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Abstract

Background: Large-scale plant diversity inventories are critical to develop informed conservation strategies. However, the
workload required for classic taxonomic surveys remains high and is particularly problematic for megadiverse tropical
forests.

Methodology/Principal Findings: Based on a comprehensive census of all trees in two hectares of a tropical forest in
French Guiana, we examined whether plant DNA barcoding could contribute to increasing the quality and the pace of
tropical plant biodiversity surveys. Of the eight plant DNA markers we tested (rbcLa, rpoC1, rpoB, matK, ycf5, trnL, psbA-trnH,
ITS), matK and ITS had a low rate of sequencing success. More critically, none of the plastid markers achieved a rate of
correct plant identification greater than 70%, either alone or combined. The performance of all barcoding markers was
noticeably low in few species-rich clades, such as the Laureae, and the Sapotaceae. A field test of the approach enabled us
to detect 130 molecular operational taxonomic units in a sample of 252 juvenile trees. Including molecular markers
increased the identification rate of juveniles from 72% (morphology alone) to 96% (morphology and molecular) of the
individuals assigned to a known tree taxon.

Conclusion/Significance: We conclude that while DNA barcoding is an invaluable tool for detecting errors in identifications
and for identifying plants at juvenile stages, its limited ability to identify collections will constrain the practical
implementation of DNA-based tropical plant biodiversity programs.
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Introduction

The Neotropics hold an estimated 78,800 flowering plant

species, over a third of the world’s total [1]. Yet, tropical forests are

being degraded at a fast pace [2,3], and over half of the estimated

11,000 Amazonian tree species may face a direct risk of extinction

[4]. Thus large-scale biodiversity inventories are critically needed

in order to develop informed conservation strategies for these

diverse ecosystems [5,6]. Significant progress in mapping the

distribution of Neotropical plants has been achieved over the past

decades [7–11], but many areas are still under-collected and

species identification remains a challenging task in many plant

families. An example was recently provided by Pitman et al. (2008),

who conducted a tree species diversity survey along a 700-km

transect that cuts across one of the most diverse parts of the

Amazon, between Ecuador and Brazil [12]. Based on traditional

botanical sampling, they were able to identify 97% of the sampled

stems to the genus, and counted a total of 435 tree genera. Yet, in

their statistical analyses, they decided to conservatively exclude the

genera that were difficult to identify in the field when only sterile

material was available. Their choice of excluding no less than

20.7% of the genera, and 15.7% of the sampled stems resulted in

loss of information, the influence of which on their conclusions is

unknown.

With the advent of high-throughput DNA sequencing, it has

been suggested that universally amplified, short, and highly

variable DNA markers (DNA barcodes) may help identify

organisms to species with a high confidence, which would be

useful in a wide array of applications, including biodiversity

surveys [13–15]. DNA barcodes should be both variable enough to

discriminate among closely related species and yet possess highly

conserved regions so as to be easily sequenced with standard

protocols. The mitochondrial marker cytochrome c oxidase I (CO1)

has met with some success for animal groups [13,16], but see [17–

19]. In plants, the search for suitable genomic regions has proven

more challenging. Several regions in the plastid genome (e.g. rbcL,

rpoC1, rpoB, ycf5, psbA-trnH, trnL, atpF-atpH, psbK-psbI) as well as the

internal transcribed spacer (ITS) of the ribosomal nuclear DNA

have emerged as good candidates for plant DNA barcoding [20–

27]. A consensus has recently emerged among the members of the

Consortium for the Barcoding of Life (CBoL) Plant Working

Group for using only two of these markers to barcode land plants,

namely rbcL and matK [28], yet these authors point out that this

combination will lead to a species-level identification in 72% of the
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cases only, and this resolution is unlikely to be evenly distributed

across land plant species.

