanoparticles merge to form various
morphologies such as spheres, triangles, hexagons, rods, etc. During the last stage (termina-
tion phase), the nanoparticles obtain their most stable form with the aid of capping agents
(e.g., EDTA, chitosan) [379]. Till recently, inorganic nanoparticles were synthesized via
chemical (e.g., electrode position, pyrolysis, microwave assisted combustion) or physical
(e.g., colloidal dispersion, vapor condensation) methods. The former involve the use of
toxic solvents and reducing agents that are hazardous to the environment whereas the
latter involve the use of expensive equipment as well as high temperature and pressure
conditions [380]. As an alternative, the biosynthesis of inorganic nanoparticles that is based
on the use of biomolecules extracted from plants, bacteria or fungi has attracted the interest
of the scientific community during the last decades. Such approaches are simple, take place
in aqueous media minimizing the use of unsafe reagents, usually at room temperature or
upon mild heating [378]. In particular, plant extracts, containing polyphenols, enzymes,
vitamins, etc., have been proved to reduce metal ions as well as to provide stabilization
to the formed nanoparticles [381,382]. As Table 5 shows, various nanoparticles composed
of silver (Ag-NPs), gold (Au-NPs), palladium (Pd-NPs), zinc oxide (ZnO), silicon dioxide
(SiO2), titanium dioxide (TiO2), etc. have been synthesized using mostly aqueous extracts
of different plant materials such as leaves, seeds, fruits, etc. As shown in Table 5, the
obtained inorganic NPs may be crystalline or amorphous solids at ambient temperature,
may exhibit different shapes (e.g., spherical or non-spherical), surface characteristics and
sizes that depend on the raw materials used as well as on the conditions of their fabrication.

Regarding mesoporous silica nanoparticles (MSNs), they constitute another category
of inorganic delivery systems based on their advantageous properties such as controllable
morphology, large pore and surface area, biocompatibility as well as ease of surface func-
tionalization. Until now, most of the research studies on MSNs loaded with plant-derived
bioactive compounds as delivery systems have been dedicated to cancer therapy [377]. In
this regard, spherical mesoporous silica nanoparticles with a size of 60 nm loaded with
resveratrol have been fabricated for the treatment of human melanoma [383]. The authors
suggested that the encapsulation of resveratrol enhanced its in vitro release properties
compared to those of the non-encapsulated molecule whereas in vitro studies revealed
that it was found to be cytotoxic against human A375 and MNT-1 melanoma cellular
cultures. Resveratrol has also been loaded in uniformly sized (~60 nm) phosphonate
and amine modified MSNs in order to improve its in vitro antiproliferative and cytotoxic
activity against a prostate cell line. The authors postulated that both phosphonate and
amine mesoporous silica nanoparticles showed controlled release compared to the free
molecule in 24 h whereas the former were also found to enhance its antiproliferative
potential [384]. Mesoporous silica nanoparticles loaded with curcumin have also been
fabricated as a potent anticancer agent [385]. Encapsulated curcumin showed increased
cellular uptake and cytotoxicity against liver cancer (HepG2) and cervical cancer (HeLa)
cell lines compared to free curcumin. Curcumin-loaded MSNs have also been incorporated
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into chitosan films in order to improve its functional properties toward developing an
active food packaging material [386]. It was shown that curcumin loaded in these carriers
exhibited pH-dependent and sustained release behavior whereas the prepared films were
found to demonstrate antimicrobial activity against S. aureus and E. coli. MSNs contain-
ing eugenol that were prepared by vapor adsorption have also been incorporated into
poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) films by electrospinning aiming at
investigating their potential for active food packaging applications [387]. The electrospun
films containing MSNs loaded with eugenol were found to present thermal resistance and
enhanced mechanical strength. Moreover, those that contained more than 10% (w/w) of the
MSNs loaded with eugenol were found to inhibit the growth of S. aureus and E. coli after
15 days. Amino functionalized MSNs have also been prepared as carriers for vitamin E to
tackle its poor solubility, instability and low bioavailability [388]. The authors suggested
that the encapsulated vitamin E was released in a pH-dependent manner and that after its
exposure to air for 48 h it was found to be more stable compared to the free molecule. Apart
from pure compounds, MSNs have also been employed for the encapsulation of essentials
oils. In particular, Cadena et al. (2019) [389] reported the preparation of such nanoparticles
loaded with 41 essential oils from various plant materials including black pepper, ginger,
peppermint, garlic, clove bud, rosemary, basil, thyme, sage, mustard, cinnamon, lemon-
grass, etc. The authors concluded that the encapsulated essential oils exhibited a 10-fold
higher antimicrobial activity against Pectobacterium carotovorum subsp. carotovorum and
Pseudomonas fluorescens compared to the free ones.

