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Hanyi Wang

Public health emergency decisions are explored to ensure the emergency response measures in an 
environment where various emergencies occur frequently. An emergency decision is essentially a 
multi-criteria risk decision-making problem. The feasibility of applying prospect theory to emergency 
decisions is analyzed, and how psychological behaviors of decision-makers impact decision-
making results are quantified. On this basis, the cognitive process of public health emergencies 
is investigated based on the rough set theory. A Decision Rule Extraction Algorithm (denoted as 
A-DRE) that considers attribute costs is proposed, which is then applied for attribute reduction and 
rule extraction on emergency datasets. In this way, decision-makers can obtain reduced decision 
table attributes quickly. Considering that emergency decisions require the participation of multiple 
departments, a framework is constructed to solve multi-department emergency decisions. The 
technical characteristics of the blockchain are in line with the requirements of decentralization 
and multi-party participation in emergency management. The core framework of the public health 
emergency management system-plan, legal system, mechanism, and system can play an important 
role. When δ=0.10 , the classification accuracy under the K-Nearest Neighbor (KNN) classifier reaches 
73.5%. When δ=0.15 , the classification accuracy under the Support Vector Machines (SVM) classifier 
reaches 86.4%. It can effectively improve China’s public health emergency management system and 
improve the efficiency of emergency management. By taking Coronavirus Disease 2019 (COVID-
19) as an example, the weight and prospect value functions of different decision-maker attributes 
are constructed based on prospect theory. The optimal rescue plan is finally determined. A-DRE 
can consider the cost of each attribute in the decision table and the ability to classify it correctly; 
moreover, it can reduce the attributes and extract the rules on the COVID-19 dataset, suitable for 
decision-makers’ situation face once an emergency occurs. The emergency decision approach based 
on rough set attribute reduction and prospect theory can acquire practical decision-making rules while 
considering the different risk preferences of decision-makers facing different decision-making results, 
which is significant for the rapid development of public health emergency assistance and disaster 
relief.

Coronavirus Disease 2019 (COVID-19) is a major public health emergency with the fastest spread, the widest 
range of infections, and the most difficult prevention and control since founding the People’s Republic of China1. 
It poses a major challenge to China’s medical and healthcare system and significantly affects China’s economy and 
society. The National Natural Science Foundation of China has launched a special project to provide decision-
making support and countermeasures for major public health emergencies, such as scientific prevention and 
control and response to COVID-19, to reduce the impact of diseases on the national economy and society. At 
present, COVID-19 continues to spread globally, posing a major challenge to the global medical and healthcare 
system while promoting the reform of the global governance system2–4. The World Health Organization (WHO) 
has held its seventh conference of the COVID-19 Emergency Committee on April 15, 2021, to assess the global 
situation, provide corresponding suggestions, and discuss the vaccines and new variants of COVID-19 investigate 
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the healthcare measures of international travels5. The committee also recommends strengthening epidemiologi-
cal and virological surveillance, encouraging genetic sequencing of COVID-19, and sharing the research data.

