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Abstract
Introduction: The diagnosis of psychoactive substance use disorders has been based 
primarily on descriptive, symptomatic checklist criteria. In opioid addiction, there are 
no objective biological indicators specific enough to guide diagnosis, monitor disease 
status, and evaluate efficacy of therapeutic interventions. Proton magnetic resonance 
spectroscopy (1H MRS) of the brain has potential to identify and quantify biomarkers 
for the diagnosis of opioid dependence. The purpose of this study was to detect the 
absolute glutamate concentration in the nucleus accumbens (NAc) of patients with 
prescription opioid dependence using 1H MRS, and to analyze its clinical associations.
Methods: Twenty patients with clinically diagnosed definitive prescription opioid de-
pendent (mean age = 26.5 ± 4.3 years) and 20 matched healthy controls (mean 
age = 26.1 ± 3.8 years) participated in this study. Patients were evaluated with the 
Barratt Impulsiveness Scale (BIS-11), the Self-Rating Anxiety Scale (SAS), and the opi-
ate Addiction Severity Inventory (ASI). We used point-resolved spectroscopy to quan-
tify the absolute concentrations of metabolites (glutamate, choline, N-acetylaspartate, 
glutamine, creatine) within the NAc. The difference between metabolite levels of 
groups and Pearson’s correlation between glutamate levels and psychometric scores 
in patients were analyzed statistically.
Results: Glutamate concentrations in the NAc were significantly higher in prescription 
opiate addicts than in controls (t = 3.84, p = .001). None of the other metabolites dif-
fered significantly between the two groups (all ps > .05). The glutamate concentra-
tions correlated positively with BIS-11 scores in prescription opiate addicts (r = .671, 
p = .001), but not with SAS score and ASI index.
Conclusions: Glutamate levels in the NAc measured quantitatively with in vivo 1H 
MRS could be used as a biomarker to evaluate disease condition in opioid-dependent 
patients.
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1  | INTRODUCTION

The misuse of opiates has been one of the most serious societal, eco-
nomic, and health problems in the world. Opioid dependence, which 
is characterized by extremely unpleasant physical and emotional 
feelings after drug use is terminated (Zhu, Wienecke, Nachtrab, & 
Chen, 2016), is a highly prevalent addictive disorder associated with 
comorbid medical and psychiatric problems (Rodriguez-Cintas et al., 
2016). Most previous studies of drug addiction’s effect on brain sys-
tems have focused on illicit drugs, such as heroin, cocaine, canna-
bis (Greenwald, Woodcock, Khatib, & Stanley, 2015; Paydary et al., 
2016; Rodriguez-Cintas et al., 2016), as opposed to legal opiates 
(e.g., codeine, morphine, and opium) (Kim, Ham, Hong, Moon, & Im, 
2016; Qiu, Su, Lv, & Jiang, 2015; Schuckit, 2016). Long-term use of 
prescription opioid exposes patients to risk of developing addictive 
side effects, such as rewarding and withdrawal symptoms (Kim et al., 
2016).

The diagnosis of psychoactive substance use disorder is currently 
based on subjective judgments of symptomatic checklist criteria. 
There are no biomarkers of addiction severity and no reliable set of cri-
teria that are specific enough to help guide diagnosis, monitor disease 
state, and evaluate therapeutic effects (Volkow, Koob, & Baler, 2015).

Neuroimaging in substance use disorders examines neural circuits 
with regard to both molecular mechanisms and behavior (Garrison & 
Potenza, 2014). Recent technological advances in neuroimaging have 
the potential to impact significantly the identification of biomarkers of 
opioid addiction and its treatment. Proton magnetic resonance spec-
troscopy (1H MRS) is a noninvasive evaluation that provides in vivo 
quantification of the concentrations of selected biochemicals.

The brain’s reward circuitry is the neuroanatomical basis of pro-
ducing the reward effect in psychoactive substance dependence 
(Kim et al., 2016; Koob & Volkow, 2010; Russo & Nestler, 2013). The 
nucleus accumbens (NAc) is one of the most important nuclei in the 
reward circuitry, and acts as an interface for the transfer of informa-
tion between the limbic and motor systems (Mavridis, Boviatsis, & 
Anagnostopoulou, 2011; Zhu et al., 2016). Glutamate is a major excit-
atory neurotransmitter in reward circuitry. It could be involved in the 
formation and mediating the long-term effects of opioid dependence.

