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Optimization of sunflower head 
pectin extraction by ammonium 
oxalate and the effect of drying 
conditions on properties
Xuemei Ma1*, Jiayi Yu1, Jing Jing1,2, Qian Zhao1,2, Liyong Ren1,2 & Zhiyong Hu1,2

Pectin is a kind of natural and complex carbohydrates which is extensively used in food, chemical, 
cosmetic, and pharmaceutical industries. Fresh sunflower (Helianthus annuus L.) heads were utilized 
as a novel source of pectin extracted by ammonium oxalate. The conditions of the extraction 
process were optimized implementing the response surface methodology. Under optimal extraction 
parameters (extraction time 1.34 h, liquid–solid ratio 15:1 mL/g, ammonium oxalate concentration 
0.76% (w/v)), the maximum experimental yield was 7.36%. The effect of spray-drying and freeze-
drying on the physiochemical properties, structural characteristics, and antioxidant activities was 
investigated by FT-IR spectroscopy, high performance size exclusion chromatography, and X-ray 
diffraction. The results showed freeze-drying lead to decrease in galacturonic acid (GalA) content 
(76.2%), molecular weight (Mw 316 kDa), and crystallinity. The antioxidant activities of pectin were 
investigated utilizing the in-vitro DPPH and ABTS radical-scavenging systems. This study provided 
a novel and efficient extraction method of sunflower pectin, and confirmed that different drying 
processes had an effect on the structure and properties of pectin.

Pectin is a complex set of polysaccharides that is widely used as an additive in desserts, dairy products, and soft 
drinks as a gelling, stabilizing, and thickening agent1. Notably, low-methoxyl pectin (LMP) can form gel without 
sugar. LWP can be used as a fat substitute and a low-calorie product2, which is particularly suitable to being 
included in the diet of people with obesity. However, commercial LMP is generally prepared from high-methoxyl 
pectin (HMP), which renders the production cost of LMP higher3. The previous studies proved that sunflower 
heads were rich in natural LMP (15–25%)4, which not only expanded the application scope of waste sunflower 
heads, but also enriched the structural characteristics of pectin5.

Conventional methods of extracting sunflower pectin generally rely on dry sunflower heads4,6,7 and require 
harsh acid and high liquid–solid ratio (25:1–60:1)6,8. Such a way could certainly lead to acidic degradation of 
pectin, the large amount waste of ethanol and serious environment pollution due to the acidic solid waste9. In this 
context, ammonium oxalate and sodium hexametaphosphate solutions have been observed to be effective in the 
extraction of pectin from sunflower heads; in fact, the pectin obtained by the latter had a higher ash content10. 
Through the direct reaction of ammonium oxalate with pectin, acid pollution may be reduced, and the formation 
of hydrogen bonds between pectin chains may be enhanced which endow pectin with diverse structural features3. 
On the other hand, during the drying process of fresh sunflower heads, polysaccharides and proteins undergo 
a complex browning driven by oxygen and higher temperature to produce a substance called melanin pigment, 
whose presence influences the sensory quality of pectin12. However, the industry generally prefers lighter colored 
pectin11. Therefore, a variety of decolorization processes are used in the extraction process of commercial pectin 
to obtain qualified pectin, including activated carbonin decolorization, alcohol ammonia solution decolorization, 
etc12. These approaches caused a decrease in pectin yield, expensive operation, and destroyed pectin molecules 
structure13. Therefore, extracting fresh sunflower heads to obtain LMP has economic and environmental signifi-
cance. In previous studies, fresh sunflower heads were extracted by subcritical water to obtain LMP with ideal 
color by subcritical water extraction14, but the obtained pectin had low Mw.

Muthusamy et al.15 based on response surface method of genetic algorithm and artificial neural network 
model to extracted dry sunflower heads, and the pectin yield was 29.5%. The use of RSM can increase product 
yield and reduce process differences, thereby shortening development time and reducing overall cost. Some 
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studies indicated drying methods had an effect on physiochemical properties11 and various function of pectin, 
such as antioxidant activity19,20 and emulsifying properties21. Antioxidant property of pectin was the most widely 
studied16,17. Researches have proved the pectin-polyphenol conjugate have improved antioxidant properties 
with respect to polyphenol18. Among the different drying methods, spray-drying and freeze-drying are the most 
common ways to convert liquid products for powders with high chemical and biological stability22. Up to date, 
there is no study on the effect of drying methods on physiochemical properties of pectin from pectin from fresh 
sunflower heads (SFHP).

