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Abstract: The current work shows the preparation of plasticized chitosan-magnesium acetate
Mg(CH3COO)2-based polymer electrolyte dispersed with nickel (Ni) metal complexes via solu-
tion casting. Investigations of electrical and electrochemical properties of the prepared polymer
composite electrolyte were carried out. The structural and optical properties of the samples were
studied using X-ray diffraction (XRD) and UV-Vis spectroscopy techniques. The structural and
optical outcomes revealed a clear enhancement in both absorbance and amorphous nature of the
samples upon the addition of Ni metal complexes. Through the simulation of impedance data,
various ion transport parameters were calculated. The electrochemical performance of the sample
was examined by means of transference number measurement (TNM), linear sweep voltammetry
(LSV) and cyclic voltammetry (CV) measurements. The TNM analysis confirmed the dominance
of ions as the main charge carrier in the electrolyte with tion of (0.96) compared to only (0.04) for
tel. The present electrolyte was stable in the range of 0 V to 2.4 V, which was obtained from linear
sweep voltammetry (LSV). A result from CV proved that the electrical double-layer capacitor (EDLC)
has a capacitive behavior as no redox peaks could be observed. The presence of Ni improved the
charge–discharge cycle of the EDLC due to its amorphous behavior. The average performances of the
EDLC were recorded as 41.7 F/g, 95%, 5.86 Wh/kg and 628 W/kg for specific capacitance, coulombic
efficiency, energy and power densities, respectively. The fabricated EDLC device was found to be
stable up to 1000 cycles.

Keywords: plasticized polymer electrolyte; metal complex; structural analysis; impedance study;
TNM and LSV analysis; CV; EDLC device

1. Introduction

In times of intensive development of electric vehicles around the world, supercapaci-
tors (SCs) play a large role [1]. SCs act as a power buffer during energy transfer from the
fuel cell of the propulsion engine of the vehicle [1]. Lithium–ion batteries are usually used
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as the main energy source due to their high energy density, but when it comes to sudden
demand for high power, e.g., acceleration or braking, high power density characteristic
of SCs comes in handy [2]. Electrical double-layer capacitor (EDLC) is the type of SC that
has the easiest fabrication method [3]. Many types of modified carbon with surface area
and high porosity are used as the activating material in the EDLC electrode [4]. EDLCs
are commonly used in electronic devices, communication gadgets, aviation and hybrid
transportation [5].

Several research groups have focused on improving EDLC by developing new materi-
als in an attempt to gain elevated electrochemical capacitance. The most popular and inter-
esting materials are activated carbon aerogels, graphene and carbon nanofibers. Among
these materials, activated carbon is relatively the best and most proper active material for
constructing electrodes in EDLC devices that possess satisfactory electrical conduction,
high specific surface area (2500 m2/g) and low cost [6]. To improve the electrical properties
of the electrodes, carbon black is commonly inserted in the electrode composition. Carbon
black is known as a para-crystalline material that has a high surface-area-to-volume ratio
(25 to 1500 m2/g), which is relatively lower than that of activated carbon. It also acts as a
reinforced filler for dimensional stability of the electrode materials [7].

The literature revealed that electrochemical stability of the electrolyte plays the key role
in determining the overall performance of EDLC, particularly its life cycle and safety [4,8].
The electrochemical potential window is usually expressed in terms of the upper and
lower ranges of oxidation and reduction reactions [4]. Despite the constituent of the
electrolyte, both geometry and compatibility of the electrolyte with the electrodes also
impact the electrochemical stability of the electrolyte [4,9]. Due to the existing trade-
off between the electrochemical potential window and ionic conductivity, one should
carefully tune the properties of the electrolyte in EDLC to achieve both high energy and
power densities [9,10]. Since the EDLC device undergoes the charge–discharge process, a
voltage difference generally accumulates on the used electrolyte that might reach a value
to decompose the electrolyte and ultimately fail the device. Thus, in order to confirm the
eligibility and suitability of an electrolyte for energy device applications, it is of special
importance to determine the potential window using the linear sweep voltammetry (LSV)
test. Previous works have shown that the polymer electrolytes with a potential window
larger than 1 V can be viable for electrochemical device applications [11–14].