This study aimed to detect concentrations of glutamate in the NAc 
of prescription opioid addicts using 1H MRS, and to explore the cor-
relations with clinical indices. We seek an objective scientific basis for 
the biochemical diagnosis of opioid addiction, and also a basis for as-
sessing the efficacy of intervention strategies.

2  | MATERIALS AND METHODS

2.1 | Participant characterization

All participants provided informed consent according to the pro-
cedures approved by the Institutional Review Board. Twenty pa-
tients who fulfilled the Diagnostic and Statistical Manual of Mental 
Disorders, 4th Edition (DSM-IV) criteria for prescription opiate de-
pendence (codeine-containing cough syrups), along with a urine test 

and an interview conducted by clinical psychologists, were admit-
ted for inpatient management to the Department of Psychology at 
Guangdong Provincial Corps Hospital of Chinese People’s Armed 
Police Forces. Twenty healthy control participants were recruited 
using advertisements in local newspapers. All patients were naïve 
to use other types of psychoactive drugs and were treatment naive. 
All study subjects were right handed, and none of all subjects meet 
the DSM-IV criteria for alcohol dependent. Patients periodically used 
cigarettes and denied using psychotropic drugs and alcohol in the 
month before the MR examination. Exclusion criteria for all partici-
pants included psychiatric disorders, neurological disorders, history of 
serious head injury, and the abuse or dependence on any other sub-
stance other than nicotine. The opiate Addiction Severity Inventory 
(ASI; Luo, Guo, Han, & Li, 2012; Sun et al., 2012) was implemented 
in the patient group to assess the clinical characteristics of the sub-
jects’ opiate dependence. The Barratt Impulsiveness Scale (BIS-11; 
Huang, Li, Fang, Wu, & Liao, 2013; Patton, Stanford, & Barratt, 1995) 
was implemented as a self-administered questionnaire to assess sub-
jects’ impulsiveness, and the Self-Rating Anxiety Scale (SAS) (Olatunji, 
Deacon, Abramowitz, & Tolin, 2006) was used to measure anxiety 
symptoms. All the rating scales were surveyed soon after MR imaging. 
Demographic and clinical characteristics of the patients and controls 
are summarized in Table 1.

2.2 | 1H MRS

All subjects were scanned in a MAGNETOM Skyra 3T MRI Scanner 
(Siemens Healthineers, Erlangen, Germany) with a 20-channel 
phased-array joint head and neck coil. Foam padding and a forehead-
restraining strap were utilized to limit the head movement of subjects 
during the scanning procedure. To obtain high-quality spectroscopy 
data, participants were advised of the importance of remaining mo-
tionless during the procedure. T1-weighted high-resolution anatomi-
cal images of the whole brain were acquired using a three-dimensional 
fast gradient echo sequence: TR = 2,300 ms, TE = 2.98 ms, 
TI = 900 ms, FOV = 256 × 256 mm, slice thickness = 1.1 mm, flip 
angle = 9°, TA = 5 min 12 s. These slices in three orthogonal planes 
were displayed using multiplanar reconstruction for localization of the 
spectroscopic volumes of interest (VOI: 15 × 15 × 15 mm = 3.4 cm3). 
The NAc is the main part of the ventral striatum. Thus, the VOI was 
positioned to cover the most ventral part of the striatum in the coro-
nal and sagittal slices with the ventral corner of the lateral ventricle as 
a topographic marker point (Figure 1).

