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Integrins mediate adhesive interactions between cells and their environment, including
neighboring cells and extracellular matrix (ECM). These heterodimeric transmembrane
receptors bind extracellular ligands with their globular head domains and connect to the
cytoskeleton through multi-protein interactions at their cytoplasmic tails. Integrin
containing cell–matrix adhesions are dynamic force-responsive protein complexes that
allow bidirectional mechanical coupling of cells with their environment. This allows cells to
sense and modulate tissue mechanics and regulates intracellular signaling impacting on
cell faith, survival, proliferation, and differentiation programs. Dysregulation of these
functions has been extensively reported in cancer and associated with tumor growth,
invasion, angiogenesis, metastasis, and therapy resistance. This central role in multiple
hallmarks of cancer and their localization on the cell surface makes integrins attractive
targets for cancer therapy. However, despite a wealth of highly encouraging preclinical
data, targeting integrin adhesion complexes in clinical trials has thus far failed to meet
expectations. Contributing factors to therapeutic failure are 1) variable integrin expression,
2) redundancy in integrin function, 3) distinct roles of integrins at various disease stages,
and 4) sequestering of therapeutics by integrin-containing tumor-derived extracellular
vesicles. Despite disappointing clinical results, new promising approaches are being
investigated that highlight the potential of integrins as targets or prognostic
biomarkers. Improvement of therapeutic delivery at the tumor site via integrin binding
ligands is emerging as another successful approach that may enhance both efficacy and
safety of conventional therapeutics. In this review we provide an overview of recent
encouraging preclinical findings, we discuss the apparent disagreement between
preclinical and clinical results, and we consider new opportunities to exploit the
potential of integrin adhesion complexes as targets for cancer therapy.
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INTRODUCTION

Integrin Structure
Integrins represent a family of transmembrane adhesion receptors, facilitating the adhesive
connection between cells and their surrounding extracellular matrix (ECM) or neighboring cells
(Takada et al., 2007; Barczyk et al., 2009; Kadry and Calderwood, 2020). They comprise a group of
heterodimeric proteins generated by non-covalent association of an a- and a ß-subunit (Ginsberg,
2014). Both subunits are classified as type 1 transmembrane proteins, composed of a rather large
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extracellular domain and a relatively small transmembrane- and
intracellular region (Calderwood, 2004; Ginsberg, 2014). The
globular head domain creates a binding site for extracellular
ligands while the short cytoplasmic tails interact with a cluster
of associated proteins that ultimately connects to the
cytoskeleton. In total there are 18 α-and eight ß-subunits,
generating 24 different heterodimers, known to be expressed
in humans (Calderwood, 2004). This variety in combinations
allows integrins to interact with—and respond to a broad range of
ligands, including insoluble ECM proteins, matricellular proteins,
cell surface proteins, and soluble proteins (Alday-Parejo et al.,
2019). Several recognition motifs for integrin-binding have been
identified. The Arg-Gly-Asp (RGD) motif is recognized by eight
different integrins and has been found in a plethora of molecules
ranging from ECM proteins to growth factors to coats of
microorganisms.

Integrin Function
Integrin transmembrane receptors execute two core functions:
they mediate adhesion of cells to the ECM or neighboring cells,
and they engage in transduction of signals received from the
microenvironment. Integrin-mediated cell adhesion is dynamic:
flexibility in integrin conformation allows a balance between
active (open; high affinity) and inactive (closed; low affinity)
states. The active state is regulated by interaction of the
intracellular adaptor proteins talin and kindlin with the ß-
subunit cytoplasmic tail and is further stabilized by interaction
with ligand at the extracellular integrin head domain
(Calderwood, 2004; Sun et al., 2019). Moreover, firm cell
adhesion requires integrins to cluster in cell adhesion
complexes that connect to the cytoskeleton.

Integrin-mediated cell adhesion controls many aspects of cell
behavior including survival, proliferation, metabolism,
differentiation, as well as cell shape and motility (Huveneers
and Danen, 2009). Several mechanisms of such outside-in
signaling have been proposed. First, integrins allow cells to
interact with the ECM in which soluble growth factors such as
VEGF, TGFβ and many others are concentrated, modified, and
presented to cells (Hynes, 2009). Second, integrins can directly
bind and activate growth factors such that they can stimulate their
cognate receptors, a process currently established for activation of
TGFβ by αvβ6 and αvβ8 (Margadant and Sonnenberg, 2010).
Third, integrin engagement and clustering can lead to local
activation of receptors for soluble ligands such as EGF, PDGF,
and others, often involving receptor crosstalk via Src family
kinases (Ivaska and Heino, 2011; Brizzi et al., 2012). Fourth,
the dynamic intracellular complex of adaptor and signaling
proteins that couples integrins to the cytoskeleton allows 1)
local signaling through GTPases and kinases and 2) sensing
of- and responding to mechanical aspects of the
microenvironment by mechanoresponsive interactions
(Huveneers and Danen, 2009; Kechagia et al., 2019).