Magnesium salts comes with several interesting properties such as high reduction
potential, safety, low equivalent weight and reasonable price [15]. Mg2+ is considered as
large ions where it is beneficial in the conduction mechanism. A large ion has low attraction
force with the polymer host compared to small ions. Despite all these unique characteristics,
less attention has been paid to Mg2+-based polymer electrolytes (PEs) [16]. Hassan et al. [17]
have claimed that the inclusion of magnesium salt enhanced the amorphousness of the
biopolymer host and the interactions between Mg2+ and polymer were detected through
Fourier-transform infrared spectroscopy (FTIR) analysis. Polu et al. [18] have shown that
the glass transition temperature of polyvinyl alcohol (PVA) decreased with the presence of
magnesium acetate (Mg(CH3COO)2) [18]. This is due to the weakening of the attractive
force between polymer chains. It has been reported in [19] that the transport properties
such as ionic mobility, diffusivity and number density of starch-based electrolyte depend
on the amount of magnesium sulphate (MgSO4).

In earlier studies, it was emphasized that the amorphous phase of polar polymers can
be improved using metal complexes [20]. Thereby, the DC ionic conductivity increases as
the amorphous phase is dominating [20–22]. Overall, the metal complex inclusion into the
polymer electrolytes can considerably increase the performance of the electrolyte for storage
device commercialization [20]. Asnawi et al. [20] have shown that the addition of zinc metal
complex into the chitosan (CS)-based electrolyte is aimed at improving the amorphous
phase within the polymer body to be ionically satisfactory conduction material. The
previous study [23] proved that the EDLC device has a constant stability up to 400 cycles.
The energy concerns and related environmental issues have made the field of energy and
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particularly energy storage devices a very hot topic since the beginning of the 21st century.
Every year, thousands of scientific works are published on energy storage devices. Through
our researches in this field we are aiming toward commercializing polymer-based energy
storage devices. Achieving this goal requires testing a variety of polymer-based electrolyte
systems and tuning different properties of the polymer electrolyte in order to reach the
optimum solution. Using biodegradable polymer-based electrolytes such as CS can have
both environmental and economic benefits. However, the electrical, mechanical and
physical properties of these natural polymers need significant alteration to best fit the
energy device applications. In this regard, different approaches can be taken to achieve
this goal, including using various fillers like metal complexes and plasticizers. The current
work shows proof of the influence of the metal complex and plasticizer on the performance
of the EDLC assembly up to 1000 cycles.

2. Experimental Detail
2.1. Materials and Electrolyte Synthesis

CS with moderately high molecular mass of approximately 310,000 to 375,000 g/mol
and glycerol were used as raw materials in the preparation of the plasticized polymer. From
Sigma-Aldrich (Kuala Lumpur, Malaysia), the other raw materials were received and used
without further purification, including acetic acid and magnesium acetate. The procedure
comprises dispersion of 1 g of CS in 50 mL of acetic acid (1 wt.%) solution followed by
addition of 40 wt.% (0.666 g) of magnesium acetate (Mg(CH3COO)2) salt. Afterwards, the
mixture was stirred continuously using a magnetic stirrer until complete homogeneous
dispersion was gained at room temperature. To make plasticization, 42 wt.% of glycerol
(1.206 g) was added into this homogenous dispersed mixture with continuous stirring
until a clear solution was obtained. Subsequently, to the plasticized sample, (CS-glycerol-
Mg(CH3COO)2) system, 10 mL of diluted Ni metal complex was added.

The methodology of preparation of metal-complex as a green approach has been
documented in the earlier work [24]. To cast the final mixture, the solution was then spilled
carefully into a number of clean and dry glass Petri dishes. Evaporation of the casted
sample was performed by leaving the cast films at room temperature in order to dry.

2.2. X-ray Diffraction (XRD) and UV-Vis Measurements

The UV-Vis spectra of the samples were obtained through employing a double beam
UV-Vis-NIR spectrophotometer (Model: Lambda 25), Perkin Elmer (Waltham, MA, USA)
in the wavelength range from 180 to 1100 nm.