Based on the spread of COVID-19 this time, establishing a sound local and national response mechanism for 
public health emergencies is the key to controlling the further spread of public health emergencies and reducing 
their losses. Early detection, early reporting, early investigation, and early response are the basic principles of 
handling public health emergencies6,7. Any behavior that blocks public health emergency reporting channels and 
intercepts information about emergencies will fundamentally shake the public health emergency response mecha-
nism. The attributes of public health emergency have the characteristics of dynamic derivation and uncertainty, 
such as natural disasters, infectious diseases, mass diseases, and major food poisoning. Hence, while formulat-
ing an emergency decision scheme, combining events such as multi-attribute, multi-scenario, and multi-stage 
factors is necessary to construct the corresponding decision-making scheme in each stage. The multi-stage and 
the multi-department emergency decision can be abstractly constructed into a collaborative emergency decision 
model to integrate the opinions of different departments to deal with dynamic events. Psychological behavior 
plays a vital role during decision-making. As a psychological theory, prospect theory believes that everyone will 
have different attitudes towards risk based on different initial conditions8,9. Zhang et al.10 considered the psy-
chological behavior of decision-makers and applied prospect theory to emergency treatment. This theory could 
produce better solutions for different emergencies. Blockchain can fully assess risks and improve emergency 
plans to improve the national public health emergency management system. It can improve the comprehensive-
ness and scientific nature of legislative evaluation, jointly build alliance chains with law enforcement agencies to 
realize automatic supervision on the chain, and keep evidence of behavior on the chain, leaving traces in the law 
enforcement process. Blockchain can further improve the emergency management mechanism to ensure that 
there are facts for monitoring in advance, measures during the event have a basis, and the system after the event 
is improved. This provides a scientific basis for deepening system reform. Khurshid11 described how blockchain 
offers a solution to data-related trust problems with its distributed trust network and cryptography-based security. 
Blockchain can positively change the nature of trust, value sharing, and transactions by relying on a distributed, 
robust, secure, privacy-preserving, and immutable record-keeping framework.

In the existing research, the formulation of emergency decision-making for public health emergencies needs 
to combine many factors of multi-attribute, multi-scenario and multi-stage. But there is a lack of discussion 
about the security of decisions made by various departments. The technical characteristics of the blockchain are 
considered to meet the requirements of decentralized and multi-party participation in emergency management. 
Therefore, blockchain technology can play an essential role in the core framework plan, legal system, mechanism, 
and public health emergency management system. Moreover, factors that cause emergencies are very complex. 
Due to huge amounts of data, diverse information types, and lack of information, the cost should be considered 
when acquiring corresponding knowledge to effectively deal with various ambiguities and missing information. 
Hence, attribute reduction and rule extraction are first applied to explore an event’s knowledge recognition pro-
cess based on the rough set theory. Second, a multi-attribute emergency decision model is constructed based 
on prospect theory to quantify the influence of decision-maker’s psychological behaviors on decision-making 
results. Third, COVID-19 is taken as an example for empirical analysis to verify the feasibility of the emergency 
response mechanism. Prospect theory is used to calculate the combined cumulative prospect value of each 
alternative. Ultimately, the best contingency plan can be selected. The research results are of great significance 
for decision-makers to quickly collect knowledge and respond to similar emergencies and provide a scientific 
basis for preventing and controlling public health emergencies.

Emergency decision mechanism for public health emergency
Dynamic scenario deduction for public health emergency.  Constructing a major public emergency 
scenario shall analyze the evolution law, sort out the emergency tasks, evaluate the emergency capability of the 
major emergencies that may occur and the expected risks, and improve the scheme and strengthen the emer-
gency preparedness accordingly to enhance the emergency capability. Usually, the evolution of an emergency 
scenario is associated with constituent elements of the scenario and the relationship among these elements, 
which is a dynamic process12. The elements include scenario state (S), the external environment (E), emer-
gency measures (M), and emergency resources (R). The emergency deduction process is: in the current S, the 
scenario state will change under the influence of E, the constraints of R, and the intervention of M, switching 
from S to S1 to complete a complete scenario evolution process. The time when each scenario state occurs is 
defined as t0, t1, t2...tn to construct the corresponding emergency scenario evolution process, as shown in Fig. 1. 
Due to changes in the external environment and the adjustment of emergency resource constraints, the emer-
gency measures taken at different stages are different, making the emergency scenario evolution unknown and 
unpredictable13–15. Hence, compared with the current scenario state, the next scenario state has a variety of pos-
sibilities until the last time tn at which the emergency scenario disappears. At this time, the evolution process 
ends, indicating that the entire emergency process is over.