All MRS data showed were acquired using single-volume local-
ization. Spectral data were acquired with conventional PRESS spec-
tra using a TE of 40 ms. A short echo time was chosen to obtain the 
optimal selectivity for glutamate (Hancu, 2009; Mullins, Chen, Xu, 
Caprihan, & Gasparovic, 2008; Wijtenburg & Knight-Scott, 2011). 
The spectral pattern for glutamate and glutamine at a TE of 40 ms 
has been depicted by Mullins et al. (2008). These spectra were also 
collected with a TR of 2,000 ms, with 128 averages, giving a total scan 
time of over 4.5 min. The raw data from each acquisition consisted 
of 1,024 points at a bandwidth of 1,200 Hz. The total examination 
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time was approximately 10 min. For quality control, a phantom with 
a concentration of 50 mmol/L creatine was measured using the same 
protocol during each MRS session.

2.3 | MRS data analysis

Quantification of the spectra was based on jMRUI software (http://
www.mrui.uab.es/mrui/). jMRUI enables time domain analysis of 

in vivo MRS data, which subdivided into two stages: preprocessing 
and quantitation (Naressi, Couturier, Castang, de Beer, & Graveron-
Demilly, 2001; Stefan et al., 2009). In preprocessing, it is supported 
user interaction. The procedure included zero filling to 2,048 points, 
slight apodization, varying from 2 to 4 Hz. HLAVD filters are largely 
used to suppress residual water molecules and the cadzow function 
used to filter the signal. Because the preprocessing step is manual, the 
results of model fitting may be influenced and thus affected the ac-
curacy of the signal quantification. This procedure was done by a neu-
roradiologist. The metabolite peaks of interest were quantified using 
the advanced method for accurate, robust, and efficient spectral fit-
ting (AMARES) algorithm. To improve the quantification process, this 
method requires the user to input of prior knowledge of the estimated 
peaks. In this study, all analyses peaks (N-acetylaspartate, glutamate, 
glutamine, creatine, choline) positions were set 2.02 parts per million 
(ppm) and 3.9 line width (LW [Hz]), 2.35 ppm and 4.9 LW, 2.45 ppm 
and 4.9 LW, 3.01 ppm and 4.9 LW, 3.20 ppm and 4.9 LW, respec-
tively (Scott, Underwood, Garvey, Mora-Peris, & Winston, 2016). 
The AMARES method provided estimates for the peak frequency, 
amplitude, phase, and line width of the metabolism resonances. The 
concentrations were calculated according to previously reported and 
as described in detail by Helms (2008). In order to take into consid-
eration of the temperature and relaxation times (T1 and T2) effects 
of metabolites of interest in vivo and in vitro, calibrations were per-
formed. For simplicity, we used the reported values from the literature 
(Choi et al., 2006; Mlynarik, Gruber, & Moser, 2001; Traber, Block, 
Lamerichs, Gieseke, & Schild, 2004). Because the T1 and T2 value in 
NAc has not yet been reported, we used T1 and T2 values calculated 
as an average of the literature reported values in basal ganglia. Briefly, 

Patients (n = 20) 
(mean ± SD)

Controls (n = 20) 
(mean ± SD) Statistics p

Age (years) 26.5 ± 4.3 26.1 ± 3.8 t = 0.291 .529

Gender (N)

Male 18 13 χ2 = 3.584 .127

Female 2 7

Education (N)

Junior high school 5 2 χ2 = 2.887 .236

Senior high school 8 6

College/university 7 12

Duration of opiates 
dependence (years)

5.3 ± 3.1 N/A — —

Mean dose (ml/day) 389.28 (range: 
60–1500)

N/A — —

Total BIS-11 score 73.9 ± 3.3 N/A — —

Total SAS score 39.5 ± 6.1 N/A — —

Total ASI score 16.9 ± 4.4 N/A — —

Nicotine (yes:no) 19:1 14:6 χ2 = 4.329 .091

Cigarettes/day 
(smokers only)

15.3 ± 7.5 13.8 ± 4.3 t = 0.685 .499

N/A, not applicable; BIS-11, Barratt Impulsiveness Scale; SAS, Self-Rating Anxiety Scale; ASI, Addiction 
Severity Inventory.