Integrins in Cancer
Dysregulation of integrin expression on cancer cells has been
extensively studied in cell culture and animal models and shown
to provide therapeutic opportunities for arresting tumor growth,

reducing resistance to chemo-or radiotherapy, or attenuating
invasion and metastasis. Studies using genetically engineered
mouse models or using human tumor cells transplanted in
immune deficient mice have extensively shown that deletion of
integrins in cancer cells or preventing integrin function with
blocking antibodies or peptides could interfere with tumor
growth, metastasis, and resistance to chemo- or radiotherapy
(Juliano and Varner, 1993; Danen, 2005; Desgrosellier and
Cheresh, 2010; Hamidi and Ivaska, 2018; Cooper and
Giancotti, 2019). For the large family of β1 integrins, dual
roles have been identified in growth versus metastasis,
indicating that caution is warranted for their application as
therapeutic targets (Ramirez et al., 2011; Moran-Jones et al.,
2012; Truong et al., 2014; Moritz et al., 2021). Integrins such
as αvβ3, αvβ5, and α5β1, are not only expressed on tumor cells
but are also induced on endothelial cells during the process of
angiogenesis (Friedlander et al., 1995; Avraamides et al., 2008).
These integrins have indeed been shown to serve as targets for
anti-angiogenic therapies in cancer, although the mode of action
of anti-angiogenic drugs targeting integrins remains enigmatic
(Friedlander et al., 1995; Hynes, 2002; Alavi and Cheresh, 2008;
Avraamides et al., 2008).

Recent studies have added a range of novel emerging cancer-
related processes that require the participation of integrins,
including the establishment of a pre-metastatic niche,
epithelial-to-mesenchymal transition (EMT), metabolic
rewiring, cancer cell stemness and dormancy (Barkan et al.,
2010; Goel et al., 2014; Seguin et al., 2015; Ata and Antonescu,
2017; Ji et al., 2020; Park and Nam, 2020; Winkler et al., 2020;
Coban et al., 2021). The involvement of integrin αvβ6 in
activation of TGFβ was recently connected to SOX4 mediated
cancer immune evasion: αvβ6 blocking antibodies could inhibit
SOX4 expression and sensitize mouse models for triple negative
breast cancer to T cell mediated killing in response to immune
checkpoint inhibitors (Bagati et al., 2021). Integrin αvβ8, which
can also activate TGFβ, represents a target expressed on immune
cells for modulating anti-tumor immunity. I.e., αvβ8 blocking
antibodies or specific depletion of integrin αvβ8 from the surface
of CD4+CD25+ regulatory T cells could attenuate TGFβmediated
inhibition of CD8+ T cells and thereby restore tumor killing
capacity of CD8+ T cells and synergizing with radio- or immune
therapy (Dodagatta-Marri et al., 2021).

The expression of integrins on the cell-surface and their apparent
role in several cancer related processes makes them appealing targets
for the development of cancer therapies. However, despite the
abundance of promising preclinical data, integrin targeting
therapies in clinical studies have thus far largely failed to deliver.
Notably, although not within the scope of this review, components
of the integrin signaling complexes represent additional targets in
cancer. For example, focal adhesion kinase (FAK) is overexpressed
or activated in multiple cancers and supports tumor cell
proliferation, migration, and therapy resistance. Small molecule
inhibitors targeting FAK, such as defactinib, GSK2256098, VS-
6063, and BI 853520, are currently being investigated in several
clinical trials, mostly in combination with other agents (Mohanty
et al., 2020; Dawson et al., 2021). Src is another interesting target
associated with integrin signaling. Dasatinib, a Src inhibitor, showed
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efficacy when combined with docetaxel in castration-resistant
prostate cancer patients (Araujo et al., 2012) (NCT00439270),
and was more effective than imatinib in Pediatric Philadelphia
Chromosome–Positive Acute Lymphoblastic Leukemia (Shen
et al., 2020). On the other hand, dasatinib monotherapy failed to
meet expectations in patients with recurrent glioblastoma (Lassman
et al., 2015) or in patients with locally advanced or stage IVmucosal,

acral, or vulvovaginal melanoma (Kalinsky et al., 2017). The
challenges of targeting Src family proteins were recently reviewed
byMartellucci and others (Martellucci et al., 2020). Integrins interact
with many other cytoplasmic proteins, which are being investigated
for their potential as therapeutic targets, however these have not yet
been translated to the clinic (Cabodi et al., 2010; Bachmann et al.,
2019).

TABLE 1 | Overview of failed or terminated major clinical trials for the assessment of integrin targeting therapeutics in cancer.