Echoing Chase et al. (2007) [29], the CBoL Plant Working

Group pointed out that plant DNA barcoding should be useful in

discriminating among forest seedlings, or undertaking large-scale

biodiversity surveys in situations where taxonomic expertise is

limiting. Yet, we are unaware of any application in this research

area thus far, and the present work fills this gap. Tropical plants

present challenges to DNA barcoding that are much more

pronounced than those encountered when barcoding temperate

plants, and today applications of plant DNA barcoding in the

tropics is still unchartered land (the only exceptions being

applications on genus Compsoneura in the Myristicaceae, see

Newmaster et al. 2008; genus Inga in the Fabaceae [30]; and the

orchid family [26]). DNA extraction is expected to be more

difficult in tropical plants, due to the greater abundance of

secondary metabolites [31], and this may compromise the overall

performance of DNA barcoding [32]. In addition, the rate of

lineage diversification is often high in the tropics, leading to the

frequent occurrence of explosive radiations [33–34]. For recent

lineages with great numbers of species, we thus expect that DNA

barcoding will be less efficient, because species will tend to have

lots of close relatives, reducing levels of interspecific divergence, as

recently confirmed in genus Inga [35], and as should be expected in

other groups [36]. Finally, it has been shown that woody plant

lineages show consistently lower rates of molecular evolution as

compared with herbaceous plant lineages [37], suggesting the

application of DNA barcoding concepts should be more difficult

for tree floras than for non-woody floras [26,38].

In the present study, we use a plot-based sampling strategy to

test the applicability of the currently proposed DNA barcoding

scheme. Specifically, we examine if consensus barcodes are

sufficiently variable and universal to reliably identify co-occurring

Amazonian tree species, and we implement this scheme to the

identification of tropical juvenile plants.

Materials and Methods

Study site and sampling
This study was conducted at the Nouragues Research Station,

central French Guiana, in pristine lowland tropical rainforest (4u05

N, 52u40 W; [39]). Rainfall is 2824 mm y21 (average 1988–2008)

with a dry season averaging 2.5 months, from late August to early

November, and a shorter dry season in March. The plant diversity

of this area is high, with a local flora exceeding 1700 angiosperm

species.

We sampled all trees $10 cm of diameter at breast height (dbh)

in two 1-ha plots. Large trees were sampled by professional tree

climbers while smaller trees (less than 35 cm dbh) were collected

using French climbing spikes (Fonderies Lacoste, Excideuil,

France, [40,41]). A total of 1073 trees were sampled in the two

plots. Voucher specimens were matched against the reference

vouchers available at the Herbier de Guyane, Cayenne (CAY),

and they were deposited there. Of the 301 tree morphospecies,

254 could be matched to a reference voucher with an accepted

species name (94% of the inventoried individuals). These

encompassed 143 genera, and 54 angiosperm families, and they

spanned the most common woody plant families in Amazonia

(Table S1). Individuals from the most taxonomically difficult

families, such as Lauraceae, Myrtaceae, Elaeocarpaceae (Sloanea),

or Sapotaceae (Pouteria), were kept into morphospecies.

For each sampled plant, we collected 1–10 cm2 of leaf tissue.

Samples collected for DNA analysis were stored in 10 g of silica

gel. We also collected ca. 1 cm2 of cambium tissue using a leather

punch of 1 cm in diameter to test whether DNA could be

extracted efficiently from this tissue [42]. Total DNA extraction

was of comparable concentration with cambium and leaf tissue

(results not shown), and both were used for sequencing.

DNA extraction and sequencing
Up to 30 mg of dry material was ground for 2 min in a

TissueLyser mixer-mill disruptor (Qiagen, California, USA) using

tungsten beads. Lysis incubation was carried out at 65uC during

2 hr for cambium tissue and 1 hr for leaf tissue using CTAB 1%

PVP buffer. Total DNA extraction was performed using a

Biosprint 15 workstation (Qiagen, CA) following the manufactur-

er’s protocols.