TABLE  1 Demographic and clinical data 
of the study and control groups

F IGURE  1 The location and MR spectra of the region of interest 
in the nucleus accumbens. (a) Localized images of the nucleus 
accumbens in the axial plane, (b) in the coronal plane, and (c) in the 
sagittal plane; (d) results of MR spectra of nucleus accumbens in the 
patient (black line) and control (red line) brain

http://www.mrui.uab.es/mrui/
http://www.mrui.uab.es/mrui/
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the T1 values of N-acetylaspartate, creatine, choline, glutamate, and 
glutamine were 1.39, 1.47, 1.15, 1.22, and 1.22 s, and the T2 values 
were 221, 143, 201, 199, and 199 ms, respectively. Cramer–Rao 
lower bounds (CRLBs) were invoked as a measure of the accuracy of 
the calculation of the amplitude of a certain component. CRLBs were 
estimates of the %SD of the fit for each metabolite. Only metabolite 
concentrations with CRLBs below 20% were accepted and used for 
the following analyses.

2.4 | Statistics

Statistical calculations were carried out using SPSS 13.0. The metabo-
lite levels and the clinical and demographical variables were analyzed 
with two-sided t-test for independent samples and chi-square test, re-
spectively. The data distributions were tested for normality using P-P 
plots and the Kolmogorov–Smirnov test. Correlations of metabolite 
levels and clinical characteristics were evaluated as Pearson’s coef-
ficients. All tests were classified as significant if the p < .05.

3  | RESULTS

3.1 | Demographic and clinical characteristics

The demographic and clinical data are summarized in Table 1. Overall, 
there were no significant differences between the two groups (all 
p > .05; Table 1). The psychometric scores include BIS-11, ASI, and 
SAS were measured in the prescription opiate-dependent group. The 
possibly confounding variable of nicotine consumption (cigarettes per 
day) was balanced between the groups.

3.2 | MRS results

The CRLBs of N-acetylaspartate, glutamate, creatine, and choline were 
less than 20% on all participants, whereas the glutamine data from 1 
control subject and 2 prescription opiate users were excluded due to 
excessive CRLBs. The mean metabolite concentrations in the NAc are 
displayed in Table 2 and Figure 2. We found significantly higher gluta-
mate concentrations in the NAc in the prescription opiate-dependent 
patients relative to the controls, t(38) = 3.84, p = .001. None of the 
other metabolites differed significantly between the two groups (all 
p > .05; Table 2).

3.3 | Relationship between glutamate and clinical 
characteristics

The group comparisons revealed significantly higher glutamate con-
centrations in the patients. We found a significant positive correla-
tion between absolute concentrations of glutamate and BIS-11 scores 
(r = .671, p = .001, Figure 3). There were no significant correlations 
between glutamate levels and ASI scores (r = .079, p = .742) or SAS 
scores (r = .228, p = .333). No significant correlations were found be-
tween the other metabolite levels and clinical characteristics.

4  | DISCUSSION

To the best of our knowledge, this study is the first to investigate the 
in vivo absolute concentration of glutamate in the NAc in prescription 
opiate-dependent patients. Although opioids usually are prescribed to 
control pain, diminish cough, or relieve diarrhea, they also produce 

Metabolite
Patients (n = 20)a

(mean ± SD)
Controls (n = 20)b

(mean ± SD) t p

NAA 9.85 ± 1.15 9.86 ± 0.76 t(38) = −0.005 .996

Glu 8.52 ± 0.71 7.43 ± 1.05 t(38) = 3.839 .001*

Gln 2.46 ± 0.64 2.43 ± 0.41 t(35) = 0.174 .863

tCr 8.19 ± 0.74 8.38 ± 0.83 t(38) = −0.768 .447

tCho 2.24 ± 0.55 2.43 ± 0.53 t(38) = −1.118 .270

NAA, N-acetylaspartate; Glu, glutamate; Gln, glutamine; tCr, total creatine; tCho, total choline.
aNAA n = 20, Glu n = 20, Gln n = 18, tCr n = 20, and tCho n = 20.
bNAA n = 20, Glu n = 20, Gln n = 19, tCr n = 20, and tCho n = 20.
*p < .05.