The structural properties of the samples were investigated at room temperature using
a D5000 X-ray diffractometer (Malvern Panalytical Ltd., Malvern, UK) working at 40 kV
voltage and 45 mA current correspondingly. A monochromatic beam of X-ray was applied
to the samples with wavelength (λ = 1.5406 Å) and glancing angles (2θ) between 10 and 80
with a 0.05 step size.

2.3. Impedance and Circuit Simulation

Hioki 3531-Z Hi Tester in the frequency range of 50 Hz to 1MHz was used in data
collecting of impedance data points at room temperature. This was carried out by mounting
the sample films on a conductive holder with 2 cm2 stainless steel electrodes.

Studying ion transport was performed to provide insight into electrical equivalent
circuit (EEC) model, showing the whole picture of the system [25–28]. The EEC had two
possible designs; a parallel combination of bulk resistance and constant phase element
(CPE) and bulk capacitance (ZCPE) in series with another CPE from the tilted spike re-
gion response. The CPE was used in place of capacitor, reflecting depressed semicircle
response [25]. To draw the EEC design, the obtained impedance data had to be fitted by
simulation and the impedance of ZCPE could be written as follows [27,28]:

ZCPE =
cos(πn/2)

Ymωn − j
sin(πn/2)

Ymωn (1)
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where Ym represents CPE capacitance, ω is the angular frequency and n is the factor as
a measure of the deviation of the plot from vertical axis in the complex impedance plots.
Herein, the values of Zr(real) and Zi(imaginary) can be mathematically represented and
can be used in the equivalent circuit design:

Zr = Rs +
R1 + R2

1Y1ω
n1 cos(πn1/2)

1 + 2R1Y1ωn1 cos(πn1/2) + R2
1Y2

1ω
2n1

+
cos(πn2/2)

Y2ωn2
(2)

Zi =
R2

1Y1ω
n1 sin(πn1/2)

1 + 2R1Y1ωn1 cos(πn1/2) + R2
1Y2

1ω
2n1

+
sin(πn2/2)

Y2ωn2
(3)

2.4. Transference Number Analysis

The cell polarization of stainless steel (SS) | conducting solid polymer electrolyte (SPE)
| SS was used in the analysis of ion (tion) and electron (tel) transference numbers (TNM).
The working voltage was held constant at 0.8 V to perturb the electrolyte media. The V&A
Instrument DP3003 digital DC power supply (V & A Instrument, Shanghai, China) was
used to measure tion at room temperature using the following relationships:

tion =
Ii − Iss

Ii
(4)

tel = 1 − tion (5)

where current at the initial and steady state are symbolized as Ii and Iss, respectively.

2.5. Linear Sweep Voltammetry (LSV)

Potential stability of the PE was acquired from LSV. The cell arrangement for LSV
analysis was SS | highest conducting SPE | SS. This analysis was achieved using Digi-IVY
DY2300 potentiostat with scan rate 50 mV/s.

2.6. Fabrication of EDLC

Powdering the mixture of 81.25% activated carbon and 6.25% carbon black by grinding
was carried out using a planetary ball miller. A solution of 12.5% of polyvinylidene fluoride
(PVdF) was added to 15 mL N-methyl pyrrolidone (NMP) and stirred until complete
dissolution was obtained. The powder mixture was then poured into the PVdF–NMP
solution and then stirred until a thick black solidified gel form was obtained. Coating of
the gel form film on an aluminum foil using a doctor blade was performed and then it was
dried in an oven at 60 ◦C. To achieve full elimination of tiny moisture from the electrodes,
a desiccator was used. The EDLC assembly consisted of two electrodes with geometric
surface area of 2.01 cm2 that sandwiched a conducting electrolyte. The cell was packed in
CR2032 coin and mounted in a Teflon case.