Clinical
trial
identifier

Phase Name
therapeutic

Type
therapeutic

Target
integrin

Combination
therapy
with

Condition Result Mode
of action

NCT01360840 II Abituzumab
(EMD525797)

Antibody αV — Metastatic Castration-
Resistant Prostate
cancer

PFS not
significantly
different

Blocks cell
adhesion

NCT01008475 I/II Abituzumab
(EMD525797)

Antibody αV Cetuximab
Irinotecan

Metastatic colorectal
cancer

PFS not
significantly
different

Blocks cell
adhesion

NCT00246012 II Intetumumab
(CNTO 95)

Antibody αV Dacarbazine Stage IV Melanoma PFS not
significantly
different

Blocks ligand
binding site

NCT00537381 II Intetumumab
(CNTO 95)

Antibody αV Docetaxel
Prednisone

Metastatic Hormone
Refractory Prostate
Cance

All efficacy
endpoints
better in
placebo

Blocks ligand
binding site

II Vitaxin
(MEDI-523)

Antibody αVβ3 — Metastatic cancers No tumor
regression

Blocks ligand
binding site

II Etaracizumab
(MEDI-522,
Abegrin)

Antibody αVβ3 Dacarbazine Stage IV metastatic
melanoma

PFS not
significantly
different

Blocks ligand
binding site

NCT00842712,
NCT00121238,
NCT00705016

II Cilengitide (EMD
121974)

Inhibitory
peptide

αVβ3/αVβ5 Multiple
combinations

Multiple cancers No benefits
compared to
standard of
care

Blocks ligand
binding site

NCT00689221 III Cilengitide (EMD
121974)

Inhibitory
peptide

αVβ3/αVβ5 Temozolomide +
Radiotherapy

Newly Diagnosed
Glioblastoma

Median OS not
significantly
different

Blocks ligand
binding site

NCT00401570,
NCT00654758,
NCT00516841,
NCT00635193,
NCT00369395,
NCT00100685

I/II Volociximab
(M200)

Antibody αVβ1 Alone or in
combinations with
standard of care

Metastatic Pancreatic
Cancer, Non-Small
Cell Lung Cancer,
Ovarian and Peritoneal
cancer, Renal cell
carcinoma

Partial or no
significant
effects

Blocks ligand
binding site

NCT00675428 II Natalizumab Antibody VLA-4, (α4) — Multiple myeloma Terminated
due to low
enrollment

Allosteric
inhibition

NCT00131651,
NCT00352313

I/II ATN-161 Small peptide
antagonist

α5β1 Alone or in
combinations

Glioma, renal cancer
and other solid tumors

No therapeutic
benefits

Blocks ligand
binding site;
prevents
interaction with
fibronectin
synergy site

NCT01313598 I GLPG0187 Non-peptide
Integrin
antagonist

Arg-Gly-
Asp
(RGD)-
binding
integrins

— Solid tumors No effect Blocks ligand
binding site
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In this review we focus on integrins as drug targets in cancer
and discuss the apparent disagreement between preclinical and
clinical results, we provide an overview of new encouraging
preclinical findings and consider new opportunities to exploit
the potential of integrin adhesion complexes in the effective
treatment of cancer.

FINALIZED CLINICAL TRIALS EXPLORING
INTEGRIN THERAPEUTICS

Monoclonal antibodies and synthetic RGD peptides have been
used in clinical trials to target integrins (Li M. et al., 2021).
These drugs typically block integrin function by occupying the
ligand binding site. Integrin blocking antibodies previously
showed efficacy in different diseases, such as multiple sclerosis,
thrombosis prevention after percutaneous coronary
intervention, ulcerative colitis and Chron’s disease (Ley
et al., 2016). Moreover, in multiple preclinical studies,
inhibition of αvβ3, αvβ5 or β1 integrins prevented tumor
angiogenesis, reduced tumor growth and limited metastatic
spread, supporting the translation of these antibodies and
blocking peptides into the clinic for cancer therapy (Mitjans
et al., 2000; Trikha et al., 2004; Khalili et al., 2006; Danen,
2013). Despite promising preclinical results, such therapeutics
did not make it to the market. Therapeutic safety was often not
the bottleneck for integrin targeting therapeutics. The major
drawback was their lack of efficacy (Table 1).