In order to obtain pectin with rich structure, qualified quality and high yield, in this study, ammonium 
oxalate was used to extract pectin from fresh sunflower heads. The RSM was to apply to optimize the operating 
parameters. Pectin was obtained under the optimized conditions and then dried by two different methods (freeze-
drying and spray-drying). The relationship between drying treatments and pectin properties (physiochemical 
properties and antioxidant activities) was investigated.

Results and discussion
The results of single factor analysis.  The influence that various factors had on pectin yield is reflected 
by the data reported in Fig. 1. To determine the effect of extraction time on pectin yield, the extraction was 
performed for 0.5–3 h, with the liquid–solid ratio of 15:1 mL/g, and the ammonium oxalate concentration at 
0.4% (w/v) at 85 °C (Fig. 1a). The pectin yields initially increased as the extraction time increased, reaching the 
maximum yield (7.9%) at 1.5 h. Then, the yields started to decrease, which may due to prolonged extraction 
time decomposed the pectin, and separation was more difficult23. Therefore, 1.5 h was selected in the subsequent 
investigations.

The effect of liquid–solid ratio (2:1–25:1 mL/g) on the pectin yield was studied by fixing the temperature at 
85 °C, the ammonium oxalate concentration at 0.4% (w/v) and the extraction time for 1.5 h. As can be evinced 
from the data in Fig. 1b, the yield of pectin significantly increased as the liquid–solid ratio increased from 2:1 to 
15:1 mL/g, whereas it decreased after 15:1 mL/g. This observed trend may be related to the sufficient solvency 
of the target compounds in a larger volume of extraction solvent, as has been reported by previous result24. 
However, the concentration of solute was reduced at higher liquid–solid ratio (> 15:1 mL/g), resulting in an 
increasing driving force for diffusion and dissolution25. In the subsequent experiments, the liquid–solid ratio 
was restricted to 15:1 mL/g, which was significantly lower than that reported for previously described processes 
of pectin extraction from sunflower heads.

The impact of the ammonium oxalate concentration on the yield of pectin was achieved under the conditions 
where the temperature, liquid–solid ratio and extraction time were set to 85 °C, 15:1 mL/g and 1.5 h, respec-
tively. The data in Fig. 1c revealed that the extraction yield of pectin initially increased alongside the ammonium 
oxalate concentration and reached the peak value (9.2%) when the ammonium oxalate concentration was 0.6% 
(w/v), then appeared to reach a plateau. The mechanism of the ammonium oxalate extraction method is to turn 
insoluble calcium pectate into soluble ammonium salt26. 0.6% (w/v) ammonium oxalate had maximized pectin 
hydrolysis. Therefore, 0.6% (w/v) was selected as optimum.

All in all, the optimal conditions for pectin extraction were thus concluded to be the following: 85 °C, 1.5 h 
extraction time, 15:1 mL/g liquid–solid ratio, and 0.6% (w/v) ammonium oxalate concentration. These values 
were utilized for subsequent experiments using the Box–Behnken Design (BBD).

Optimization of the extraction parameters by RSM.  As a collection of mathematical and statisti-
cal technique, the BBD could examine the factors (A: extraction time, B: liquid–solid ratio, and C: ammonium 
oxalate concentration) effect on responses (pectin extraction yield) and it was applied to process optimization24. 
Table 1 showed the coded and true value of the extraction variables, the model predicted, and experimentally 
determined response. According to the data in this table, pectin extraction yield ranged between 1.03 and 7.86%.

ANOVA was performed to check the predictive nature of the model, the significance level of each variable 
and interaction effects23. As shown in Table 1, The F-value and P-value of lack-of-fit in the regression model were 
0.27 and 0.8477, respectively, which indicated that the lack-of-fit was insignificantly relative to the pure error and 
confirmed the validity of the model27. In the regression model, the R2 values of 0.9885 indicated that the fitted 
model can explain 98.85% of the variations. The adjusted determination coefficients (RAdj

2 = 0.9737) values also 
confirmed that the model was acceptable in terms of experimental errors and reliable for the prediction of the 
experimental yield. The order of the effect of three independent variables was B > C > A, which indicated that 
liquid–solid ratio (B) had the largest effect (P < 0.0001) on SFHP yield. The interaction terms of extraction time 
with liquid–solid ratio (AB) and extraction time with ratio of liquid–solid (AC) also showed significant effects 
(P < 0.05) on SFHP yield. Multiple regression analysis was performed on the experimentally obtained data using 
the Design-Expert software, and a second-order polynomial equation (Eq. 1) with significant fit (P < 0.0001) 
and non-significant lack-of-fit (P > 0.05) was successfully constructed to express the interactions effect of the 
extraction variables and the response.

where Y is the SFHP yield (%), and A, B, and C are the coded values of the extraction time (h), and liquid–solid 
ratio (mL/g), and ammonium oxalate concentration (%), respectively.