PCR amplification was performed for the coding plastid regions

rbcLa (first part of the rbcL gene), rpoC1, rpoB, matK, ycf5, the non-

coding regions trnL and psbA-trnH, and the nuclear region ITS. The

PCR reaction mix included 0.2 ml of GoTaqH 51 U/ml (Promega),

10 ml of 56 buffer, 1 ml of 20 mM for each primer, 1 ml of dNTP

10 mM, 1 ml of DNA template and H2O for a final volume of

50 ml. For primer combinations, PCR thermal conditions, and

references, see Table S2.

PCR products were purified with a MinElute PCR Purification

Kit (Qiagen, CA). Cycle sequencing reactions were performed in

10 ml reactions using 1 ml of BigDyeH Terminator cycle sequenc-

ing chemistry (v3.1; ABI; Warrington, Cheshire, UK) and run on

ABI sequencers. The markers were sequenced in both directions.

DNA fragments were visually inspected and assembled with

SequencherTM 4.8 (Gene Codes Corp., Ann Arbor, Michigan,

USA). In about 10% of the cases, the marker psbA-trnH proved

difficult to sequence from the 39 end (trnH), due to long poly-A and

poly-T regions [43]. If and only if the single strand had a high-

quality read, a single direction sequence was used. All of the

sequences are deposited on GenBank (see Table S1 for the

accession numbers).

We did not sequence all 1073 individuals for all candidate

markers, but selected 285 individuals so as to represent all the

taxonomic groups, and facilitate interspecific and congeneric

comparisons. In a few markers, we increased the sequencing effort

(rbcL, rpoC1, and psbA-trnH).

Test of the barcoding approach on tropical saplings
Having assembled a large database of plant DNA barcodes for

tropical tree species, we tested whether it could be used to identify

juveniles in the same plots, which often lack the morphological

characters used to identify mature plants [29]. We established two

464 m sapling plots within each of our two tree plots. All woody

plants above 30 cm in height and ,1 cm dbh (n = 252) were

marked, measured, and mapped. Because it is often difficult to tell

apart tree, shrub and liana saplings, we included all woody plants

within the size limits, and subsequently used our identifications to

infer the life form of these individuals. Based on morphology, 27%

of the individuals could be reliably identified to the species,

another 45% could be assigned to a clear morphotype, and 11%

could be assigned to a known genus.

Data analyses
We tested if the species were retrieved as monophyletic group

with the different markers. The sequences were aligned using

ClustalX version 2.0.11 with default parameters [44], and

alignments were visually inspected. For each marker, we generated

neighbour-joigning (NJ) trees based on sequence divergence

estimated with Kimura’s 2-parameter (K2P) nucleotide evolution

model [45], using ClustalX and the software Mega 4.0 [46]. Node

support was assessed via 1000 bootstrap replicates. Trees were also

Amazon Trees and DNA Barcodes
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constructed for each coding marker using PhyML [47] using the

most general time-reversible model of nucleotide evolution with

Gamma distributed errors on mutation rates (GTR+G). In

PhyML, node support was estimated using the approximate

likelihood-ratio test (alrt), a much faster method for estimating

branch support than either the bootstrap or Bayesian posterior

probabilities [48]. We present results based on NJ and ML trees

only because this has the greatest potential for computationally

intensive analyses based on large datasets and other studies have

shown that the choice of the phylogeny reconstruction algorithm

did not significantly alter the tests of DNA barcode performance

[19,26]. In preliminary runs, we discovered that the performance

of all plastid markers in recovering species as monophyletic was

poor in two important groups that are easily recognized in the

field: the Sapotaceae [49], and the Laureae clade in Lauraceae

[50]. We then also computed the fraction of supported clades,

excluding these two groups. We assumed that clades were

supported when the bootstrap values exceeded 70%, or when

the alrt values exceeded 80%.