The majority of integrin directed therapeutics in clinical
trials involve antibodies or peptides targeting αv-integrins and
these have thus far failed to show benefit for cancer patients.
The integrin αv antibody abituzumab was used in a phase II
trial to treat patients with metastatic castration-resistant
prostate cancer (Hussain et al., 2016) (NCT01360840). Even
though a reduction in prostate cancer associated-bone lesion
development was observed in the antibody treated group of
patients, the primary endpoint of progression free survival
(PFS) was not significantly extended. Interestingly, the
addition of abituzumab to the standard of care did show
some beneficial effect on the overall survival of a subset of
metastatic colorectal carcinoma patients (Élez et al., 2015;
Laeufle et al., 2018) (NCT01008475). Another phase II αv-
targeting study illustrated that a combination treatment of
dacarbazine with the monoclonal αv-antibody intetumumab
did not enhance treatment efficacy over monotreatment in
patients with stage IV melanoma (O’Day et al., 2011)
(NCT00246012). Testing this antibody in a phase II trial
with prostate cancer patients did not improve outcome
either (Heidenreich et al., 2013) (NCT00537381).
Antibodies specific for αvβ3 integrin have been extensively
evaluated in clinical trials as well (Li M. et al., 2021). In a phase
I trial, the αvβ3-antibody vitaxin failed to show benefit for
patients with metastatic solid tumors (Posey et al., 2001). The
additional effect of the αvβ3-antibody etaracizumab was
assessed on top of dacarbazine treatment in stage IV
melanoma patients (Hersey et al., 2010), however no
significant differences in the time to progression (TTP) or

PFS were observed. Several phase II trials have explored
efficacy of the αvβ3/αvβ5-selective function blocking peptide
cilengitide for treatment of solid tumors alone or in
combination with other therapies, but results were not
encouraging (Alva et al., 2012; Vermorken et al., 2014;
Vansteenkiste et al., 2015; Alday-Parejo et al., 2019)
(NCT00842712, NCT00121238, NCT00705016). Likewise,
cilengitide failed to improve therapeutic efficacy in
combination with standard of care for patients with newly
diagnosed glioblastoma in a phase III trial (Stupp et al., 2014)
(NCT00689221).

Other integrins that have been targeted include α5β1.
Unfortunately, phase I and II trials using the small peptide
antagonist of integrin α5β1 ATN-161 have thus far not shown
benefit for glioma patients or in other solid tumors (Cianfrocca
et al., 2006) (NCT00131651, NCT00352313). Similarly, the
combination treatment of gemcitabine with the α5β1 chimeric
monoclonal antibody volociximab did not show any additional
treatment efficacy over gemcitabine monotreatment in metastatic
pancreatic cancer patients in a phase II trial (Evans et al., 2007)
(NCT00401570). Moreover, volociximab efficacy was not
encouraging in peritoneal, ovarian, non-small cell lung cancer
or melanoma (Figlin et al., 2006; Barton, 2008; Vergote et al.,
2009; Bell-McGuinn et al., 2011; Besse et al., 2013)
(NCT00401570, NCT00654758, NCT00516841, NCT00635193,
NCT00369395, NCT00100685). Natalizumab, an antibody
targeting α4β1 (VLA-4) has shown promising clinical results
in autoimmune related diseases such as multiple sclerosis and
Crohn’s disease (Rudick et al., 2013; McLean and Cross, 2016).
However, a phase 1/2, two-arm dose-finding study of
natalizumab for relapsed or refractory Multiple Myeloma, was
unfortunately terminated due to insufficient patient enrolment
(NCT00675428). Among the therapeutics discussed so far,
natalizumab is the only one not targeting the ligand binding
site. Instead, it acts through allosteric interactions (Yu et al.,
2013). Further exploring such alternative forms of integrin
receptor pharmacology may lead to new and more effective
treatments (Slack et al., 2022).

ONGOING CLINICAL TRIALS EXPLORING
INTEGRIN THERAPEUTICS

As discussed, clinical trials of αv-integrin inhibitors or drugs
targeting other integrins have thus far not been encouraging.
Other approaches are now being explored in new clinical trials
(Table 2).

A phase I trial aims to treat patients with previously treated
pancreatic cancer or other solid tumors with the anti-αvβ3
protein, ProAgio (NCT05085548). ProAgio binds αvβ3 outside
the classical ligand-binding site. Instead of blocking ligand
binding, it triggers recruitment and activation of caspase 8,
resembling a mechanism previously associated with unligated
integrins (Stupack et al., 2001; Turaga et al., 2016). This may lead
to apoptosis in tumor cells, endothelial cells, and cancer-
associated fibroblasts with increased expression of αvβ3.
Subsequently, this can result in a reduction of the stroma
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density of pancreatic cancer patients increasing access of
conventional anti-cancer therapeutics to the tumor.