Figure 2 showed a graphical description of the two-dimensional (2D) contour and three-dimensional (3D) 
response surface maps generated by the software, which represented the influence of each factor on the predicted 
value, and the interaction between two arbitrary variables23.

(1)
Y(%) = 6.16+ 1.16A+ 1.57B+ 1.33C+ 0.74AB

+ 0.90AC+ 0.36BC− 0.93A2
− 1.68B2 − 0.89C2
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Figure 2 illustrated that an increase in the value of each independent variable in the studied range can sig-
nificantly increase the extraction yield. The effect of extraction time on pectin yield was investigated and results 
showed in Fig. 2a, b. The mentioned figures indicated that as the extraction time increased, so did the pectin 
yield. Meanwhile, the contours of 2D contour plot were elliptical, indicating that a significant interaction existed 

Figure 1.   Single factor analysis showing the effect of each independent variable (a time, b liquid–solid, c 
ammonium oxalate) on the yield of the SFHP.
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between the two dependent variables (AB, AC). As indicated by the data reported in Fig. 2c, the contour plot of 
the interaction between B and C was circular, which mean the interaction between B and C was not significant.

Analysis using Design-Expert 9.0 showed that the set of maximum predicted values for the optimal pectin 
yield was as follows: extraction time 1.34 h, liquid–solid ratio 15:1 mL/g, ammonium oxalate concentration 
0.76% (w/v) and the predicted maximum extraction rate 7.86 (g/100 g). In order to ensure that the predicted 
value did not deviate from the real experimental value, three extractions were performed using the predicted 
optimal extraction conditions, and 7.36 ± 0.4 (g/100 g) was obtained. This value was in good agreement with the 
value predicted by the model, indicating that the model can be safely used to optimize the extraction of pectin. 
It is worth noting that the yield of fresh sunflower pectin extracted by ammonium oxalate is higher than that of 
pectin extracted by subcritical water14.

Effect of the raw materials on the pectin color.  The color of pectin is a key quality parameter used 
in food and biological preparations20. The effect of raw material on color coordinates (L*, a*, b*, H*

ab, and C*), 
and total color difference (ΔE) were recorded in Table  2. The L* value represents the lightness of the color, 
ranging from 0 (black) to + 100 (white), while the a* value ranges from − 100 (green) to + 100 (red), and the b* 
value ranges from − 100 (blue) to + 100 (yellow)9. Compared with pectin from pectin from dry sunflower heads 
(DSHP), SFHP displayed a higher value for lightness (L*); SFHP also displayed similar brightness to sigma com-
mercial pectin. The ΔE value of DSHP was 30.83, indicating that the color of pectin from different raw material 
was significantly different (30.83 > 6.77), so color changes were visible to the naked eye20.

In fact, during the drying process of sunflower heads, various phenols were prone to browning or caramel 
browning12 and produced the oxidation products of colored phenolic compounds (OXP)28. In the other hand, 
the melanin produced by the oxidation of polysaccharides and proteins is water soluble and is tightly associ-
ated with the pectin extract, resulting in poor quality of pectin from dried sunflower heads. Therefore, pectin 
extracted from fresh sunflower heads by ammonium oxalate not only avoids the production of undesirable 
pigments, but also weakens the bonds between pectin and water-soluble colorants, effectively causing pectin to 
display a lighter color12.

Physicochemical properties of spray‑dried pectin (SP) and freeze‑dried pectin (FP).  Molecular 
weight.  Chemical composition and weight distribution of SP and FP were shown in Table 3. For pectin, the 
rheological behaviors and gelling properties significantly depend on the Mw

3. The Mw of FP (316 ± 3 kDa) was 
found to be slightly lower than that of SP (336 ± 3 kDa). However, no matter which drying method was used 
for drying pectin, the Mw of SFHP extracted by ammonium oxalate was larger than that of sunflower pectin 
extracted by ultrasound-assisted method46 or subcritical water method14.