According to the above analysis, the scenario evolution of emergencies is a dynamic and changeable continu-
ous process, so that the corresponding emergency decision should also be based on the current scenario state. 
The emergency scenario can be changed into the next state as soon as possible by taking appropriate measures. 
Generally, to ensure the rationality of the decision, decision-makers shall evaluate the effect of the previous emer-
gency before deciding to determine whether the emergency goal is reached. If the emergency is not controlled or 
even deteriorates in the last emergency process, the next decision will be made to adjust the scheme in a targeted 
manner so that the emergency evolves toward an optimistic development path.
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A‑DRE based on rough set attribute reduction.  Public health emergency has key characteristics such 
as instantaneity, uncertainty, and lack of information. Its data are often complex and changeable, bringing seri-
ous obstacles to data acquisition and analysis16. Only through attribute reduction on public health emergency 
data and supplementing missing data can the data features be extracted accurately17. In turn, data can be pro-
cessed in a targeted manner, helping decision-makers formulate emergency schemes quickly efficiently. The 
rough set theory in mathematical tools is chosen in the present work to solve the uncertainty problem. The 
advantage of the rough set is that, besides the dataset, the uncertainty of the problem can be described and dealt 
with objectively without any prior knowledge.

Suppose that U is a non-empty finite set of objects of interest, that is, the domain of discourse. Any subset of 
the domain U is called abstract knowledge about U, and each concept in U represents an information particle. The 
rough set theory discusses the knowledge that can be divided or covered on U. While solving actual problems, 
what is dealt with is not a single division on U but a family of divisions to form a knowledge base K ∈ (U ,R) . 
Two subsets can be defined for each subset X and an equivalent relation R, representing the lower and upper 
approximation sets of X, respectively:

Suppose that a cover on U is C; in that case, the corresponding minimum and maximum descriptions and 
neighborhoods can be defined as:

The essence of attribute reduction on a knowledge base is to ensure the unchanged classification ability of the 
decision table. It deletes the non-principal knowledge and ultimately retains the key condition attributes. The 
original rough set theory is based on the equivalence relation model, restricting the range of data processing. 
In this case, the coverage rough set theory is proposed, and the approach to process the relationships among 
attributes is shifted to the coverage mode. Hence, the attribute reduction problem can be analyzed based on the 
coverage rough set. Suppose that � = {C1,C2...Cn} represents the family coverage on U, and the coverage deci-
sion table is S = (U ,�,D) . In that case, the ability of a coverage Ci to correctly classify the objects in U based on 
the decision attribute D is the positive domain of S, which can be described as:

Through association rule mining, the internal connection between data can be discovered effectively, and 
the knowledge that is conducive to correct decision-making can be output. However, traditional association 
rule mining cannot handle datasets with missing information and redundant data regarding emergencies. In 
contrast, the rough set theory is more targeted for emergency knowledge acquisition18–20. Rules represent the 
connection between large amounts of data. The higher the support of the decision rules, the more samples are 
covered, indicating the higher the reliability of the decision rules. The coverage of a decision rule refers to the 

(1)RX = ∪{Y ∈ U/R|Y ⊆ X}

(2)RX = ∪{Y ∈ U/R|Y ∩ X �= ∅}
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Figure 1.   The evolution process of the emergency scenario.
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proportion of the object in the corresponding decision category. The higher the coverage, the greater the influ-
ence of the rule’s antecedents on the subsequent. A set of ordered rules is also called a decision table. The test 
record is classified by the rule covering the highest rank of the record, avoiding the class conflict caused by the 
prediction of multiple classification rules.

A coverage decision table is expressed as (U ,�,D) , U = {x1, x2...xn} , S = (U ,�,D) = {Ck ∈ �|∃Xi ∈ U/Ds.t.} 
is the effective approximation set off (U ,�,D) , where Ck is the effective approximation element. There are the 
following relationships for any xi ∈ ∪S(U ,�,D):

In (7) and (8), r(xi) refers to the set of xi , and R(U ,�,D) is the major family of the decision table (U ,�,D).
The attribute reduction of the decision table can be achieved through the family method based on the approxi-

mate space coverage rough set model. The specific reduction process will be explained through the following 
example. If a decision table S =