2.7. Characterization of the EDLC

Cyclic voltammetry (CV) analysis was run at various scan rates (10 to 100 mV/s) using
Digi-IVY DY2300 potentiostat (Neware, Shenzhen, China). This was to verify the influence
of scan rate on specific capacitance (CCV) value using the following relationship:

CCV =
∫ Vf

Vi

I(V)dV
2mv(Vf − Vi)

(6)

where Vi and Vf are 0 V and 0.9 V, respectively. The I(V)dV is the area under CV response
and m is the weight of each electrode. In this study, the current density of 0.5 mA/cm2 was
kept constant in the EDLC assembly during the experimental time scale. In the evaluation
of EDLC assembly, several crucial parameters had to be taken into consideration, such
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as specific capacitance from charge–discharge (CCD), equivalent series resistance (ESR),
energy (E) and power density (P), discovered using the following expressions:

CCD =
i

sm
(7)

ESR =
Vd
i

(8)

E =
CsV2

2
(9)

P =
V2

4m(ESR)
(10)

where s, i, Vd and V are gradient of the discharge response, current applied, drop potential
and voltage applied, respectively.

3. Results and Discussion
3.1. UV-Vis and XRD Analysis

Green synthesized Ni-metal complex is characterized by UV-Vis absorption spec-
troscopy, as shown in Figure 1. Since it begins at visible ranges and ends at UV ranges, one
can say the absorption spectrum has covered the whole visible range. It is noted that this
kind of absorption spectrum can only be observed for semiconducting-based materials [29].
The obtained UV-Vis result of this study is similar to the one for iron–metal complexes
reported by Wang et al. [30], which was synthesized by green methodology using various
extracts, such as Rosemarinus officinalis, Eucalyptus tereticornis and Melaleuca nesophila. It has
been reported that to reveal a surface plasmon resonance (SPR) absorption in the range
of UV-visible parts, the size of metal particles must be in the range of nanometer [31].
However, owing to the absence of visible SPR absorption in the Ni2+-metal complex (see
Figure 1), it cannot be claimed that the Ni2+-metal complex exhibited metal characteristics
on the particle surfaces due to polyphenols capping. In a previous study, chitosan-based
polymer electrolytes have been documented to demonstrate SPR peak in the range of 500
to 800 nm due to copper nanoparticles [32].

The absorption spectrums of pure CS and CS:Mg(CH3COO)2:Gly:Ni composite are
shown in Figure 2. The pure CS displays no absorption peak at the visible range, while
the Ni-metal complex contained samples that demonstrate distinct absorption from UV to
visible ranges. The absorption spectra shift to the visible ranges in the composite samples
identifies the Ni-metal complex’s effect on the CS optical properties.

Figure 3a,b show the X-ray diffraction (XRD) pattern for the pure CS and CS:Mg(CH3COO)2:
Gly:Ni films, respectively. Here, two broad peaks at 2θ = 15.1◦ and 20.9◦, with nano crystallite
peaks that are too small to yield diffraction peaks can be seen in Figure 3a for the pure CS
film. Such broad peaks (i.e., 15.1◦ and 20.9◦) can be attributed to (110) and (220) reflection
planes, respectively [33,34]. Previous research has shown that intramolecular and intermolecular
hydrogen bonds are mainly responsible for the chitosan’s rigid structure [33]. It indicates the
average intermolecular distance of the chitosan’s crystalline parts [35,36]. The XRD pattern of
CS:Mg(CH3COO)2:Gly:Ni complex system is shown in Figure 3b. It is evident from Figure 3b
that the nano crystallite peaks of CS have scarified, and only two broad peaks have remained.
This reveals that amorphous regions have been enhanced in the CS:Mg(CH3COO)2:Gly:Ni
electrolyte system.
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3.2. Impedance and Ion Transport Study

To grasp the mechanism of charge transport in PEs, impedance study is fundamentally
and technologically crucial. It is essentially important to measure impedance of complex
materials for typifying charge transport mechanism [37]. Electrochemical impedance
spectroscopy (EIS) is an efficient and informative technique for studying ionic conductivity.