Degree of methylesterification (DE).  For DE analysis, the deconvoluted spectra (1600–1800 cm−1) of SP and FP 
was shown on Fig. 3, where the bands at 1745–1750 and 1616–1634 cm−1 were respectively assigned to stretching 
vibrations of the esterified and ionized carboxyl groups of the pectin molecules29. Therefore, the DE value of SP 
and FP were calculated to be 39.2 ± 0.3% and 36.4 ± 0.2%, respectively, which indicated that the SP and FP should 
be categorized as LMP30. Results from a previous study19 pointed that the intensity of the absorbance or band 
area of the ester carbonyl groups (1730–1760 cm−1) increased with the increase in DE, while the intensity of the 
absorbance or band area of the free carboxylate groups (1650–1600 cm−1) increased as the DE value decreased.

Table 1.   ANOVA for the proposed model of SFHP extraction yield.

Source of variance DF Some of square Mean square F-value P value

Model 9 71.32 7.92 66.76 < 0.0001

A 1 10.83 10.83 91.28 < 0.0001

B 1 19.69 19.69 165.87 < 0.0001

C 1 14.10 14.10 118.78 < 0.0001

AB 1 2.19 2.19 18.45 0.0036

AC 1 3.35 3.35 27.45 0.0012

BC 1 0.53 0.53 4.43 0.0734

A2 1 3.62 3.62 30.48 0.0009

B2 1 11.84 11.84 99.77 < 0.0001

C2 1 3.33 3.33 28.07 0.0011

Residual 7 0.83 0.12 – –

Lack-of-Fit 3 0.14 0.046 0.27 0.8477

Pure error 4 0.69 0.17

Total 16 72.15

R2 0.9885

Adj R2 0.9737

Pred R2 0.9544
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GalA content.  According to recommendations of FAO31 (Food and Agriculture Organization) and European 
Union, the GalA content of pectin used as a food additive or pharmaceutical purpose should not be lower than 
65%32, and other research pointed the GalA content of pectin generally varied from 56 to 72.6%33. FP (76.2%) 
displayed a lower GalA content than SP (85.9%), even though both samples had been extracted in the same 
conditions, which emphasized the importance of the drying method with respect to the GalA content in the 
extracted pectin. Notably, the ash contents were similar between SP and FP.

Emulsifying properties.  In the emulsification process, short time stability was evaluated by centrifugation which 
reflected the ability of droplets to resist recoalescence34. As shown in Table 3, emulsions from SP showed better 
stability. Furthermore, SP exhibited extremely good centrifugation stability reaching 88.9% for ES1 and 71.6% 
for ES5. The difference may be due to freeze-drying caused degradation of pectin. In addition, some studies35 
have pointed out that the more hydrophobic groups in pectin, the higher its emulsifying ability. Pectin with a 
high degree of esterification had good emulsifying properties, which was consistent with the previous DE results.

The optical microscopy images of FP and SP were presented in Fig. 3. The emulsion formed with SP (Fig. 3C) 
showing larger droplet size than that formed with FP (Fig. 3B). Previous study37 pointed out that the size of the 
droplets determined the emulsification activity and can indicate the stability of the emulsion. The unadsorbed 
SP with high Mw led to an increased viscosity of the aqueous phase, which limited the droplet movement and 
preventing further flocculation or coalescence34.

Figure 2.   Response surface plots shows the significant mutual effects of extraction time (A), liquid–solid ratio 
(B), and ammonium oxalate concentration (C) on the yield of SFHP.
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Water‑holding capacity (WHC).  Under the same conditions, FP (91.4%) was easier to form gel and retained 
more water than SP (73.6%). Pectin gelation was formed by the calcium bridges which needed a certain propor-
tion of dissociated carboxyl groups, and adding a small amount of sucrose can avoid syneresis of the gel37. It 
has been reported that WHC may be due to the degradation of neutral sugar side chains in the hairy regions of 
pectin, which led to higher charge density and more opportunities to form ion junction regions36. Freeze-drying 
may caused degradation of pectin side chains, resulting in the more charge exposed, the easier ion junction 
region formed.