Assessing monophyly using DNA barcodes has been criticized

because it assumes that tree reconstruction is reliable, and that the

minimal threshold on support value is a reliable criterion for clade

support. Meier et al. (2006) have proposed an alternative criterion

(‘best close match’) [17]. A threshold T is computed below which

95% of all intraspecific distances are found. If a query sequence

had no match below T, it is left unidentified. Otherwise, if all

matches of the query sequence are conspecific, the barcode

assignment is considered to be correct. If the matches of the query

sequence were equally good, but correspond to a mixture of

species (including the correct one), then the test was ambiguous.

The test fails if the match was not conspecific. This test is

implemented in TaxonDNA (version 1.6.2, [17]).

Methods used to cluster DNA sequences into MOTUs fall into

three categories: (1) tree-based, unsupervised (non-parametric)

methods [51–53], (2) parametric methods that assume the choice

of a threshold in sequence divergence prior to the clustering

procedure and that require global sequence alignments [17], (3)

alignment-free parametric clustering methods [54,55]. Although we

analyzed our data using all three methods (see Supporting

Information S1), the results reported in the main text are based

on the alignment-based parametric clustering software TaxonDNA,

and on the alignment-free method implemented in blastclust

(package version 2.2.20 downloaded from ftp://ftp.ncbi.nih.gov/

blast/executables/release). The quality of the parametric clustering

methods in reference to the morphological taxonomy was assessed

by counting, for each threshold sequence distance, the fraction of

MOTUs corresponding to more than one taxon (lumping fraction),

and the fraction of taxa split into more than one MOTUs (splitting

fraction). The lumping fraction should increase with the threshold

sequence divergence, while the splitting fraction should decrease.

The total number of taxa assigned to a unique MOTU (correct

assignment rate) was also reported.

Results

Depending on the selected marker, we obtained sequences for up

to 430 of the sampled individuals, including up to eight markers (a

total of 2198 sequences). We obtained high quality sequences in over

90% of the samples for rpoC1, rbcLa, rpoB and trnL markers (Table 1).

Sequencing success was lower for psbA-trnH and ycf5 (over 80%). A

taxonomic bias in sequencing success was detected for ycf5, which

amplified poorly in the Gentianales (Apocynaceae and Rubiaceae;

7%) and in the Myristicaceae (33%), whereas rpoB amplified poorly in

the Moraceae (33%). The sequencing success of matK was only

,70%, even after using two different pairs of primers. The lowest

sequencing success was obtained with ITS, which amplified in only

41% of our samples. The markers varied significantly in mean

sequence divergence (Table 1). The highest variability was obtained

for ITS, followed by psbA-trnH, trnL and matK.

We assessed the number of monophyletic species recovered in

the tree reconstructions for each marker (Fig. 1a). We found little

difference between the two methods of phylogenetic tree

reconstruction (NJ and ML); and Table 2 reports only the results

obtained with the maximum likelihood phylogenetic reconstruc-

tion algorithm. When considering all species, the best marker was

psbA-trnH, which recovered 64% of monophyletic species, followed

by matK, rpoB, and rbcLa (Table 2). The poorest performance was

obtained with ycf5 (40%) and rpoC1 (46%). Ignoring the

Sapotaceae and Laureae, the three markers, psbA-trnH, rpoB, and

rbcLa, had a similar performance (67%). ITS had an excellent

performance in recovering monophyletic species, but this

represents a biased sample, as we could amplify ITS for less than

half of the individuals. Using rbcLa or psbA-trnH, 77% of the genera

Table 1. Markers for the DNA barcoding of tropical trees.