Over the last decade, ion-conducting membrane has drawn the attention of researchers
to be utilized as an extensive choice of solid state devices [38]. EIS is regularly employed to
distinguish between a relatively small semicircle response at high frequency from stimulus
of the ionic conduction in the bulk material and a tail at low frequency as a result of the
electrode polarization effect [21,39,40]. Figure 4 shows the impedance spectra and EEC
model of the sample. As stated previously, the general profile of the system can be imagined
from the fitting of the experimental data points of impedance spectra with the EEC model
as exhibited in the inset of Figure 4. At low frequency region, the data point responses
arise from the electrode polarization effect as a consequence of the double capacitance
layer formation at the interfacial region between the sample and the electrodes. An ideal
capacitance is featured from a vertical spike at 90◦ at low frequency region. However, the
case in this study comprises a spike response angled at less than 90◦ other than the vertical
one. This can be ascribed to lack of smoothness of the film or electrode polarization (EP)
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effect [41,42]. All necessary parameters of the circuit for the prepared sample are accessible
in Table 1.
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Table 1. Various parameters of the circuit elements for the prepared polymer electrolyte system.

Electrical Equivalent Circuit (EEC) Parameters Values
n1 (rad) 0.71
n2 (rad) 0.53
K1 (F−1) 2.6 × 108

K2 (F−1) 1.05 × 105

Y1 (F) 3.85 × 10−9

Y2 (F) 9.52 × 10−6

Rb (Ω) 1.6 × 103

The Zr and Zi components of impedance data are presented in the Nyquist plot and
the bulk resistance (Rb) can be extracted from the cutoff of the plot with the Zr and is
important for conductivity calculation following equation [18]:

σdc =

[
1

Rb

]
×
[

t
A

]
(11)

where t is the thickness of the film and A is the geometric surface area.
The DC conductivity and transport parameters are listed in Table 2. Generally, the

obtained conductivity in the current case is lower compared to the aqueous or ionic liquid-
based counterparts. It is strongly preferred to have an ion-conducting electrolyte with high
DC ionic conductivity, usually in the range of 10−5 to 10−3 S/cm, to be commercialized in
electrochemical devices. Based on this requirement, the sample that was presented in this
work is suitable to be used in the electrochemical devices but it is fundamentally important
to modify it in the near future.
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Table 2. Ion transport parameters of the prepared polymer electrolyte system.

Ion Transport Parameters Values
σdc (S cm−1) 1.09 × 10−5

D (cm2 s−1) 4.91 × 10−8

µ (cm2 V−1 s) 1.91 × 10−6

n (cm−3) 3.55 × 1019

3.3. Electrochemical Studies
3.3.1. Transference Number Measurement (TNM)

The total conductivity of an electrolyte is from both electrons and ions of the doped salt.
In order to confirm the polarization in the electrolyte, TNM analysis has been conducted at
0.8 V. This is one of the important analyses before the fabrication of EDLC. Figure 5 portrays
the plot of current against time for the polymer-conducting CS-glycerol-Mg(CH3COO)2-Ni
system. Both contribution of ions and electron can be seen at the initial seconds due to
the high current value at 17.2 µA. The ionic blocking mechanism by stainless steel leads
to the reduction in current value. At this point, cations and anions from the salt have
started to form polarization at negative and positive electrodes, respectively. Complete
polarization can be observed as the current value begins to stabilize at 0.7 µA. The high
value at the initial seconds, rapid current drop and current stabilization are the indicator of
an ionic conductor [19]. The tion and tel for CS -glycerol-Mg(CH3COO)2-Ni are 0.96 and
0.04, respectively. The result is comparable to other reported works of polymer electrolytes
with various magnesium salts [18,43,44].
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Figure 5. Polarization current against time for the prepared polymer electrolyte sample.