FT‑IR analysis of SP and FP.  In order to test the effect of drying method to the structure on pectin, FT-IR 
spectrometry data were collected (Fig. 4). The obvious absorption peak at 3447 cm−1 was caused by the stretch-
ing vibrations of O–H bound, and the stretching vibration of the C–H bond was represented by weak peak at 
2924 cm−120. It can be observed that there was slightly different about the intensity of the absorption peaks at 
1745 and 1628 cm−1 which ascribed to C=O stretching vibrations of the esterified carboxyl group (COOR) and 
ionized carboxyl group (COO−) respectively. The DE value has been reported to generally reflected in propor-
tion to the 1744 cm−1 peak. Hence, the characteristic absorption led to a speculation that the spray drying of the 
pectin decreased the DE value. The fingerprint region (1350–400 cm−1) may reflect some changes in the compo-
sition of the pectin monosaccharide. The absorption peaks around 1107 and 1016 cm−1 indicated that the sam-
ple contained glycosidic bonds and pyranoid rings, respectively38. In addition, the band around 609 cm−1 was 
attributed to C–C stretching vibration of pyranoid rings. The absorption of FP had an obviously decrease at 1107 
cm−1, 1016 cm−1 and 609 cm−139, which illustrated that the covalent bounds of pyranose monosaccharide were 
probably destroyed by the freeze-drying. Both pectin had very similar characteristic absorption peak position.

Crystallinity of SP and FP.  XRD was used to provide more structure information on the pectin (amor-
phous or crystalline)40. The XRD patterns of SP and FP were reported in the Fig. 5. The crystallinity of FP and SP 
was almost similar and mainly consisted of amorphous nature. However, the peak intensity for SP was slightly 
higher than for FP and several sharp and intense peaks as illustrated at 21.29°, 29.12°, and 38.22° (2θ) of SP. This 

Table 2.   Color parameters (L*, a*, b*, ΔE, H*
ab, C* (lightness, redness, yellowness, total color difference, hue 

angle, and chroma, respectively)) and visual aspect (pictures) of different pectin power.

Sigma commercial pectin SFHP DSHP

Visual aspect

   

L* 81.23 ± 0.25 75.88 ± 0.38 51.99 ± 0.52

a* 4.01 ± 0.07 4.14 ± 0.13 2.86 ± 0.24

b* 14.88 ± 0.17 10.73 ± 0.20 5.17 ± 0.38

H*ab 15.06 ± 0.12 21.11 ± 0.17 28.94 ± 0.42

C* 15.41 ± 0.18 11.50 ± 0.23 5.91 ± 0.45

ΔE* 6.77 ± 0.21 30.83 ± 0.48

Table 3.   Chemical and physicochemical properties of FP and SP extracted under optimal extraction 
conditions.

Chemical composition FP SP

DE (%) 36.4 ± 0.2 39.2 ± 0.3

GalA content (% w/w) 76.2 ± 0.1 85.9 ± 0.2

Ash content (% w/w) 2.1 ± 0.2 1.9 ± 0.1

Es1 (% w/w) 75.3 ± 0.4 88.9 ± 0.2

Es5 (% w/w) 49.4 ± 0.3 71.6 ± 0.1

pH 2.68 2.76

WHC (% w/w) 91.4 ± 0.5 73.6 ± 0.6

Molecular weight distribution

Mn (kDa) 301 ± 4 330 ± 2

Mw (kDa) 316 ± 3 336 ± 3

Mw/Mn 1.05 1.01
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evidence might indicate that the crystallinity of some small portions in SP structure. According to the previ-
ous research, spray-drying could lead to better mechanical performance41. Some researchers illustrated that the 
decrease in molecular weight and the changes of physical structure resulted in the variation in XRD patterns40. 
Therefore, it can be noted that extraction by ammonium oxalate and freeze-drying treatment changed the physi-
cal structure and the crystallinity of pectin.

Radical‑scavenging ability of SP and FP.  DPPH radical scavenging of pectin.  The DPPH radical scav-
enging, as one of the most practical tests for determination of the antioxidant activity, was applied to estimate the 
antioxidant activity of SP and FP. As shown in Fig. 6, with increasing concentration (1–4 mg/mL), the DPPH free 
radical-scavenging activities of SP and FP were positively correlated with concentrations; moreover, the removal 
rate of SP was larger than FP. For polysaccharides, the transfer of the hydroxyl groups and electrons from pectin 
(ROH or RO−) to DPPH radicals is the main mechanism for the termination of the free radical chain reaction 
and the scavenging of DPPH radicals. Previous reports pointed that a relatively low molecular weight and a high 

Figure 3.   Deconvoluted spectral region of FP and SP (A); microscopic images of FP (B) and SP (C).
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GalA content in pectin appeared to be associated with high antioxidant activity42, a general trend that is consist-
ent with the HPSEC and GalA content results on SP and FP. With the previously reported27,43, this result could 
be due to the freeze-drying treatment reduced the GalA content.