In a planned phase I trial, the safety, tolerability and efficacy of
the integrin β6 targeting antibody-drug conjugate SGN-B6A will
be studied in patients with advanced solid tumors. SGN-B6A
consists of an antibody targeting integrin β6 conjugated with
monomethyl auristatin E, an antimitotic agent that induces
apoptosis by binding to tubulin (Patnaik et al., 2021)
(NCT04389632). A randomized phase II trial, planned at the end
of 2021 will study efficacy of a tumor penetrating iRGD peptide,
CEND-1, in combination with gemcitabine and nab-paclitaxel in
patients with metastatic pancreatic cancer. The first-in-class agent
CEND-1 binds tumor cells and enhances delivery of co-
administered anti-cancer agents. In a recently completed phase I
clinical trial the safety and efficacy of CEND-1 was already explored
(Dean et al., 2020; Dean et al., 2021) (NCT03517176). Based on the
trial data, the combination treatment was regarded as safe.
Importantly, efficacy of this treatment exceeded the efficacy of
the mono-treatments, with ongoing progression free survival of
some patients.

A first-in-class humanized and de-immunized monoclonal
antibody, OS2966, that targets the β1 integrin subunit is tested in
patients with high-grade glioma (Nwagwu et al., 2021)
(NCT04608812). Considering that OS2966 targets the entire
family of β1 containing integrins, toxicity may be an issue.
Interestingly, this trial will make use of real time imaging. By
adding gadolinium contrast to the OS2966 antibody, therapeutic
distribution can be visualized using MRI. The additional
collection of tissue specimens planned before and after
treatment will provide better knowledge on the presence of
any predictive biomarkers. In October 2021 a phase I trial
finished, in which the safety, tolerability and pharmacokinetics
(PK) of the allosteric integrin activator 7HP349 was studied in
healthy male subjects (NCT04508179). Interestingly, in contrast
to most integrin targeting therapeutics, this small molecule is
designed to enhance integrin activity. Binding of 7HP349 should
cause the activation of the αLβ2 and α4β1 integrins on immune
cells, thereby enhancing an immune response. Results of this
study remain to be published.

WHY HAVE INTEGRIN-TARGETED
THERAPEUTICS FAILED TO ACHIEVE
CLINICAL EFFICACY THUS FAR?
Despite promising preclinical in vitro and in vivo results that indicate
that integrins can be targeted with good efficacy alone, or in
combination with radio-, chemo-, or immune therapies, clinical
results thus far do not seem encouraging (Goodman and Picard,
2012; Raab-Westphal et al., 2017; Alday-Parejo et al., 2019; Li M.
et al., 2021). As with all experimental therapies, recruitment of
sufficient numbers of patients fitting the trial design is a challenge. As
described above, for one trial this has led to early termination. In
addition, testing is often done in the context of advanced disease
stages and in cases where earlier therapies have failed. Patients
enrolled in the clinical trials described in Table 1 typically have
extensive treatment history with the exception of cilengitide that was
explored in newly diagnosed glioblastoma patients. This may well
explain the discrepancy between clinical trials and results obtained in
more acute preclinical models. There are several other factors that
may have negatively impacted the clinical testing of anti-integrin
therapeutics in cancer. These include variable integrin expression in
tumors, redundancy in integrin function, the fact that integrins can
have very different roles at distinct disease stages and sequestering of
therapeutics by integrin-containing tumor-derived extracellular
vesicles (TEVs) (Figure 1).

Variable Integrin Expression and Poor
Pharmacology
Thus far, antibodies have been the major type of anti-integrin
therapeutics tested in clinical trials (Table 1). The exquisitely
high specificity and corresponding low toxicity of these
antibodies are most likely responsible for this high prevalence. A
major limitation is a lack of knowledge with respect to expression of
the target integrin in the tumor of the patient. Prior treatments may
have affected integrin expression patterns in the tumor tissue. In
addition, data on antibody pharmacology is generally lacking in the
clinical studies. It is well known that targeting of therapeutics to the
tumor tissue can be difficult due to poor vascularization, (Carmeliet

TABLE 2 | Overview of planned or ongoing clinical trials for the assessment of integrin targeting therapeutics in cancer.

Clinical trial
identifier

Phase Name
therapeutic

Type therapeutic Target
integrin

Combination therapy
with

Condition Result

NCT05085548 I ProAgio Cytotoxic Protein αVβ3 — Pancreatic cancer/Solid
tumors

Recruiting

NCT04389632 I SGN-B6A Antibody-Drug
Conjugate

β6 — Solid tumors Recruiting

NCT04608812 I OS2966 First-in-class
monoclonal Ab

β1 — High-grade Glioma Recruiting

NCT04508179 I 7HP349 Allosteric Integrin
activation

αLβ2/α4β1 — Healthy subjects Recruiting

NCT03517176 I CEND-1 First-in-class iRGD αV Gemcitabine/Nab-
Paclitaxel

Pancreatic cancer PFS
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and Jain, 2011), and this may be a significant problem for the
relatively large antibody drugs. Hence, it is important to determine
expression of the target integrin and establish actual reach of the
integrin-targeting antibodies to the tumor tissue to relate these
aspects to response rates in individual patients.