TABLE  2 Comparison of absolute 
metabolite concentrations in the nucleus 
accumbens (mmol/L) between the 
prescription opioid-dependent and healthy 
control group

F IGURE  2 Boxplot for major metabolite concentrations in the 
nucleus accumbens (NAc)
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feelings of euphoria, tranquility, and sedation that may lead the pa-
tient to continue to take these drugs (Schuckit, 2016).

The NAc is a key region that is implicated in the brain’s reward 
circuit, part of a system of structures mediating the reinforcing effects 
of opiates (Olds, 1982). The NAc is located in the basal forebrain and 
consists of two primary segments: a medial “shell” subregion and a 
more lateral “core” component (Mavridis et al., 2011). The NAc serves 
as a limbic–motor interface (Floresco, 2015). The shell is more related 
to the limbic system and the core to the extrapyramidal motor sys-
tem (Neto, Oliveira, Correia, & Ferreira, 2008). Medium spiny neurons, 
which constitute >90% of the NAc neurons, are characterized by the 
combined innervations by glutamatergic afferents from the amygdala, 
frontal cortex, and hippocampus, and dopaminergic afferents from the 
ventral tegmental area (VTA) (Russo & Nestler, 2013). Glutamate can 
be coreleased with dopamine in the NAc by VTA dopaminergic neu-
rons expressing vesicular glutamate transporters (VGLUT) (Hnasko, 
Hjelmstad, Fields, & Edwards, 2012). Together, these inputs provide 
spatial and contextual information, determine degree of attention allo-
cated to stimuli, inhibit impulsive behavior, and regulate motivational 
and emotional responses to stimuli (D’Souza, 2015). A multitude of 
studies in animals and humans implicated the NAc in directing atten-
tion and behavior toward appetitive stimuli, including natural rewards 
such as food and sex as well as opiates. Thus, a pivotal role for the NAc 
is established for the acute reinforcing effects of addiction.

Long-term repeated administration of opioids can cause long-
lasting structural and functional changes in neurons. The glutamate 
system of the brain is responsible for the long-term plasticity associ-
ated with learning and memory. Therefore, it is not surprising that the 
same glutamatergic mechanism also is implicated in addiction-related 
behavior (Camí & Farré, 2003).

Glutamate is the most abundant excitatory neurotransmitter in the 
mammalian central nervous system and accounts for approximately 
70% of synaptic transmission in the brain. It is the principal excit-
atory neuronal signaling transmitter for many important normal brain 

functions, including memory, learning, and cognition (Platt, 2007). 
Glutamate homeostasis in the brain and its deregulation are related 
to normal and abnormal behavioral adaptations to the environment, 
respectively (Quintero, 2013). Integration of glutamatergic and do-
paminergic neurotransmission is thought to underlie reward-related 
learning in corticostriatal networks. There is a substantial amount of 
literature suggesting that opiates interact with glutamatergic transmis-
sion (Gass & Olive, 2008). Most in vitro and in vivo studies have shown 
that morphine suppresses both basal and evoked increases in extra-
cellular glutamate in NAc and other regions (Sepulveda, Hernandez, 
Rada, Tucci, & Contreras, 1998). Morphine can also act postsynapti-
cally to suppress glutamate-evoked neuronal excitation (Giacchino & 
Henriksen, 1998). In our study, we found significantly higher gluta-
mate levels in the NAc in the prescription opiate-dependent patients 
compared to the controls.

Animal research on this subject is mixed. In some published work, 
administration of addictive drugs like heroin, cocaine, nicotine, or al-
cohol in both drug-naïve and drug-experienced animals, there is an 
increase in the levels of glutamate in NAc (D’Souza, 2015). Using in 
vivo microdialysis, glutamate levels have been reported to increase in 
the NAc in drug-naïve animals after injection of cocaine (Reid, Hsu, 
& Berger, 1997), nicotine (Lallemand, Ward, Dravolina, & De Witte, 
2006; Liu et al., 2006; Reid, Fox, Ho, & Berger, 2000) and alcohol 
(Dahchour, Hoffman, Deitrich, & de Witte, 2000). Presentation of 
cues predictive of cocaine availability increased glutamate levels in 
NAc in cocaine-experienced animals. Importantly, heroin-associated 
cues have also been shown to increase glutamate levels in the NAc 
core (LaLumiere & Kalivas, 2008). However, other research suggests 
that administration of heroin does not increase NAc glutamate levels 
in drug-naïve rats. And no change in glutamate levels was observed 
after cocaine and alcohol injection in drug-naïve animals, at doses that 
produce rewarding effects (Dahchour, Quertemont, & De Witte, 1994; 
Miguens et al., 2008). An increase in glutamate levels was observed 
downstream from the NAc in the ventral pallidum during heroin self-
administration rats (Caille & Parsons, 2004). Overall, effects of opiate 
on NAc glutamate levels are not clear.