Marker Length (bp)
Sequencing
success (%)

Nb successfully
sequenced
individuals Nb species Nb genera

Intraspecific
divergence

Intraspecific
divergence within
genus

rbcLa* 697 93 368 223 125 0.05% 0.41%

rpoB* 475 96 260 173 105 0.04% 0.57%

rpoC1* 592 94 430 198 120 0.04% 0.23%

ycf5* 276 88 230 155 93 0.18% 0.98%

matK* 879 68 182 132 81 0.02% 0.65%

psbA-trnH { 264–792 89 369 213 117 0.59% 6.26%

trnL{ 326–681 93 254 158 88 0.14% 1.06%

ITS{ 488–750 41 105+24{ 75+22a 43+7a 1.73% 6.23%

Eight DNA markers were tested across 49 angiosperm families.
*: coding plastid DNA sequences;
{: non-coding plastid DNA spacers;
{: nuclear ribosomal region. Mean intraspecific sequence divergence and interspecific within genus sequence divergence (in %).
arepresentatives of the sampled species included in the analysis and downloaded from GenBank.
doi:10.1371/journal.pone.0007483.t001
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were found to be well-supported, while with ycf5 and trnL, this

percentage dropped to 63%. The ‘best close match’ test as

implemented in TaxonDNA yielded comparable results (Fig. 1b,

Table 2). The rates of correct assignment of a randomly selected

sequence was maximal for psbA-trnH (55%), followed by trnL

(49%), and rbcL (48%). These low values reflect the fact that a large

number of sequences were included from the Sapotaceae and

Laureae, and these yielded ambiguous assignments.

All eight markers could not be sequenced for exactly the same

individuals. Hence, the markers were also compared two by two,

based on shared individuals only. This pairwise test of the markers

yielded results consistent with the previous analyses (Table S4). In

addition, we tested whether combining two markers into a single

barcode to discriminate species did increased the performance of

the tested markers, and found that this did not greatly improve the

overall performance in comparison with single markers (Table S4).

We then tested the performance of each marker in clustering data

into MOTUs. With coding cpDNA markers, fewer MOTUs were

found than the real number of taxa in our sample (Table 3).

Comparing the accuracy of assignment into MOTUs, we used the

‘cluster’ option of TaxonDNA, and found that TaxonDNA returned

a mean correct assignment rate of 62% at 0.1% sequence divergence

(Table 3, including coding plastid markers and trnL). Blastclust

provided slightly better results than TaxonDNA both in terms of

overall number of MOTUs, and correct assignment rate (Table 3).

With blastclust, the rate of correct assignment varied from 80.2% for

ITS to 53% for rpoC1 (mean 65.5%). Irrespective of the clustering

algorithm, the best rate of correct assignment was obtained for ITS

followed by matK, psbA-trnH, rpoB, rbcL and trnL. The worst rate of

correct species-level assignment was consistently obtained by rpoC1.

At the genus level, coding chloroplast DNA markers were useful

to assign clusters to the correct genus (Fig. S1). For instance, rpoC1

and rbcL reached the best rate of correct genus-level assignment at

about 1% in sequence divergence (Fig. S1).

Finally, we attempted to identify tropical saplings by DNA

barcoding. First, we clustered the saplings together using psbA-

trnH, and we then attempted to assign the clusters to recognized

species using psbA-trnH combined with another marker with a

slower rate of molecular evolution (rpoC1). This last marker was

chosen at the time of the study because it had the highest

amplification success. By clustering the psbA-trnH sequences, we

could define 130 MOTUs (assuming a 1% threshold in sequence

divergence, see Table 3). Combining this information with the

rpoC1 marker, we were able to assign 32% of the individuals to a

known species, and 25% to a known genus. Lianas and shrubs

were quite abundant in the sapling layer, and these lack

representatives in our reference database. Restricting our sample

to the 152 juveniles of tree species, and based on DNA barcodes

only, we detected 86 MOTUs, and we were able to assign 46% of

the individuals to a known species, and 29% to a known genus.

Finally, combining the morphological and molecular data, we

could identify 59% of the individuals to the species, and 37% to

the genus. The remaining 4% of the individuals were at least

identified to the family level.