Redundancy and Different Roles of
Integrins at Distinct Disease Stages
Many integrins show overlap in their ligand binding spectrum.
I.e., key ECM proteins present in cancer tissues such as
fibronectin, laminins and collagens can be recognized by more
than one integrin (Danen, 2005). Hence, the effect of blocking
one integrin may be compensated for by another integrin binding
the same ligand. Patients entering experimental trials often
present with a mix of primary and metastatic lesions at
different stages. Integrin expression has been observed to
differ between primary and metastatic lesions indicating
that therapies may affect one but not the other stage. e.g.,
expression of integrin α2β1 was shown to promote tumor
growth of a breast cancer cell line whereas α2β1 expression
was attenuated once the breast cancer cells colonized the bone
(Moritz et al., 2021). In fact, integrins have been shown in
some cases to have opposing roles at different stages and
repress rather than support disease progression and
metastasis. While depletion of β1 integrins led to reduced
outgrowth of primary tumors, it enhanced metastatic capacity
in an orthotopic model using triple negative breast cancer cells

(Truong et al., 2014). Deletion of β1 integrins also increased
prostate cancer progression in a genetic mouse model (Moran-
Jones et al., 2012). Likewise, specific deletion of one of the β1
integrins, α2β1, was demonstrated to inhibit tumor metastasis
in mouse models for breast or prostate cancer (Ramirez et al.,
2011; Moritz et al., 2021). Although similar examples are not
described for the αv integrins targeted in clinical trials thus far,
these findings suggest that therapeutic targeting of integrins
may lead to complex responses in patients that may vary for
individual patients.

Sequestration of Therapeutics by
Integrin-Containing Extracellular Vesicles
Another mechanism that may underlie failure of anti-integrin
drugs involves TEVs that have been implicated in tumor
angiogenesis, immune evasion, and metastasis (Becker et al.,
2016). Tumors produce more EVs with a different cargo
composition (proteins, lipids and nucleic acids) as compared
to normal tissues and these EVs can be derived from the tumor
cells as well as other cell types in the tumor microenvironment.
Integrins are expressed on TEVs, thus guiding their preference for
organ colonization (Hoshino et al., 2015). As integrin expressing
TEVs are released by various cancer types they may represent a
common obstacle by sequestering integrin-targeting antibodies
or peptides before these can reach their tumor target (Fedele et al.,
2015; Hoshino et al., 2015; Singh et al., 2016; Carney et al., 2017;
Krishn et al., 2019; Li et al., 2020). This concept has also been

FIGURE 1 | Schematic overview illustrating four factors that could contribute to the lack of clinical efficacy for integrin targeting therapeutics. These include (A).
sequestration by tumor-derived extracellular vesicles (TEVs): integrin therapeutics bind integrins on TEVs instead of the tumor itself; (B). Different integrin expression at
different stages: integrin expression can change as the tumor progresses and thereby influence target availability; (C). Opposing roles of integrins: Integrins exert tumor
promoting effects but may also drive, as yet poorly understood, metastasis suppressing signals. Inhibition of integrins could therefore potentially be
disadvantageous; (D). Integrins redundancy: inhibition of one integrin can be compensated by expression of other integrins.
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demonstrated for patients with inflammatory bowel disease
where EVs expressing integrin α4β7 prevented vedolizumab
from reaching α4β7 expressed on T cells, which may affect
therapeutic efficacy (Domenis et al., 2020).

INTEGRINS AS BIOMARKERS OF CANCER
PROGRESSION

A major challenge for some of the most aggressive tumor types is
providing an accurate diagnosis and prognosis for patients
suffering from cancer. Integrins may serve as biomarkers in
cancer, due to their aberrant expression on tumor cells and
cells in the tumor microenvironment (Juliano and Varner,
1993; Danen, 2005; Desgrosellier and Cheresh, 2010; Hamidi
and Ivaska, 2018; Cooper and Giancotti, 2019). Recent studies
reinforce the idea that some integrins may serve as predictive
cancer biomarkers.