Proton magnetic resonance spectroscopy is a noninvasive neuro-
imaging technique that allows in vivo quantification of metabolites. 
It provides information on the neurophysiologic integrity of brain 
tissue. Few spectroscopy studies have focused on glutamatergic me-
tabolism in opiate-dependent individuals. Most of these studies have 
investigated the anterior cingulate cortex (ACC), and show mixed 
results. Hermann et al. (2012) found higher glutamate + glutamine 
(Glx) levels in ACC in older opiate users, and Greenwald et al. (2015) 
also reported glutamate levels in the ACC were higher at the low 
relative to the high methadone dose in heroin-dependent subjects. 
Murray et al. (2016) reported no significant differences in the glu-
tamate levels in the ACC and a significant decrease in the glutamate 
levels in dorsolateral prefrontal cortex. Yucel et al. (2007) found the 
opiate-using group to have reduced concentrations of dorsal ACC N-
acetylaspartate and Glx.

The glutamate signal in MRS consists of complex multiplets due to 
the scalar couplings and is spread over a wide chemical shift range and 

F IGURE  3 The relationship between the Barratt Impulsiveness 
Scale (BIS-11) scores and absolute concentration of glutamate in the 
nucleus accumbens (NAc) in prescription opiate-dependent patients
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superimposed by other signals. These superimposed signals are barely 
detectable at 1.5T and are still not easily quantified and separated at 
3T. The sophistication and utility of MRS studies has been improv-
ing in recent years, and confident results are more reliably achieved 
with optimized sequences (Wijtenburg & Knight-Scott, 2011). Optimal 
echo time methods easy acquisition and processing, and appropriate 
parameter timings can be selected at the scanner interface (Ramadan, 
Lin, & Stanwell, 2013). Studies using 3.0T scanners with optimized ac-
quisition parameters have produced increasingly reliable and distinct 
glutamate signals (Hancu, 2009; Mullins et al., 2008; Wijtenburg & 
Knight-Scott, 2011).

Our study provides evidence that in the NAc glutamate levels 
correlate to self-report impulsivity. The glutamate levels in the NAc 
were positively correlated with the BIS-11 scores, which report the 
behavioral aspect of opiate craving. Impulsivity is common in drug-
dependent individuals and is commonly associated with opiate depen-
dence. Those with higher BIS scores had significantly higher levels of 
craving demonstrating that impulsivity may impact subsequent drug 
taking (Mahoney et al., 2015). The relationship between impulsivity 
and substance abuse is synergistic. Hence, substance abuse seems to 
be more prevalent among populations that score higher in impulsivity. 
In this regard, opiate abusers with higher impulsive behaviors are more 
likely to relapse (Paydary et al., 2016).

In neuropharmacology studies, findings have implicated gluta-
mate neurotransmission in impulsivity. In the 5-choice serial reaction 
time task (5CSRTT), systemic injections of nonselective N-methyl-d-
aspartate (NMDA) receptor antagonists such as dizocilpine (MK801) 
and ketamine increase impulsive action (Mirjana, Baviera, Invernizzi, & 
Balducci, 2004). In addition, a novel selective NMDA 2B receptor sub-
unit (NR2B) antagonist Ro 63-1908 also increased impulsivity as as-
sessed by the 5CSRTT (Higgins, Ballard, Huwyler, Kemp, & Gill, 2003). 
In addition to NMDA receptors, metabotropic glutamate receptors 
have been shown to modulate impulsivity (Pattij & Vanderschuren, 
2008).