SPIONs have also attracted the interest of the scientific community due to their small
size, biocompatibility and high magnetic moments in the presence of an external magnetic
field. Due to these superparamagnetic properties, they find various biomedical applications,
e.g., as nano-sensors, cell labeling, tissue repair, as a contrast agent in magnetic resonance
imaging, whereas one of their most promising applications is targeted drug delivery based
on the magnetic response of the iron oxide, which allows magnetic targeting that makes
the retention of nanoparticles in the target tissue longer [390]. The three main iron oxides
that have been utilized for the preparation of SPIONs are magnetite (Fe3O4), maghemite
(γ-Fe2O3) and hematite (α-Fe2O3). In general, SPIONs can be synthesized via physical
(e.g., aerosol, gas phase deposition, pulsed laser ablation), chemical (e.g., co-precipitation,
hydrothermal, microemulsion) or biological (e.g., protein, bacteria or fungi mediated)
routes. SPIONs loaded with a derivative of trans-resveratrol have been produced using a
co-precipitation method [391]. The biological assessment of the efficiency of the synthesized
SPIONs was carried out in vitro on C6 rat glioma cells. Results showed that the SPIONs
loaded with the derivative of trans-resveratrol did not affect the mitochondrial metabolism
using the MTT [3-(4-,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] assay but
they were found to damage the plasma membrane using the fluorescein diacetate (FDA)
assay at a concentration of 50 µM. The authors suggested that these nanoparticles could
have a potential cytotoxic effect that could inhibit the proliferation of cancer cells. Moreover,
curcumin-loaded SPIONs have been designed for the examination of the effects of curcumin
on testicular hyperthermia in mice that can negatively affect male fertility [392]. In an
in vivo study conducted on 18 adult male NMRI mice, protective effects of curcumin-
loaded SPIONs on testes damage following hyperthermia have been observed. These
effects were attributed to the anti-inflammatory, antioxidant and anti-apoptotic effects of
curcumin. Curcumin-loaded SPIONs have also been produced by means of a chemical
co-precipitation method and were used for delivery studies against the cervical HeLa
cancer cell line. The authors found that the prepared nanoparticles were able to deliver
after 6 h, as shown by the increase of the apoptotic cells and of the caspase 3 expression.
The preparation of SPIONs loaded with quercetin by means of a nanoprecipitation method
has also been reported in the literature [393]. Wistar male rats were orally gavage fed with
quercetin, either loaded in SPIONs or in its free form at 50 and 100 mg/kg daily doses
for 7 days. A higher concentration of quercetin was observed in the plasma and brain of
the rats that were fed with the quercetin-loaded SPIONs compared to those fed with the
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free molecule. The authors suggested that the use of SPIONs as a targeted drug delivery
system enhances the bioavailability of quercetin in the brain ~10-fold higher than the free
molecule and could be used for the treatment of neurodegenerative disorders.

In all of the above-mentioned cases, after their synthesis, the obtained inorganic
delivery systems are usually characterized by an array of techniques, including UV–Vis
spectrophotometry, Fourier-transform infrared spectroscopy (FT-IR), X-ray diffraction
(XRD) and scanning electron microscopy (SEM), in order to confirm their successful forma-
tion as well as their morphological characteristics (e.g., size, shape, etc.) that determine their
unique physicochemical properties and define their gastrointestinal fate and toxicity [394].
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Table 5. Overview of different inorganic nanoparticles as carriers for pure plant bioactive compounds, extracts and essential oils.

Inorganic Material Core Material Shape and Size of the Obtained Delivery System Application Reference

Silver Cavendish banana peels Spherical, crystalline, 55 nm Antimicrobial activity against S. aureus, B. subtilis, E. coli and K. pneumonia [395]

Silver A. vera Octahedral, 5–50 nm Antimicrobial activity against S. aureus, B. cereus, Micrococcus luteus, E. coli and K.
pneumonia [396]

Silver A. vera Crystalline, 70–192 nm Antibacterial activity against S. epidermidis and P. aeruginosa [397]

Silver Tamarind fruit Spherical, crystalline, 6–8 nm Antibacterial activity against B. cereus, S. aureus, M. luteus, B. subtilis, Enterococcus
sp., P. aeruginosa, Salmonella typhi, E. coli and K. pneumonia [398]

Silver Cinnamon Spherical, 50–70 nm Antibacterial activity against S. aureus, E. coli, B. cereus and Pseudomonas species [399]
Silver A. vera Spherical, crystalline, <15 nm Antibacterial activity against Kocuria varians and mercury removal capacity [400]
Silver White tea leaves Spherical, 19.8 nm Antioxidant activity [401]

Silver Plumbago auriculata Spherical, hexagonal, <50 nm Antimicrobial activity against S. aureus, E. coli, Klebsiella pneumoniae and Bacillus
subtilis [402]

Silver Citrus limon peels Spherical, 59.7 nm Antibacterial and cytotoxic activity [403]
Silver Curcumin Spherical, polycrystalline, 25–35 nm Antibacterial activity against P. aeruginosa, E. coli, B. subtilis and S. aureus [404]
Silver Turmeric extracts Spherical and quasi-spherical, crystalline, 18 nm Antimicrobial activity against E. coli O157:H7 and L. monocytogenes [405]
Silver Mentha piperita Spherical, 35 nm Effect on the neurological enzyme acetylcholinesterase to predict its neurotoxicity [406]

Silver Madhuca latifolia aqueous
extract Spherical, crystalline, 2–30 nm Antioxidant and antibacterial activity against E. coli, S. aureus, L. monocytogenes, S.