(

U ,A,V , f
)

 is known, the corresponding attribute representation will be symbolic 
data, where U = {x1, x2, x3, x4, x5, x6} is a set of objects, A = {a1, a2, a3, a4, a5} is a set of objects, and D = {d} is 
a decision attribute. According to the method of information granule generation, the decision table is processed, 
and each attribute can be formed into a corresponding coverage, which can be expressed as:

The set that effectively approximates each object xi in the set S = (U ,�,D) is:

The family of decision table S =
(

U ,A,V , f
)

 can be expressed as:

The function corresponding to the coverage decision table S =
(

U ,A,V , f
)

 can be expressed as:

At this time, the attribute reduction form of decision S =
(

U ,A,V , f
)

 is:

A Decision Rule Extraction Algorithm (A-DRE) considering attribute cost is proposed based on the family 
method in the present work. According to the family theory, this algorithm first obtains the family of the deci-
sion table and then transforms it into a hypergraph. Next, it uses the greedy algorithm to obtain the minimum 
vertex cover, and finally, obtains the attribute reduction result of the decision table. While applying the greedy 
algorithm, a mathematical model is first established to describe the problem, and the problem to be solved is 
divided into several sub-problems. Then, each sub-problem is solved to obtain the optimal local solution of the 
sub-problem. Eventually, the optimal local solution of the sub-problem is combined into a solution to the original 
problem. The basic framework of A-DRE is demonstrated in Fig. 2.

(7)r(xi) = {C ∈ �|∃Ck ∈ S(U ,�,D)s.t. xi ∈ Ck ∈ C}

(8)R(U ,�,D) = {r(xi)|xi ∈ �}

(9)C1 = {{x1, x2}, {x3, x4}, {x5, x6}}

(10)C2 = {{x1, x2, x4}, {x3}, {x1, x2, x4, x5}, {x4, x5}, {x6}}

(11)C3 = {{x1}, {x2, x3, x4}, {x5, x6}}

(12)C4 = {{x1, x2, x4}, {x1, x2, x3, x4}, {x3, x4, x5, x6}, {x3, x5, x6}}

(13)C5 = {{x1, x2}, {x1, x3}, {x1, x2, x3}, {x4}, {x5, x6}}

(14)U/D = {{x1, x2, x3}, {x4, x5, x6}}

(15)r(x1) = {C1,C3,C5}

(16)r(x2) = {C1,C5}

(17)r(x3) = {C2,C5}

(18)r(x4) = {C2,C5}

(19)r(x5) = {C1,C2,C3,C5}

(20)r(x6) = {C1,C2,C3,C5}

(21)R(U ,�,D) = {{C1,C3,C5}, {C1,C5}, {C2,C5}, {C1,C2,C3,C5}}

(22)
f (U ,�,D) =(C1 ∨ C3 ∨ C5) ∧ (C1 ∨ C5) ∧ (C2 ∨ C5)∧

(C1 ∨ C2 ∨ C3 ∨ C5) = (C1 ∧ C2) ∨ C5

(23)red(�) = {{C1,C2},C5}
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Multi‑attribute emergency decision model based on prospect theory.  From a psychological per-
spective, when making decisions under uncertain conditions, decision-makers may preset a reference standard 
in their minds21. The connotation of prospect theory is the gap between the decision result and the expected 
result, not just the result itself. The mathematical function when people measure the gains and losses of decision-
making is expressed as:

In (24), xi represents all possible results, pi refers to the probability of these results, v, as a value function, 
represents the relative value of different results in the minds of decision-makers. Figure 3 illustrates the trend of 
the value function. The asymmetry of the value function suggests that the absolute value of a loss result is greater 
than the absolute value of the profit result.