3.3.2. Linear Sweep Voltammetry (LSV) Study

The breakdown potential of CS-glycerol-Mg(CH3COO)2-Ni is determined using LSV.
It is important to know at which potential the electrolyte will undergo oxidation and start
to degrade before the implementation in energy storage devices such as solar cells, batteries
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and SCs [45]. Figure 6 shows that the electrolyte is stable as there are no current changes
observed below potential of 2.4 V. Sharp current increase can be noted beyond 2.4 V. This is
due to disruption of polymer–polymer and polymer–salt interaction that leads to polymer
degradation [46]. This result shows that the current system has a higher electrochemical
potential window compared to many other aqueous electrolytes, while being smaller than
the ionic liquid (IL) electrolytes, which are in the range of 3.5 to 4 V [4,10]. Poly(ether
urethane)-magnesium perchlorate (Mg(ClO4)2) has been reported to be stable up to 1.9 V
by Jo et al. [47]. In the work of Zainol et al. [48], polymethacrylate (PMMA)-magnesium
triflate (Mg(CF3SO3)2) electrolyte has shown that the potential stability is less than 2.5 V.
The outcome in this work is analogous to the other magnesium studies, and can be included
in the fabrication of EDLC.
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3.4. EDLC Characterization

The EDLC assembly with an arrangement of activated carbon|CS -glycerol-Mg(CH3COO)2
-Ni | activated carbon was preliminarily checked using cyclic voltammetry (CV). It is well
known that the capacitor is scan-rate-dependent, thus various scan rates from 10 to
100 mV/s were used. The shape of CV plot in Figure 7 varies from rectangular to leaf-like
shapes without any obvious peaks. Jäckel et al. [49] stated that a peak in CV plot usually
signifies the presence of Faradaic current due to intercalation and deintercalation, which
does not happen in a capacitor. At large scan rate, the transportation of mobile ions oc-
curs at a rapid rate. In addition to that, due to internal resistance and carbon porosity,
current dependence of voltage is created [50]. Table 3 shows the capacitance value of the
EDLC. It is obvious that Ccv is large at low scan rate and vice versa. At low scan rate,
as expected, the response of CV is relatively plateau, indicating ion accumulation at the
electrode|electrolyte boundary with low ohmic resistance as shown in Figure 7 [51,52].
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fabricated electrical double-layer capacitor (EDLC).

Table 3. Variation in capacitance values with respect to different scan rates.

Scan Rate (mV/s) Capacitance (F/g)
10 27.793
20 19.835
50 11.349
100 6.032

A good capacitor will portray a triangle shape charge–discharge plot as in Figure 8.
The linearity of both the charging and discharging process is an indicator of the polarization
process; whereas, it is non-linear for conventional batteries [53]. Capacitance stands for the
ratio of electrical charge changes in a system corresponding to changes in the potential. A
small potential drop before discharge process is common in an EDLC due to the existence
of internal resistance. Figure 9a shows the voltage drop, while Figure 9b shows the ESR
of the EDLC. The voltage drops at cycles less than 200 in the range of 0.14 V. Beyond
200 cycles, voltage drop started to increase as the polarization process is obstructed by
the increment in ESR as shown in Figure 9b. At high cycles, number in a rapid charge–
discharge leads some ions to undergo recombination to form neutral ion pairs. Ion pairs
can lead to improper polarization built at the surface of the electrodes [54]. However, the
values of voltage drop and ESR started to stabilize from 400th to 1000th cycles. At some
point of charge–discharge, cations and anions achieved a stable double layer process, which
leads to stable internal resistance.
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Figure 8. Charge–discharge pattern of the fabricated electric double layer capacitor (EDLC) at specific cycles.
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Figure 9. (a) Voltage drop pattern and (b) equivalent series resistance (ESR) pattern of the EDLC
throughout the 1000 cycles.

Figure 10 illustrates the CCD of the EDLC throughout the 1000 cycles. The value of
the CCD is observed to increase from 36.4 F/g (1st cycle) to 47.9 F/g (135th cycle) and
drops to 45.2 F/g (400th cycle). The performance of the EDLC is typically unstable before
stabilization occurs. This usually happens since the ions are still trying to recognize the
patterns of the polarization at the initial stage. As the cycle number exceeds 400, CCD value
becomes constant up to 1000 cycles with an average of 41.7 F/g. As reported in our previous
work, CS-glycerol-Mg(CH3COO)2 can only be charged and discharged up to 400 cycles [23];
while, in this work CS-glycerol-Mg(CH3COO)-Ni reaches up to 1000 cycles. This could be
the effect of the addition of metal complexes. Metal complexes (Fe, Ce, Cu, Zn and Ni) have
good electrical conduction properties as well as large surface area, which is beneficial for
electrochemical devices [55–57]. The conduction of ion is usually preferable in amorphous
region of the electrolyte. The increase in cycle number due to the addition of Ni could be
related to the improvement of amorphousness of the electrolyte. Brza et al. [24], reported
that the addition of Cu(II) to polyvinyl alcohol (PVA) has improved the amorphous nature
of the electrolyte. This is caused by the interaction of metal complexes with polymers,
which reduce the crystallinity.