Figure 1. Comparison of DNA barcode performance. Panel (a):
Percentage of monophyletic species (black bars) and excluding the
Sapotaceae and Laureae (grey bars) using the eight tested markers (see
Table 2). Panel (b): Fraction of sequences correctly (black), ambiguously
(dark grey), and incorrectly (light grey) assigned to species. Some
sequences could not be assigned when their sequence diverged too
much from the other species (Table S3).
doi:10.1371/journal.pone.0007483.g001

Table 2. Percentage of monophyletic species and percentage of monophyletic genera recovered using the eight tested markers.

Marker Nb tested species
Percent monophyletic
species (rank)

Percent monophyletic species*
(rank) Nb genera Percent monophyletic genera

psbA-trnH 107 64 (2) 67 (2) 82 77

matK 49 61 (3) 63 (5) 45 71

rpoB 72 61 (3) 67 (2) 62 73

rbcL 104 57 (5) 65 (4) 81 77

trnL 87 53 (6) 59 (6) 68 63

rpoC1 79 46 (7) 51 (7) 63 68

ycf5 62 40 (8) 44 (8) 56 63

ITS 32 66 (1) 79 (1) 26 73

*Excluding Sapotaceae & Laureae.
doi:10.1371/journal.pone.0007483.t002
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Discussion

We examined whether plant DNA barcoding candidates

matched taxonomic species delimitations in a large plant

biodiversity survey of an Amazonian forest. Our working

assumption was that the rate of species discrimination would

exceed 72%, as recently found by the CBoL Plant Working Group

[28]. In principle, by restricting the scope of the reference database

to species known to occur in a specific habitat or region, a much

greater degree of discrimination should be possible, since not all

close relatives of a given species occur in the area under study [56].

We collected representatives of truly co-occurring species in order

to provide a robust test of in situ applications of DNA barcodes.

Using a large dataset, all attached to a voucher specimen, we were

able to show that correct matching between barcodes and

taxonomic species did not exceed 70%. Failure to reach a higher

rate of species discrimination was due to the low plastid sequence

variation in a few species-rich clades.

We confirmed that the markers rpoC1, rbcLa, trnL and to a lesser

extent rpoB, could all be sequenced easily from leaf or cambium

tissue. Being able to extract DNA directly from the cambium is

important because it will prove useful in routine tropical forestry

monitoring programs. The other markers showed a lower

performance either because they failed in some groups or because

they showed a low overall sequencing success. For instance, matK

could be sequenced in only 68% of our samples, using two primer

pairs. CBoL has reported a sequencing success of 90% for the matK

region [28]. This difference could be explained either by the

choice of several combination of primers. Fazekas et al. (2008) did

report a 88% sequencing success for this marker, but they also

emphasized that they had used up to 10 primer pairs, entailing a

‘considerable effort’ [57]. The second option is to use a more

sophisticated chemistry at the amplification stage. Ford et al. (2009)

reported a 85% success for matK using a combination of standard

and nested multiplexed-tandem PCR (MT-PCR) [27]. The

additional cost of testing a large number of primer combinations

or of implementing non-standard PCR methods should be

considered when implementing a DNA barcode project.

Despite much effort, ITS does not seem to compete as a universal

DNA barcode for tropical forest inventories given the limited

sequencing success observed in this study. Yet, ITS could be helpful

in the identification of species in some particular target groups, such

as the Sapotaceae (unpublished results). Of all coding plastid

markers, ycf5 had consistently the worst performance as a DNA

barcode, followed by rpoC1. According to the test of monophyly,

matK and rpoB were good barcodes, but not according to the ‘best

close match’ test. The rbcL marker was intermediate in both tests, but

it is both easily sequenced, and well-represented in existing sequence

repositories, and the consensus for this marker appears natural [28].