An example is the specific decision-making process, including three stages of editing, evaluation, and 
selection22–24. Editing is a process in which decision-makers set the criteria for gains and losses. If the judgment 
result is better than the reference point, the result will be defined as profit. Evaluation is the process of calculating 
the value of the prospect using the value function, which reflects the subjective value of the result. In the final 
selection process, the decision-maker compares the prospect values of all schemes and takes the scheme with the 
largest prospect value as the final decision result. The decision-making process embodies the characteristics of 
decision-makers risk appetite and gain–loss sensitivity in an uncertain environment. The value function v(�xi) 
and the probability weight function π

(

pi
)

 jointly determine the prospect value V. The model can be expressed as:

(24)U = w
(

p1
)

v(x1)+ w
(

p2
)

v(x2)+ ...w
(

pn
)

v(xn)

(25)V =

k
∑

i=1

π
(

pi
)

v(�xi)

(26)v(�xi) =

{

v(�xi)
α , �xi ≥ 0

−�(−�xi)
β , �xi < 0
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Figure 2.   Basic procedures of A-DRE.
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Figure 3.   Trend of the value function.
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In (25)–(28), v represents the value function, π represents the probability weight function, α,β assess the 
degree of the risk appetite of decision-makers, � indicates the degree of decision-makers aversion to loss, π+

(

p
)

 
and π−

(

p
)

 represent the probability weights of gain and loss, χ and δ are the risk level at the time of gain and 
the risk attitude at the time of loss.

A processing scheme is given for the specific execution process after decision-making regarding each state 
of a public health emergency. These processes can be descriptive qualitative information or formal quantitative 
analysis information. The decision-making model needs to process the scheme information in intervals to form 
the gray data subordination range value based on the attribute state as the amount of data during decision-
making. In this way, the final decision result becomes quantified and rational. The gray emergency decision 
matrix of each rule property is shown in Table 1.

Under an actual public health emergency, the timelier the emergency response is, the better it can prevent 
the loss from spreading25. In the face of major public health emergencies, the probability of an emergency state 
is usually raised by a group of decision-makers26,27. The subjective probability weight of the decision-maker is 
obtained based on the probability weight function, which represents the psychological perception of each event 
state to the decision-maker. Gathering the information on the comprehensive prospect value matrix of differ-
ent decision-makers is a vital link to attain the comprehensive opinions of the group. Ideally, if the individual 
matrix information is completely consistent with the group’s collective information, the decision-making group 
has completely accepted the opinions of the decision-maker. The equation to calculate the similarity between 
the group consensus matrix V∗ and the k-th decision-maker matrix Vk

ij is as follows:

The group decision information integrates the wisdom of the decision-makers; however, since the determina-
tion of each scheme is based on different criteria, it is necessary to weigh the comprehensive prospect value of 
the final decision scheme. The optimal set matrix V∗∗ =

(

V∗∗
ij

)

m×n
 of the group can be obtained by weighting 

the comprehensive prospect value of each decision-maker’s decision scheme, and finally, the comprehensive 
prospect value matrix is:

(27)π+
(

p
)

=
pχ

[

pχ +
(

1− p
)χ ]1/χ

(28)π−
(

p
)

=
pδ

[

pδ +
(

1− p
)δ
]1/δ

(29)dk

(

Vk ,V∗
)

=

m
∑

i=1

n
∑

j=1

d
(

Vk
ij ,V

∗
ij

)