faecalis, S. typhimurium [407]

Silver and gold Quercetin Crystalline 53 and 27, respectively Anti-neuroinflammatory activity on BV-2 microglial cells [408]
Gold Plumeria alba flower Spherical, 15.6–28 nm Antibacterial activity against E. coli [409]
Gold Hibiscus sabdariffa leaves Spherical, crystalline, 10–60 nm Cytotoxic activity against U87 glioblastoma cells under hyperglycemic condition [410]
Gold Mimosa tenuiflora Spherical, 20–200 nm Cytotoxic activity and catalytic properties [411]
Gold Resveratrol Spherical, crystalline, 14.9–16.1 nm Anticancer activity against human breast, pancreatic and prostate cancer cells [412]
Gold Hibiscus sabdariffa flower Spherical, crystalline, 15–45 nm Anti-acute myeloid leukemia effect in a leukemic rodent model [413]
Palladium Hippophae rhamnoides leaves Spherical, crystalline, 10 nm Catalytic activity for the Suzuki–Miyaura coupling in water [414]
Palladium Chrysophyllum cainito Crystalline, 169.2 nm Catalytic activity for C–C coupling and reduction reactions [415]

Titanium dioxide Salvadora persica aqueous
ethanolic extract Crystalline,19.8 nm Antimicrobial activity against S. aureus and E. coli [416]

Zinc oxide Passiflora caerulea Spherical, 70 nm Antibacterial activity against microbes that cause urinary tract infections (e.g., E.
coli, Enterococcus sp., Streptococcus sp.) [417]

Zinc oxide Cassia fistula and Melia
azedarach Spherical, 3–68 nm Antimicrobial activity against S. aureus and E. coli [418]

Zinc oxide Sambucus ebulus Spherical, hexagonal, 17 nm Antibacterial activity against B. cereus, S. aureus and E. coli [419]

Zinc oxide Deverra tortuosa - a

9.3–31.2 nm
In vitro cytotoxic activity against two cancer cell lines, i.e., human colon
adenocarcinoma Caco-2 and human lung adenocarcinoma A549 [420]

a Not mentioned.
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5. Other Delivery Approaches

Apart from conventional delivery systems categorized into organic and inorganic,
contemporary approaches have been developing constantly in order to enhance carriers’
properties. Such approaches are mostly at the stage of fundamental rather than applied re-
search, and currently mostly targeting drug delivery. Nevertheless, it is definite that newer
systems will soon begin to have more applications in the delivery of plant ingredients.

In this regard, a different approach to delivery systems constitutes biological nanocarri-
ers, mainly viral nanoparticles (VNPs) and virus-like particles (VLPs). The latter constitute
the genome-free versions of their VNP equivalents and are considered non-infectious. The
viruses that are used for such purposes are of plant (e.g., tobacco mosaic virus, potato virus
X) and mammalian origin or bacteriophages (e.g., MS2, P22). These viruses that range in
size (~30 nm up to over 1 µm) currently find applications exclusively in nanomedicine for
drug delivery, cancer, antimicrobial, cardiovascular and gene therapies, imaging, vaccines
against infectious diseases, etc. The major advantages of such systems are their biodegrad-
ability, biocompatibility, water solubility, high loading capacity and uptake efficiency [421].
These facts, along with the relatively easy surface functionalization and the fact that they
can encapsulate a broad range of active ingredients, guarantee a promising future for these
systems [422].

Another encouraging approach is the advanced drug delivery nanosystems (aDDNSs).
These systems consist of the combination of more than one different biomaterials (e.g.,
lipids, phospholipids, chitosan, dendrimers, etc.) [423]. aDDNSs can be categorized as
hybridic and chimeric depending on whether the biomaterials are of the same (e.g., both
natural) or different (e.g., one synthetic and one natural) nature [424]. Such mixed systems
may offer several advantages. In particular, preclinical studies have shown that aDDNSs
can affect the release profile of the entrapped bioactive molecule, alter its pharmacokinetic
profile and consequently improve its biodistribution, absorption and metabolism [423].

6. Conclusions

There has been increasing interest, during the last decades, in the development of ef-
fective delivery systems for plant-derived bioactive ingredients prior to their incorporation
into various products in order to overcome some potential challenges related to stability,
solubility and bioavailability issues. Organic and inorganic, synthetic and natural, simple
and complex and nano- and micro-sized materials have been widely investigated as poten-
tial carriers for a broad range of plant ingredients with different physicochemical, biological
and functional properties (e.g., colorants, flavoring agents, antioxidants, antimicrobials).
In spite of the increasing number of publications related to delivery systems loaded with
various plant-derived bioactive compounds, there are still challenges in this field such as
the lack of cost-effective methods to scale up production. In this regard, emphasis should be
given in the future to the development of large-scale production methods that along with
standardization will assist in the commercialization of formulated plant bioactive-loaded
delivery systems. In any case, the toxicity of the prepared delivery systems as well as their
gastrointestinal fate should be investigated in depth. Moreover, novel approaches (e.g.,
combinatory and biological systems) are expected to have a key role in the future.
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