ABTS radical‑scavenging activity of pectin.  In order to further verify the antioxidant activities of the SP and 
FP, the ability of SP and FP to scavenge ABTS free radicals was compared (as shown in Fig. 7). The scavenging 
activity of SP and FP on ABTS free radicals significantly increased as the concentration of samples increased 
from 1 to 3 mg/mL, then decreased at 3 mg/mL. The removal rate of SP was larger than FP when the concentra-
tion is between 1 to 3 mg/mL. The antioxidant activity of polysaccharides has been reported to be considerably 
affected by Mw, conformation, and monosaccharide composition27. In other words, the observe could be related 
to that hydrolysis of FP reduced proton donation from hydroxyl and uronyl group of the monosaccharide units, 
carboxyl group of galacturonic acid units and acetyl groups16.

Materials and methods
Raw materials and regents.  Fresh sunflower heads (water content 72.5–83%) were collected from Tai-
yuan, China. Ammonium oxalate, ethanol (99.8%) and acetonitrile (HPLC grade) were provided by Kaitong 
(Tianjin, China). Sodium nitrate and potassium bromide were provided by Damao (Tianjin, China). d-Galac-
turonic acid, trifluoroacetic acid, sodium hydroxide, hydrochloric acid, and phosphoric acid were provided 
by Aladdin (Shanghai, China). Commercial apple pectin (93,854) purchased from Sigma-Aldrich (Shanghai, 
China).

Figure 4.   FT-IR spectra of FP (A) and SP (B).

Figure 5.   XRD of the FP (A) and SP (B).
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Extraction of sunflower heads pectin.  According to GB25533-201044, the pretreatment method of fresh 
sunflower heads was developed by Ma et al.14. The fresh sunflower heads blocks were weighed with electronic 
scale (YP-10001, Shengke Instrument Equipment Co., Shanghai, China) and boiled in a constant temperature 
(above 95 °C) for 15–20 min, then filtered with 100 mesh gauze. High temperature can damage the structure of 
the pectin and lead to degradation. Therefore, 85 °C was selected in the subsequent investigations. Ammonium 
oxalate solution was added to filter cake under the temperature at 85 °C. Subsequently, the extracted liquid was 
concentrated and mixed with ethanol (95%) at 1:3 to prompt pectin precipitate, and the obtained mixture was 
equilibrated for 24 h. In the next step, the supernatant was separated by centrifugation (1000×g, 15 min, GT16-3, 
Era Beili Centrifuge Co., Beijing, China), then washed with ethanol (three times) and filter with 300–500 mesh 
nylon cloth to obtain pectin. After purification, the wet pectin was dried by electric heating blast drying oven 
(DHG-9023A, Yiheng Instrument Science Co., Ltd., Shanghai, China). The pectin yield can be expressed as Eq. 
(2):

where m1 is the mass of pectin; m2 is the mass of flesh sunflower heads blocks.

Single‑factor experiment.  The liquid–solid ratio (2:1, 5:1, 10:1, 15:1, 20:1, 25:1 mL/g), concentration of 
ammonium oxalate (0.2%, 0.4%, 0.6%, 0.8%, 1.0%), and extraction time (0.5, 1.0, 1.5, 2.0, 2.5, 3.0 h) on the 
extraction rate of pectin was investigated. All experiments were conducted in triplicate.

Response surface methodology.  Based on the single-factor experiment, the best value of each factor was 
obtained when the pectin yield is the highest. The BBD (Table 4) with 3 factors (concentration of ammonium 

(2)Pectin(%) =
m1

m2
× 100

Figure 6.   Effects of pectin on DPPH radical-scavenging activity.

Figure 7.   Effects of pectin on ABTS radical-scavenging activity.
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oxalate, liquid–solid ratio, and extraction time) and a three-level response surface were implemented to optimize 
the extraction of SFHP. Using random combinations of independent variables to estimate experimental error, 
a total of 17 experiments were generated, including 5 center points and 12 factor points. The Design Expert 9.0 
software was employed to analyze the result through maintaining two variables at central levels and constructing 
3D plots of two factors.