(30)V∗∗ =
�

V∗∗
ij

�

m×n
=













�

V∗∗L
11 ,V∗∗U

11

��

V∗∗L
12 ,V∗∗U

12

�

...
�

V∗∗L
1n ,V∗∗U

1n

�

�

V∗∗L
21 ,V∗∗U

21

��

V∗∗L
22 ,V∗∗U

22

�

...
�

V∗∗L
2n ,V∗∗U

2n

�

...
�

V∗∗L
m1 ,V∗∗U

m1

��

V∗∗L
m2 ,V∗∗U

m2

�

...
�

V∗∗L
mn ,V∗∗U

mn

�













Table 1.   Gray emergency decision matrix of each rule attribute.
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Framework of multi‑department emergency decision.  The feature of the emergency decision is 
adjusting the emergency scheme in time according to the changes in the environment. It is non-procedural 
decision-making, whose process must highlight timeliness28. The public health emergency requires multiple 
departments to participate in the emergency process and gather expert knowledge in multiple fields. After the 
multi-department decision-making gets summarized, the overall optimization is performed for effective group 
decision-making. Whether the selection of emergency decision indicators is appropriate directly affects the eval-
uation of the final decision scheme29,30. Hence, the selection of indicators should grasp the principles of system-
aticness, measurability, comparability, and effectiveness. Combining the emergency decision scheme between 
multi-department should consider not only the individual emergency cost and emergency effect but also the 
collaborative cost and synergistic effect of the multi-department emergency decision scheme. The complemen-
tarity of resources between departments, the convenience of communication, and the degree of personnel col-
laboration will affect the final emergency response during the coordinated decision-making between different 
departments. The selection process of the multi-department emergency decision is described as the structure in 
Fig. 4. In Fig. 4, Xk

i  represents the i-th emergency decision scheme of department k.

Algorithm analysis and application instance.  Five public datasets in the University of California 
Irvine (UCI) database are selected as test data to validate the performance of the proposed A-DRE based on the 
rough set theory, namely wbpc, wdbc, segment, inequality, and texture. Two methods based on Neighborhood 
Rough Set (NRS) and Information Entropy (HANDI) are selected for comparison, and both Support Vector 
Machine (SVM) and Decision Tree (ID3) classifiers are employed to measure the classification accuracy of the 
data. The operating system of the equipment is Windows 7, the processor is Intel Core i5, and the memory is 
8 GB. The experiment and data analysis is completed on MATLAB.

Since the first case was discovered in Wuhan, China, in December 2019, COVID-19 has developed rapidly, 
making it the most difficult public health emergency since the founding of the People’s Republic of China. Based 
on the public data, COVID-19 has a high incidence, persistence, and high infectiousness. If an emergency deci-
sion can be made in a timely and effective manner for emergency response, the harm caused by the pandemic 
can be reduced as much as possible, and the epidemic can be prevented from further expanding. The COVID-19 

Multi department emergency decision 
making scheme combination

1
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Figure 4.   Selection process of multi-department emergency decision.
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Dataset31 records the disease data of 21 provinces and cities across China from January to April 2020, a total of 81 
event information, including 15 numerical condition attributes. The decision attribute is a specific “emergency 
response level,” which is divided into three levels. Because some conditional attribute information in the original 
data is missing, only conditional attributes that do not affect attribute reduction and rule extraction are retained.

In model decision-making, it is necessary to clarify the influencing factors that can be used for quantitative 
analysis of the model and ensure the retention and accuracy of the information during quantification. Among the 
quantifiable influencing factors, explicit factors such as the number of equipment that can be used in emergency 
rescue, the number of medical staff, the number of infected people, and the area range are important character-
istic data that need to be determined at any time. According to the emergency decision modeling idea, based 
on these data, the associated dataset structure and state association can be represented. The graded evaluation 
information construction approach can obtain the corresponding matrix construction mode so that these data 
can be calculated and accurately used in the specific decision-making process to formulate an emergency rescue 
scheme or form an emergency rescue system.

Results and discussion
A‑DRE complexity and effectiveness analysis.  In the course of this experiment, all algorithms can 
calculate the reduction results of five datasets. The classification accuracy results of several algorithms for dif-
ferent datasets are presented in Fig. 5. The accuracy can be maintained or improved compared to the initial 
classification accuracy using A-DRE to reduce the dataset. Compared with the other two algorithms, the final 
classification accuracy difference is small, proving the algorithm’s effectiveness. Figure 6 displays the number of 
attributes retained by different algorithms after attribute reduction on the dataset. The comparison of several 
data reduction algorithms reduces the scale of conditional attributes in the original dataset to varying degrees. 
In comparison, the average number of key attributes extracted by A-DRE is less. Hence, A-DRE can efficiently 
filter out important attributes from the original dataset, and the complexity of the algorithm is low. Therefore, 
applying A-DRE to the attribute reduction of large-scale data in public health emergencies can efficiently and 
accurately extract the key factors of the data, thereby determining the hazard level of emergencies and the devel-
opment of rescue activities.
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Figure 5.   Classification accuracy of different data reduction algorithms.

wbpc wdbc segment winequality texture
0

5

10

15

20

25

30

35

40

N
um

be
r o

f r
es

er
ve

d 
at

tri
bu

te
s

Data set

 NRS/SVM
 NRS/ID3
 HANDI/SVM
 HANDI/ID3
 A-DRE/SVM
 A-DRE/ID3

Figure 6.   Number of attributes retained by different data reduction algorithms.