Integrins αvβ3, αvβ5, and αvβ6
Integrin αvβ3 expression has been extensively associated with
melanoma progression from an early radial growth phase to an
invasive vertical growth and metastasis (Danen, 2005;
Desgrosellier and Cheresh, 2010). Recently, differential
expression of the integrins αvβ3 and αvβ6 has been
observed in two subtypes of prostate cancer. Using patient
derived tumor tissue and tumor bearing murine models, αvβ3
was found to be largely absent in prostate adenocarcinoma
ADPrCa but significantly upregulated in the more malignant
primary neuroendocrine prostatic cancer (NEPrCa) and its
metastatic lesions in the lung (Quaglia et al., 2021). Combined
with previous findings on the role of αvβ3 in the differentiation
of ADPrCa to the aggressive NEPrCa, αVβ3 could have
potential as a biomarker in the early detection of this
malignant transition in prostate cancer (Quaglia et al., 2020;
Quaglia et al., 2021). The expression of integrin αvβ5 has been
suggested to represent a predictive biomarker for several
cancer types amongst which, breast, hepatic, and gastric
carcinomas (Bianchi-Smiraglia et al., 2013; Lin et al., 2018).
Recently, elevated levels of αvβ5 have been detected in patients
suffering from either glioblastoma or colorectal carcinoma
(Zhang et al., 2019; Shi et al., 2021). For both types of
cancer, the overexpression of αvβ5 was correlated with an
unfavorable overall survival (Zhang et al., 2019; Shi et al.,
2021). Integrin αvβ6 has been shown to represent an
unfavorable prognostic marker in pancreatic cancer patients
(Li et al., 2016). This integrin was recently found to be a
promising serum biomarker for patients with pancreatic
cancer. Based on the identification of αvβ6 in serum,
chronic pancreatic (cP) patients could be distinguished
from patients with pancreatic adenocarcinoma (PAC) and
high serum levels of αvβ6 were associated with poor
survival (Lenggenhager et al., 2021). Up to now,
Carbohydrate antigen CA19-9 has been the only biomarker
in use for PAC, yet its sensitivity and specificity failed to meet
the expectations for use as conclusive diagnostic tool
(Goonetilleke and Siriwardena, 2007). A study with a larger

patient cohort will be needed to further assess the potential of
αvβ6 alone or in combination with CA19-9 as a prognostic
serum biomarker for PAC.

Integrin α5β1
Metastasis in the bones is often lethal in patients with mammary
tumors (Coleman, 2006; Wang et al., 2019). Therefore, finding a
predictive biomarker is essential for the early recognition of
potentially metastasizing tumors. Integrin α5β1 is known for
its participation in tumor promoting processes like angiogenesis,
proliferation and metastasis (Hamidi and Ivaska, 2018; Hou et al.,
2020). In early-stage breast cancer patients, α5β1 expression in
the primary tumor was recently associated with the presence of
disseminated tumor cells in bone marrow aspirates and poor
metastasis-free survival (Pantano et al., 2021). The same study
showed that α5 gene silencing or pharmacological inhibition of
α5β1 with volociximab attenuated bone colonization following
intravenous injection of tumor cells in mice. Hence, stratification
of breast cancer patients based on α5β1 expression may represent
a way to exploit the potential of α5β1 antibodies, which have thus
far not shown clinical benefit. Integrin α5β1 was also found to be
upregulated in several gastrointestinal tumors where enhanced
expression of ITGA5 corresponded with a poor prognosis (Zhu
et al., 2021). Again, these findings warrant larger scale patient
studies to explore the potential of α5β1 as a prognostic biomarker
in solid tumors.

INTEGRIN MEDIATED DRUG DELIVERY

In the area of drug delivery, integrin αvβ3 has been extensively
pursued. It represents an attractive target because of its absence
from most normal tissues versus expression in tumor tissue,
including tumor cells and cells in the tumor microenvironment
such as endothelial cells stimulated to undergo angiogenesis
(Hood et al., 2002; Arosio and Casagrande, 2016). Integrin
binding peptide motifs such as RGD, which binds αvβ3 as
well as other integrins, have been incorporated on the surface
of drug carrying vesicles (Ruoslahti, 1996). Cyclic RGD peptides
(cRGD) have gained interest in recent years given their high
binding affinity for αvβ3 (Li N. et al., 2021).

Liposomal (Like) Drug Carriers
Liposomal vesicles have been used extensively to reduce the
toxicity of conventional anti-cancer therapeutics in healthy
tissues (Allen and Cullis, 2013). Low treatment efficacy with
this approach is caused by ineffective reach of the tumor. The
introduction of RGD peptides on the surface of liposomal like
vesicles has generally enhanced both drug accumulation in the
tumor and anti-tumor efficacy of the drug in mouse models (Fu
et al., 2021; Gao et al., 2021; Gong et al., 2021; Khabazian et al.,
2021). Additional adjustments were made to the vesicles to
further improve their drug transporting characteristics
(Figure 2). Sustained drug release of the liposomes was
enhanced, making use of PEGylated positively charged lipids
(Khabazian et al., 2021). The cationic liposomes decorated with
the cRGD peptide were then able to deliver negatively charged
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siRNA into melanoma cells and effectively induce cell death
(Khabazian et al., 2021). Alternatively, Gao et al. developed a
double membrane vesicle (DMV), presenting not only the RGD
peptide, but also lipopolysaccharides (LPS) (Gao et al., 2021). The
association of LPS (normally exposed in the outer membrane of