The cycle stability of the EDLC can be detected from the consistent value of efficiency.
Apart from being consistent, efficiency of an excellent EDLC is large, which is more than
95%. The efficiency was calculated using:

Efficiency =
tdis
tcha

(12)

where tdis and tcha are time for one full discharging–charging, respectively. Efficiency of
the fabricated EDLC is plotted in Figure 11. An efficiency of 81.2% can be seen at the 1st
cycle and it increases to 97.5% at the 15th cycle. Normally, at initial cycle numbers, the
charging process is longer than discharging. Ions start to migrate towards the surface of
the electrode that is completely different from that of desorbing from the electrode surface.
At the beginning, the system needs time to reach stabilization and shows relatively low
efficiency. Beyond the 15th cycle, the efficiency tends to stabilize with an average value of
96.1% up to 1000 cycles. It is proven that the discharging process lasts a longer time than
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the charging process, indicating high efficiency. In this work, the results indicate that the
EDLC assembly possesses excellent stability and electrolyte–electrode compatibility.
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Figure 10. Satiability in specific capacitance value of the fabricated EDLC up to 1000 cycles at
0.5 mA/cm2.
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Figure 11. Coulombic efficiency plot over 1000 cycle for the fabricated EDLC.

The energy storing quantity in a given system is called energy density. Figure 12
exhibits the trend of energy density variation against cycle number over 1000 cycles. It
is noted that the trend of E is comparable to CCD in which the performance suffers from
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fluctuation at cycles below 200 as shown in Figure 10. It is intuitive that energy density is in
direct proportionality to specific capacitance. Beyond cycle number of 200, stabilization of
E can be clearly seen up to 1000 with an average value of ~5.86 Wh kg−1. This phenomenon
can be explained on the basis of the fact that in this system, ions can pass omitting energy
barrier for each charging and discharging cycle during the transportation process [58].
Winie et al. [59] recorded an EDLC assembly using a CS host that possesses energy den-
sity lying from 0.57 to 2.8 Wh/kg by taking the current density from 2 to 0.6 mA/cm2,
respectively. As stated by Bandaranayake et al. [60], polyacrylonitrile-magnesium chlo-
ride (MgCl2)-based EDLC provided an energy density of 5 Wh/kg. A consistent trend of
capacitance and energy density indicate that ions recombination process is less dominant.
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Figure 12. The plot of energy (E) of the fabricated EDLC throughout 1000 cycles.

One advantage of SCs that conventional batteries do not have is high power density.
This is because cations and anions in batteries require more energy to be discharged or
charged as the ions have to deintercalate out of the electrolyte. Figure 13 shows the
power delivered by the EDLC at 0.5 mA/cm2. A steep gradient of P reduction from 1st
(924 W/kg) to 200th (628.0 W/kg) can be explained by the increased internal resistance in
the EDLC. ESR of the EDLC increased from 111 ohm to 163 ohm at 200th cycles. Power
delivered by the EDLC is observed to be more stable beyond 200th cycles. As stated
in Yassine and Drazen [61], power density is strongly related to the ESR of the EDLC.
High ESR means it is hard for ions to be adsorbed, thus delivering lower power. The
plasticized polymer electrolyte with Ni metal complexes in this study has presented a
significant improvement in the overall performance of the fabricated EDLC. Generally, gel
polymer electrolytes (GPEs) show enhanced ambient conductivity; however, they suffer
from reduced mechanical integrity of the film as well as increased corrosive reactivity
of polymer electrolyte towards the metal electrode [62,63]. The current studied polymer
electrolyte system has shown an effective way to minimize these drawbacks through
introducing metal complex and using adequate amount of plasticizer. The employed metal
complex undergoes interaction with the host polymers chains, which in turn reduce the
crystallinity and enhance conductivity. Thus, metal complex can be introduced to reduce
the amount of used plasticizer and thereby lessen the interaction of electrolyte with metal
electrodes, which results in more stability and longer life-cycle [62,63].
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Figure 13. Power density of the fabricated EDLC throughout 1000 cycles.