The marker matK has been found to provide valuable information in

selected groups of plants (genus Compsoneura, [30]; Orchidaceae

[26],). However, because obtaining sequences for this marker from

field-collected plant tissue remains challenging, we suspect that it will

be difficult to implement large-scale barcoding projects based on

matK (see also [27] for a thoughtful discussion). The trnLUAA intron

ranked second in the ‘best close match’ test, and fifth in the

monophyly test and in the clustering test (Table 3). It was twice as

variable as rbcLa, and its variability was comparable to matK, but it is

much easier to sequence. Hence, it remains an interesting option for

barcoding projects [25]. Indeed, the only ecological application of

the plant DNA barcoding program thus far is the study of Jurado-

Riviera et al. (2009), who have used the trnL intron to explore the diet

of leaf beetles in the Chrysomelinae subfamily [58]. Finally, the use

of the psbA-trnH marker has been much criticized because it is prone

to reads error at the sequencing stage [43]. Yet, in our study, psbA-

trnH had the best performance as a DNA barcode, ranking first in

both monophyly and ‘best close match’ tests, and being universally

amplifiable.

Table 3. Number of clusters recovered using the tested markers, and with two parametric methods.

Marker Number of
species

TaxonDNA 0.1% TaxonDNA 0.5% TaxonDNA 1% TaxonDNA 3% TaxonDNA Rank

rbcL 223 187 (60) 113 (34) 93 (26) 47 (10) 5

rpoB 173 145 (60) 99 (43) 85 (34) 52 (15) 5

rpoC1 198 154 (52) 106 (35) 81 (23) 35 (8) 8

ycf5 155 131 (60) 98 (42) 84 (33) 57 (16) 5

matK 132 119 (76) 83 (44) 72 (39) 53 (21) 2

psbA-trnH 212 242 (63) 219 (60) 209 (58) 160 (47) 3

trnL 158 144 (62) 100 (44) 81 (35) 58 (22) 4

ITS 101 114 (73) 104 (77) 94 (70) 76 (52) 1

blastclust 0.1% blastclust 0.5% blastclust 1% blastclust 3% blastclust Rank

rbcL 223 186 (62) 114 (34) 95 (25) 48 (17) 6

rpoB 173 153 (64) 105 (44) 88 (36) 56 (17) 4

rpoC1 198 154 (53) 107 (36) 82 (23) 36 (8) 8

ycf5 155 129 (60) 97 (43) 83 (34) 53 (15) 7

matK 132 118 (75) 84 (44) 78 (40) 61 (24) 1

psbA-trnH 212 265 (65) 238 (66) 224 (61) 186 (48) 3

trnL 158 146 (63) 115 (54) 95 (42) 78 (32) 5

ITS 101 118 (72) 106 (80) 100 (78) 80 (55) 2

TaxonDNA is an alignment-based method based on sequence distance matrices, and blastclust is a method based on blast similarity scores of unaligned sequences.
Percentage of correct assignment of a taxon to a MOTU (in parentheses). Given the length of the sequences (,1000 bp), 0.1% generally corresponds to less than 1 bp
substitution.
doi:10.1371/journal.pone.0007483.t003
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Irrespective of the test or of the marker, a remarkable fact is that

none of the rates of correct identification exceeded 70%. Part of

this limited performance is due to the plant DNA barcoding

strategy itself. Most of the markers proposed thus far are located in

the chloroplast genome, and as such they do not evolve

independently. Species-rich genera, the ones that would benefit

the most from molecular identification techniques (Pouteria, Inga,

Eschweilera, Ocotea) showed little to no variation in the plastid

markers. Also, many of our botanical identifications were based on

sterile morphological characters, like in all other tropical tree

biodiversity surveys. While each single individual had a voucher,

which was compared to a reference collection, closely related

species often cannot be distinguished based on sterile morphology

alone. For example, this is the case of Trichilia cipo/T. pallida,

Eschweilera coriacea/E. pedicellata, and several species in genus Ocotea,

to cite but a few. One different but equally important problem is

that several important tropical tree families are still lacking a

comprehensive systematic treatment. For instance, recent work on

the Lecythidaceae based on morphology and molecular data

showed that several generic delimitations needed to be re-

circumscribed [59]. Likewise, large genera such as Pouteria are

probably not monophyletic [49]. Thus it remains critical for future

DNA barcoding projects to keep improving existing repositories

through fieldwork and descriptive taxonomy [15].