9

Vol.:(0123456789)

Scientific Reports |         (2022) 12:3600  | https://doi.org/10.1038/s41598-022-07493-w

www.nature.com/scientificreports/

Attribute reduction for COVID‑19 emergency response dataset.  After the original dataset of 
COVID-19 emergency response is preprocessed, A-DRE is utilized for attribute reduction, and the reduction 
result is summarized in Fig. 7. When δ=0.10 the classification accuracy under the KNN classifier reaches 73.5%; 
when δ=0.15 the classification accuracy under the SVM classifier reaches 86.4%. The classification accuracy 
based on the KNN classifier is more stable than SVM. The above reduction results prove that A-DRE can per-
form attribute reduction on the COVID-19 emergency response dataset and effectively reduce the sum of the 
attribute costs of collecting information.

Figure 7 proves that the A-DRE algorithm can not only perform attribute reduction on the COVID-19 
emergency response data set but also ensure that the sum of the cost of the reduced attribute set is small. The 
attribute-reduced dataset makes the relationship between condition attributes and emergency response levels 
more straightforward and can effectively reduce the sum of attribute costs for collecting relevant information.

COVID‑19 emergency decision scheme based on multi‑department collaboration.  In the face 
of the outbreak and spread of COVID-19, when multi-department coordinated decision-making is required, the 
departments involved include emergency command centers, emergency service agencies, and emergency meas-
ures implementation departments. First, a collaborative network and a collaborative matrix between depart-
ments should be established. By analyzing the severity, controllability, and scope of COVID-19, the initial weight 
vector of the evaluation criteria, such as emergency decision cost and effect, can be determined.

Suppose that a COVID-19 command center responds to the pandemic based on five indicators; a case of 
COVID-19 occurs in a community on a day. In that case, the decision center needs to choose from three alterna-
tive schemes as the emergency decision: x1, dispatching a medical team and an emergency ambulance; x2, based 
on x1, sending an additional medical expert and an emergency medical equipment; x3, based on x2, sending an 
additional medical emergency protection team. Three indicators of the alternative schemes are evaluated to 
determine the optimal rescue scheme: c1 health status of the infected case, c2 the number of rescuers, c3 costs of 
rescue equipment and labor. Besides the cost indicator c3, the rest are gain indicators. If the emergency assistance 
for COVID-19 is divided into 4-time frames t1 ∼ t4 , the attribute weight of the indicator is ω = (0.4, 0.45, 0.15) , 
and the expected vector of attributes is R = (6, [5, 11], [G,M]) . The initial evaluation information is summarized 
in Table 2.
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Figure 7.   A-DRE attribute reduction results in the COVID-19 Dataset.

Table 2.   Initial evaluation information.

Time Alternative scheme c1 c2 c3

t1

x1 4 [2,5] [VG,MG]

x2 4 [4,7] [G,MG]

x3 5 [3,6] [MG,MP]

t2

x1 3 [4,6] [G,MG]

x2 6 [6,12] [MG,M]

x3 5 [5,9] [MG,M]

t2

x1 3 [4,6] [G,MG]

x2 5 [6,11] [MG,M]

x3 6 [8,15] [MG,M]

t3

x1 3 [5,6] [G,MG]

x2 7 [9,12] [M,MP]

x3 6 [7,10] [MG,M]



10

Vol:.(1234567890)