The outcomes of this work highlighted the role of both plasticizer and metal complexes
in improving the properties of the polymer electrolytes. Thus, these approaches can be
considered as effective methods to enhance the properties of the polymer-based electrolytes
in order to be suitable for commercialization and meet the industrial level. Table 4 presents
the general performance of the fabricated EDLC compared to many other polymer-based
and gel electrolyte systems from the literature.

Table 4. General performance of the fabricated EDLC device compared to the other EDLC devices based on various polymer
electrolytes in terms of specific capacitance (Cs), energy density (E), power density (P) and cycle number.

Electrolyte System Cs
(F g−1)

E
(Wh kg−1)

P
(W kg−1) Cycle No. Ref.

Dextran:NH4Br 2.05 - - 100 [64]
PVA:Dextran:NH4I 4.2 0.55 64 100 [65]

Corn starch: LiClO4: SiO2 9.83 0.9 135 500 [66]
CS:MC:NH4I:Gly 9.97 1.1 578.55 100 [67]
PVA:LiClO4:TiO2 12.5 1.56 198.7 1000 [68]

CS-κ-carrageenan-NH4NO3 18.5 - 1.8 20 [69]
PVA:CH3COONH4:BmImBr 21.89 1.36 34.66 500 [70]

CS-PVA-NH4NO3-EC 27.1 - - 100 [71]
MC:PS:NH4NO3:Gly 31 2.3 385 1000 [72]

CS-PVA-Mg(CF3SO3)2:GL 32.69 - 100 [73]
MC-NH4NO3- PEG 38 3.9 140 100 [74]

CS:Mg(CH3COO)2:Gly:Ni 41.7 5.86 628 1000 This work

Where: NH4Br = ammonium bromide, MC = methylcellulose, NH4I = ammonium iodide, LiClO4 = lithium perchlorate, SiO2 = silicon diox-
ide, TiO2 = titanium dioxide, NH4NO3 = ammonium nitrate, CH3COONH4 = ammonium acetate, BmImBr = 1-butyl-3-methylimidazolium
bromide, EC = ethylene glycol, PS = potato starch, PEG = poly(ethylene glycol), Mg(CF3SO3)2 = magnesium triflate.
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4. Conclusions

The performance of CS-Mg(CH3COO)2 system has been enhanced with the presence
of glycerol and Nickel (Ni) metal complexes. The optical study highlighted a clear shift
in absorption spectra to the visible ranges with the addition of Ni metal complexes. The
XRD patterns of the Ni metal complex doped sample have shown diminishing of many
crystalline peaks of pure CS, which confirmed the impact of Ni metal complexes on
enhancing the amorphous nature of the sample. Through the simulation of impedance
data, a variety of ion transport parameters were calculated. The DC conductivity and other
transport parameters point to the appropriateness of the sample for EDLC application.
The overall conductivity has been determined by TNM technique to be predominantly
contributed to by ions rather than electron species. High ionic transference number proves
this statement. The electrolyte has a potential stability up to 2.4 V as the oxidation current
increases beyond that potential. EDLC in this work is scan-rate-dependent and high
capacitance value is obtained at low scan rate. The performances of the EDLC are unstable
at cycle less than 200th. However, stabilization is achieved beyond that. The fabricated
EDLC device was found to be safe up to 1000 cycles without possessing great breakdown
voltage. Thus, the stabilization of the EDLC performance could be improved via the
dispersion of metal complexes.
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