Color measurement.  The color of pectin sample was measured by a colorimeter (SC-10, 3nh, Guangdong 
Province, China). The colors of pectin samples extracted from dry and fresh sunflower heads under the optimal 
extraction conditions were compared with the color of sigma commercial pectin.

Drying of pectin
After filtering and washing, the SFHP extracted by the optimal condition was dried by freeze-drying and spray-
drying respectively. FP and SP were ultimately obtained.

Freeze drying.  A freeze dryer (CTFD-10P, Yonghe Chuangxin Electronic Technology Co., Ltd., Qingdao, 
China) was used to freeze dry the pectin solution for 8 h with the temperature ranged from − 30 to 20°C45.

Spray drying.  The filtered pectin was dried with a desktop spray dryer (YC-015, Pilotech, Shanghai, China). 
The spray conditions were as follows: the inlet temperature was 180 °C, the outlet temperature was 70 °C and the 
feed rate was 18 mL/min7.

Physicochemical and structural characteristics of FP and SP
Molecular weight distribution.  The Mw, number-average molecular weight (Mn), and distribution of SP 
and FP samples were determined by HPSEC combined ACQUITY APC columns with ACQUITY® Advanced 
Polymer Chromatography™ (APC™) system (Waters Technology Co., Shanghai, China). Different molecular 
weight (2.8, 20.4, 62.9, 111.9, 212.5, 310.2, and 390 kDa) of dextran standards was used as a calibration curve.

GalA content.  The GalA content of pectin was determined by method of Ezzat et al46. Released GalA was 
derivatized using 1-phenyl-3-methyl-5-pyrazolone (Karamar Ziyi Reagent Factory, Shanghai, China) and the 
derivatives were analyzed by RIGOL L3000 HPLC (Waters Corporation, Milford, MA, USA) with a Kromasil 
C18 column (250 mm × 4.6 mm, 5 μm) (Akzo Nobel Company, Sweden) and using d-galacturonic acid (> 97%, 
Aladdin, Shanghai, China) as standard.

Ash content.  According to the method of Kazemi et al.43 the ash content of the extracted pectin was deter-
mined by incinerating 1 g of pectin in furnace at 550 °C for 6 h.

Emulsion stability.  1% pectin solutions and corn oil (9:1 w/w) were mixed to prepare an emulsion. The 
mixtures were homogenized with a high-speed dispersion machiner (XHF-DY, Scientz Biological Technology 
Co., Ltd., China) at 3000 rpm for 3 times (1 min each time). The short-term stability of the prepared emulsion 

Table 4.   Box–Behnken Design matrix with measured and predicted values.

Run Extraction time (h)
Liquid–solid ratio 
(mL/g)

Mass fraction of 
ammonium oxalate (%)

Experimental pectin 
yield (%)

Predicted pectin yield 
(%)

1 1.5 15:1 0.6 5.67 6.16

2 2.0 15:1 0.8 7.86 7.74

3 1.0 15:1 0.8 3.47 3.44

4 1.5 20:1 0.8 6.89 6.78

5 1.5 10:1 0.4 1.03 1.14

6 1.5 15:1 0.6 5.76 6.11

7 1.5 15:1 0.6 6.04 6.11

8 1.5 15:1 0.6 6.27 6.11

9 1.0 10:1 0.6 1.72 1.48

10 1.5 10:1 0.8 2.29 2.99

11 1.0 20:1 0.6 2.69 3.23

12 2.0 10:1 0.6 2.31 2.17

13 2.0 15:1 0.4 3.42 3.45

14 1.5 15:1 0.6 6.83 6.11

15 1.0 15:1 0.4 2.64 2.75

16 2.0 10:1 0.6 6.88 7.14

17 1.5 10:1 0.4 3.49 3.22
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was measured by centrifugation. The emulsion was centrifuged for 1 min and 5 min with a high-speed centrifuge 
at a speed of 3000 rpm and a temperature of 20 °C respectively34. The height of the emulsified layer was recorded 
to calculate the emulsification stability of the pectin emulsion (Eq. 3).

where H0 is the height of emulsified layer without centrifugation; H1 and H5 are the height of emulsified layer 
centrifuged for 1 min and 5 min respectively.