Scientific Reports |         (2022) 12:3600  | https://doi.org/10.1038/s41598-022-07493-w

www.nature.com/scientificreports/

Through calculations, the final cumulative prospect values are U(x1) = −1.3367 , U(x2) = 0.0091 , and 
U(x3) = −0.0901 . The final cumulative prospect values x1 and x3 are negative, suggesting this emergency decision 
scheme is at a loss for the decision-maker relative to the reference point. In particular, x1 has fewer emergency 
reserve resources and weak emergency response capability, and the timeliness of emergency response cannot 
be guaranteed; in contrast, x3 has sufficient emergency resources and strong emergency response capabilities; 
however, it significantly increases emergency costs while ensuring the timeliness of emergency response. As the 
optimal choice x2 can save part of the emergency cost while meeting the timeliness requirements of emergency 
decisions.

Emergency management of public health emergencies supported by blockchain technol‑
ogy.  The essence of the blockchain is to achieve data trust between unrelated parties through encryption and 
consensus algorithms to ensure the consistency, non-tampering, and traceability of shared data. This can break 
information islands, accelerate the credible sharing of data, and help existing technologies to build a more in-
depth, collaborative, and shared emergency management information system across departments and regions. 
As a result, it enables the data to be realized from perception to cognition and provides an accurate basis for 
emergency management decision-making. Meanwhile, all elements involved in emergency management are vir-
tualized under the trusted data collaboration system constructed by the blockchain. It can fully simulate and pre-
dict all possible situations and respond to them. Finally, it will use a large amount of real-time data to optimize 
decision-making for continuous learning and correction.

Emergency management involves a wide range of departments. It is highly complex and has a high degree 
of difficulty. Overall coordination has become a key problem for emergency command. In terms of material 
allocation, at the beginning of the outbreak of the COVID-19 epidemic, the material allocation in the key epi-
demic prevention and control areas was disordered, and there was a shortage of epidemic prevention materials 
such as medical masks, protective clothing, and thermometers to varying degrees. Blockchain technology can 
realize the transparency and check of information in the whole process of emergency material transportation. 
In response to traffic control caused by the epidemic, it can check the exact location and status of materials at 
any time, and make route changes in time. When there is an emergency that supplies are occupied, it can also 
quickly determine the responsible party and save the evidence. In addition, the existing system has the insuffi-
cient predictive ability for public health emergencies, and cannot carry out pre-warning and rapid improvement 
of measures. Emergency management decision-making must become an agile response learning organization. 
Combining human and machine learning can improve the scientificity and predictive accuracy of emergency 
management decision-making.

Conclusion
The rationality of emergency measures and emergency targets can determine the development direction of public 
health emergencies. Based on its nature, information on public health emergencies also presents characteristics 
such as complexity, dynamics, and missing values. Therefore, a dynamic decision model based on rough set 
attribute reduction and prospect theory is established regarding the dynamic multi-attribute risky public health 
emergency decisions, and an A-DRE considering attribute cost is proposed. The different risky psychology and 
gain and loss sensitivity of decision-makers can affect the final decision result. Prospect theory is employed to 
calculate each alternative scheme’s comprehensive cumulative prospect value to select the best emergency solu-
tion. Based on the rough set theory and the attribute cost, the knowledge acquisition of emergencies can extract 
the decision rules with better classification ability and lower cost in the decision table. Eventually, the actual 
application of A-DRE is validated through the case analysis of the COVID-19 dataset. Because formulating an 
emergency decision scheme requires coordination between different departments, their coordination relation-
ships and the compatibility of decision schemes are also analyzed to ensure an effective final emergency decision. 
Appropriate emergency measures and emergency goals can delay the deterioration of disease evolution, buy time 
for emergency response, and reduce the personnel and economic losses caused by the disease. The research on 
COVID-19 is of practical value in dealing with the current situation where the disease is not fully controlled. The 
downside is that the dynamic nature of public health emergencies does not consider the significant impact on 
decision-making. Therefore, in the following work, the feedback after implementing emergency decision-making 
will be incorporated into the evaluation criteria to adjust the emergency response plan promptly.
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