In terms of neuroanatomical localization, alteration of glutamate 
transmission in the medial prefrontal cortex and its infralimbic region 
has been associated with impulsive action. Based on MRS studies, glu-
tamate concentrations in the ACC correlated with impulsivity in bor-
derline personality disorder (Hoerst et al., 2010) and attention-deficit 
hyperactivity disorder (Ende et al., 2016). In addition, Bauer et al. 
(2013) reported increasing glutamate levels in the NAc in alcohol-
dependent patients, with glutamate levels in the NAc and the ACC 
both strongly correlated with the level of the Obsessive Compulsive 
Drinking Scale. In our study in opiate-addicted subjects, however, we 
found that glutamate levels were not significantly correlated with the 
SAS scores and ASI scores.

Several studies have demonstrated that glutamate is increased 
in the ACC in patients with general anxiety disorder (Strawn et al., 
2013) or social anxiety disorder (Pollack, Jensen, Simon, Kaufman, 
& Renshaw, 2008). Excess glutamate in anxiety is not only found in 
categorical comparisons, but also correlates with anxiety severity. 
This correlation might depend on the type of opioid abused. In our 
study, all patients were addicted to codeine-containing cough syrups. 

Codeine dependence is different from other illicit opioid drugs. The 
withdrawal symptoms from codeine are lighter than those of other 
opioids such as morphine and heroin. Codeine-containing cough syr-
ups contain a combination of codeine, a sympathomimetic, and an 
antihistamine, all of which have central nervous system action (Qiu 
et al., 2015, 2016).

There are several important limitations to this investigation. First, 
in this study, all but one of the patients—and the large majority of 
controls—were smokers. We found no significant differences in the 
number of cigarettes between patient and control groups. Hence, the 
differences in glutamate levels between the groups are unlikely to be 
explained by smoking. Nevertheless, some animal studies have shown 
that the administration of nicotine increases glutamate levels in vari-
ous brain regions (Gass & Olive, 2008). Microdialysis studies suggest 
that nicotine increases glutamate release in both the VTA and NAc 
(D’Souza & Markou, 2013; Fu, Matta, Gao, Brower, & Sharp, 2000; 
Reid et al., 2000). Upregulation of ionotropic glutamate subunits in 
the prefrontal cortex and the VTA, but not in the NAc, has been re-
ported in chronically nicotine self-administering rats. In this study, we 
cannot completely exclude the effects of nicotine. Second, the small 
sample size may have restricted our power to detect differences, and 
we used a single voxel to detect glutamate levels of the NAc. Thus, 
neurochemical differences may have been present in other regions 
that were not examined in this study, such as other components of 
the rewards circuit (e.g., VTA, frontal cortex, and amygdala). Finally, 
we optimized our MRS to detect glutamate in a relatively small VOI 
with low signal-to-noise ratio. Methodological limitations might be 
responsible for some of the differences in metabolite levels com-
pared with previous studies. And we did not separate gray matter 
from VOI. Previous studies have reported that there are no change in 
volume of the NAc structure in patients with prescription opioid de-
pendence (Upadhyay et al., 2010) or marijuana use (Weiland, Thayer, 
& Depue, 2015). But, Seifert et al. (2015) reported that there might 
be structural differences in the NAc of heroin-dependent patients in 
comparison with healthy controls. Therefore, future studies should 
examine these data with more exclusive measurements of the NAc 
gray matter.

5  | CONCLUSION

Our results show that glutamate levels are elevated in the NAc in pre-
scription opioid-dependent patients, and that there is a positive corre-
lation between glutamate concentrations and the patient’s impulsive 
behavior. The patient’s self-reported impulsivity relates to the pre-
dictability index of craving and relapse. This result suggests that the 
excitatory neurotransmitter glutamate may play an important role in 
the neurobiological mechanisms of opiate dependent. With additional 
work, the absolute glutamate concentrations in the NAc measured 
quantitatively with in vivo 1H MRS could become a useful biomarker 
to assess the likelihood of relapse. The spectroscopic methodology 
proved to be a reliable and useful approach for investigating the glu-
tamate in vivo in the brain.
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