Light microscopy.  The microstructures of the prepared emulsions were photographed immediately after 
the preparation by using a 40× objective lens on a BK6000 inverted microscope (Optec Co. Ltd., Chongqing, 
China), equipped with a digital microscope image analysis and processing software.

Water‑holding capacity (WHC).  The preparation of pectin gel was made according to the method of 
Wan47 with slight modifications. Pectin (1%, w/v) was dissolved in water. The pH was measured adjusted to 4.0 
with 1 M NaOH, then sucrose (20 g/100 mL) and CaCl2 (40 mg/g, Ca2+/Pectin) were added under heating and 
stirring. A certain initial mass (W1) of gel system was add to centrifuge tube, and centrifuged at 4000 rpm for 20 
min. After exudative water was drained, the gel mixture was weighted (W2). All the samples were measured in 
triplicate. The WHC can be expressed as Eq. (4).

where W0 is the weight of the empty centrifuge tube, W1 is the weight of the centrifuge tube with gel before 
centrifugation; W2 is the weight of the centrifuge tube after absorbing the water.

FT‑IR spectroscopy.  FT-IR (INVENIO, Invenio Bruker, Germany) was used to characterize the structure 
of pectin. FT–IR spectra were recorded at a resolution of 4 cm−1 with 16 scans ranging from 400 to 4000 cm−1. 
The DE of pectin was analyzed by the previous method with FT-IR29. The ratio of absorption bond at 1745 cm−1 
over the sum of the bonds at 1745 and 1628 cm−1 was related to the DE value of pectin (Eq. 5)9.

XRD.  Analysis of the pectin powder samples was performed using an X-ray diffractometer (ARL™ EQUINOX 
100, Thermo Fisher Scientific, China). Scanning analysis of pectin powder samples from 5° to 60° diffraction 
angle (2θ) (step size 5° 2θ, time per step: 1 min).

Antioxidant activities analysis of SP and FP
DPPH radical‑scavenging activity.  The DPPH radical-scavenging activity of samples was determined by 
the method of Liu et al.23 with some modifications. A certain amount of DPPH radical was dissolved in ethanol 
at the concentration of 0.1 mg/mL. The pectin sample was dissolved in distilled water to produce solutions of 
different concentrations, to produce solutions of different concentrations. To each of these pectin solutions was 
added 3.0 mL of the described DPPH solution, and the resulting solution was shaken immediately and kept at 
room temperature and in the dark for 30 min. The absorbance of supernatant was measured against a blank 
(ethanol instead of the sample and DPPH solution) at 517 nm. The DPPH radical-scavenging activity was meas-
ured by the following Eq. (6):

ABTS radical‑scavenging activity.  For this experiment, ABTS diammonium salt (5 mL, 7 mmol/L) and 
potassium persulfate (5 mL, 2.45 mmol/L) were mixed to form ABTS free radicals and the resulting solution was 
incubated at 25 °C overnight in the dark. To attain the absorbance of 0.70 ± 0.05 at 734 nm, the dilution of ABTS 
solution was performed by adding PBS buffer solution. Samples were diluted to different concentration (1–5 mg/
mL) and then 0.5 mL of the solution were added to 2.5 mL of ABTS solution48. All measurements reacted for 3 
min, and were repeated three times. The free radical scavenging rate of ABTS free radicals was calculated by the 
following Eq. (7):

(3)
Es1(%) =

H1

H0
× 100

Es5(%) =
H5

H0
× 100

(4)WHC (% ) =
W2

W1
× 100

(5)DE (%) =
A1745

A1745 + A1628
× 100

(6)DPPH radical - scavenging activity (%) =
Abscontrol − Abssample

Abscontrol
× 100

(7)ABTS radical - scavenging activity (% ) =
Abscontrol - Abssample

Abscontrol
× 100
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Conclusion
The process variables for ammonium oxalate extraction of fresh sunflower pectin were optimized by RSM, and 
finally light-colored LMP was directly obtained. The optimum extraction conditions were determined to be 
flowing: extraction time, 1.34 h; liquid–solid ratio, 15:1 mL/g; and ammonium oxalate concentration, 0.76% 
(w/v), which afforded a pectin yield of 7.36 ± 0.4%. The results of characterization shown freeze-drying dam-
aged the molecular weight and structure of LMP, and led to unstable emulsification and oxidation resistance 
of FP. This research opened up a new way for pectin extraction, and an ideal drying process can be selected for 
different applications.
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