Gram-negative bacteria) with immune cells facilitated the transit
of the vesicles from the vasculature into the tumor
microenvironment where it could target melanoma cells and
deliver therapeutics. Other αvβ3 targeting liposomal like
formulations have shown a promising reduction in tumor

FIGURE 2 | Schematic overview of novel integrin targeting liposomal like drug delivery approaches. (A). cRGD decorated cationic liposomes; (B). Liposomes
decorated with a combination of LPS and RGD peptides; (C). DGEA decorated liposomes; (D). Gel coated liposomes decorated with PR-b.
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growth for lung and hepatocellular carcinoma in in vivo models
(Fu et al., 2021; Gong et al., 2021). Liposomes targeting other
integrins are slowly emerging, although selective expression of
these integrins in tumor tissue is less evident. Modification of the
liposomal membrane with the α5β1 binding peptide PR_b,
elevated the tumor specificity of the vesicle for pancreatic
cancer cells (Shabana et al., 2021). The addition of a

thermosensitive and biodegradable hydrogel in the formulation
enabled sustained release of the combination treatment paclitaxel
and gemcitabine and attenuated pancreatic tumor growth. Other
liposomes presenting the integrin α2β1 binding ligand DGEA,
were used to target breast cancer and effectively reduced tumor
growth in vivo and enhanced the overall survival of the mice
(Zhou et al., 2021).

FIGURE 3 | Schematic overview of alternative therapy delivery approaches making use of integrins. (A). Priming dendritic cells for vaccination; (B). Arming T cells
with bispecific antibodies; (C). Targeting Photothermal Ablation Therapy; (D). Drug targeting through Covalent Molecular Conjugates.
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Alternative Therapy Delivery Approaches
The use of integrins to direct anti-cancer therapeutics has not
been restricted to their application in liposomal drug
transport. Integrins may represent targets for the
development of novel tumor selective immunotherapies
(Figure 3A, B). In mouse models for breast cancer and
head and neck squamous cell carcinoma, it was shown that
α6β4 is preferentially expressed on CSCs and represents a
target for immunotherapies. Vaccination with dendritic cells
pulsed with β4 peptide or adoptive transfer of T cells incubated
with β4-CD3 bispecific antibodies, could induce T cell anti-
tumor activity and inhibition of tumor growth and metastasis
formation in the lungs of tumor bearing mouse models
(Dobson et al., 2021). The application of covalent linking
between an integrin binding peptide (mostly RGD) and an
established anti-cancer therapeutic has also been explored
(Figure 3D). This approach has led to reduced therapeutic-
associated toxicity in healthy tissues (Cirillo and Giacomini,
2021). It will be interesting to compare toxicity profiles for this
approach with those of liposomal encapsulations. Lastly, RGD
peptides have also been incorporated in polydopamine (PDA)
coatings to target photosensitizing agents such as gold
nanostars leading to tumor specific cell death and limited
adverse effects after near infrared activation of the drug (Li
Y. et al., 2021) (Figure 3C).

CONCLUSIONS AND FUTURE
PERSPECTIVES

Thus far, the majority of clinical trials investigating the efficacy
of therapeutics targeting integrins in cancer have failed. There
are several reasons for these disappointing results, including
insufficient insight in the changes in expression of integrins
during cancer progression in patients and a lack of knowledge
concerning the pharmacological properties and accumulation
at the target site of antibodies or peptides. Analysis of these
aspects would have to be included in the trial design to
understand reasons for failure or success. Other difficulties
include the redundancy between different integrins, the
different roles that integrins have been found to play at
distinct disease stages and sequestration of therapeutic
antibodies or peptides by integrins present on TEVs. We
envision that 1) further understanding of these hurdles and

development of approaches to combat them and 2)
incorporation in the trial design of analyses of integrin
expression levels and drug accumulation in the tumor tissue
should provide avenues for improving therapeutic strategies
targeting integrins.

Integrins have been, and continue to be, explored as
prognostic biomarkers in cancer, given their stage specific
expression patterns. Recent studies further point to their
role in distinguishing early-stage low risk-from advanced-
stage high risk, metastatic disease. Also, their role as
therapeutic targets continues to be investigated. Results thus
far do not to point to toxicity as a major issue for drugs
targeting αvβ3 and other αv integrins. It will be interesting to
monitor the currently ongoing trials exploring α5β1 and αv
integrins as targets in various cancers. The recent studies
pointing to integrins as targets to attack CSCs, to activate
anti-tumor immunity, or to synergize with drugs targeting
immune checkpoints suggest exciting new possibilities in this
field that await clinical translation. In addition, new strategies
exploring integrins as targets for delivery of (liposomes
containing) existing anticancer drugs are promising and
may contribute to improved targeting of therapeutics and
reduced toxicity. Indeed, several exciting possibilities await
clinical testing and may well lead to a revisiting of integrins as
therapeutic targets.
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