We used our dataset as a benchmark to assess the performance of

several statistical methods to cluster sequences into molecular

operational taxonomic units. Both TaxonDNA performed well with

all of our markers, and the alignment-free method (blastclust)

compares well with TaxonDNA. These methods may be scaled up to

very large datasets. This is of considerable current interest, with the

development of high-throughput sequencing technologies [60,61].

These approaches should be of considerable help in accelerating the

pace of ecological research and biodiversity monitoring [62].

So far we have ignored the fact that the markers may display a

high level of intraspecific geographical structure [63,64]. To truly

test the performance of a putative DNA barcode, it will be

essential to sample widely scattered populations for each species to

assess the hypothesis that a locally defined reference of DNA

barcodes does characterize a species throughout its distributional

range. To our knowledge this test has not been performed yet.

It has been argued that plant DNA barcodes could be especially

useful to identify juvenile individuals, and plant debris [29]. Here,

we tested this idea for the first time, using a two-tiered approach:

we first clustered the individuals into MOTUs using the most

variable marker psbA-trnH. We then assigned the MOTUs to

known taxonomic categories using the reference database we had

constructed for trees. This enabled us to identify 86 MOTUs

within a sample of ca. 152 tree saplings, 96% of which could be

identified to the species or at least to the genus. Thus, DNA

barcoding does show much potential for accurate identification of

species at life stages which have been particularly difficult to

investigate using morphological identification only. The coding

plastid markers were often not variable enough to identify species.

However, they efficiently assigned individuals to higher taxonomic

ranks. Even though this differs from the stated goal of DNA

barcoding – assigning individuals to species –, it will have

important implications for ecological applications, such as tropical

plant diversity surveys [11,12,65].

Supporting Information

Supporting Information S1 Additional information on

sequence clustering methods

Found at: doi:10.1371/journal.pone.0007483.s001 (0.05 MB

DOC)

Table S1 List of the sampled individuals with taxonomic

identification and accession code. In the last eight columns, the

GenBank accession numbers are reported.

Found at: doi:10.1371/journal.pone.0007483.s002 (0.15 MB

XLS)

Table S2 Primers and PCR conditions for the eight markers

tested in the study

Found at: doi:10.1371/journal.pone.0007483.s003 (0.06 MB

DOC)

Table S3 Test of the DNA markers performance in retrieving

the correct species. The option ‘best close match’ of TaxonDNA

was used for the eight markers. The ranking of the markers was

done according to the rate of correct species assignment in the

‘best close match’ test.

Found at: doi:10.1371/journal.pone.0007483.s004 (0.04 MB

DOC)

Table S4 Pairwise comparison of the markers to the samples for

which both sequences are available. Reported is the percentage of

best close match as reported in TaxonDNA for the two markers

independently, and also for the combined markers. The rate of

correct assignment was less than 50% in most of the cases, and

combining two markers did not improve much the rate of correct

assignment (+14% on average).

Found at: doi:10.1371/journal.pone.0007483.s005 (0.08 MB

DOC)

Figure S1 Types of error in the parametric assignment of

sequences to MOTUs. Left panel: Error made during the

construction of species-level MOTUs. Two types of errors are

reported as a function of sequence divergence: splitting of valid

taxa into two or more clusters (splitting fraction: squares), and

lumping of two or more valid taxa into the same cluster (lumping

fraction: circles). Right panel: same as left panel, but using genus-

level MOTUs, as the reference taxonomic level.

Found at: doi:10.1371/journal.pone.0007483.s006 (3.93 MB TIF)
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