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Rhabdoid tumor of the kidney (RTK) is a rare and severely malignant tumor occurring in infancy and early childhood, with the
overall outcomes remain poor. Neither gene regulatory networks nor biomarkers to predict the prognostic outcomes have been
elucidated in RTK. In this study, RNA sequencing data were obtained to identify differentially expressed messenger RNAs
(mRNAs), long noncoding RNAs (lncRNAs), and microRNAs (miRNAs) between RTK samples and normal samples. A total of
4217 mRNAs, 284 lncRNAs, and 286 miRNAs were screened out. Of those, 103 mRNAs, 80 lncRNAs, and 45 miRNAs were
identified for a competing endogenous RNA (ceRNA) regulatory network, in which three significant modules were identified. A
protein-protein interaction (PPI) network was constructed, and the hub-gene cluster consisted of four core genes (EXOSC2,
PAK1IP1, WDR43, and POLR1D) was selected. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG)
pathway enrichment analyses were also performed to analyze the functional characteristics of differentially expressed mRNAs.
Subsequently, among 211 mRNAs, 8 lncRNAs, and 12 miRNAs associated with overall survival (OS) obtained by univariate Cox
analysis, 5 mRNAs, 7 lncRNAs, and 7 miRNAs were identified and the risk score formulas were constructed correspondingly
using the least absolute shrinkage and selection operator (LASSO) Cox regression model analysis. The log-rank tests and
Kaplan-Meier analyses were performed to confirm the predictive value of the risk scores for OS in RTK patients. A genomic-
clinicopathologic nomogram integrating the stage and risk scores based on RNAs was established and demonstrated high
predictive accuracy and clinical value, which was validated through calibration curves, time-dependent receiver operating
characteristic (ROC) curve analyses, and decision curve analysis (DCA). In conclusion, this study not only provided potential
insights into the mechanisms underlying RTK, but also presented a practicable tool for predicting the prognosis in children with
RTK.

1. Introduction

As rare and extremely aggressive malignancies, rhabdoid
tumors primarily affect infants and young children. These
tumors predominantly arise in the kidney and the central
nervous system [1, 2]. Rhabdoid tumor of the kidney
(RTK) generally metastasizes to the brain and lung, and
patients with RTK continue to have a poor prognosis [1, 3,
4]. The loss of function of the SMARCB1 (INI1/SNF5/-

BAF47) gene is the common genetic abnormality in rhabdoid
tumors, regardless of the anatomic origin [5]. However, there
are few reports on the development of biomarkers to predict
the prognostic outcomes in children with RTK.

In recent years, advanced RNA sequencing analysis
gained a lot of attention and revealed the complexity of the
human genome [6]. Under such circumstances, competing
endogenous RNA (ceRNA) hypothesis has stated that long
noncoding RNAs (lncRNAs) can act as microRNAs
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(miRNAs) sponges and inhibit miRNAs functions by sharing
miRNA response elements, thereby indirectly regulating
messenger RNAs (mRNAs) expression levels [7, 8]. Some
previous studies have explored the ceRNA regulatory net-
work associated with tumor progression [9–11]. However,

the specific ceRNA regulatory network remains unelucidated
in RTK.

In the present study, RNA sequencing data were used to
identify differentially expressed mRNAs, lncRNAs, and miR-
NAs between RTK samples and normal samples. Subse-
quently, a series of analyses, including the ceRNA network
construction, protein-protein interaction (PPI) analyses,
and functional enrichment analyses, were performed. Fur-
thermore, risk scores based on mRNAs, lncRNAs, and miR-
NAs to predict the outcomes in patients with RTK were
calculated, and a genomic-clinicopathologic nomogram,
integrating the risk scores and traditional clinicopathological
factors, was developed and validated. All of these might not
only provide insights into the molecular mechanisms that
participate in the progression and tumorigenesis of RTK
but also provide an efficient method based on biomarkers
to predict the outcomes in children with RTK.

2. Materials and Methods

2.1. Study Population and RNA Sequencing Data Processing.
Expression profiles (mRNA-Seq and miRNA-Seq), clinical
characteristics, and survival data were downloaded for subse-
quent analysis from the National Cancer Institute (NCI)
Genomic Data Commons (GDC) Data Portal (https://portal
.gdc.cancer.gov/repository), Therapeutically Applicable
Research to Generate Effective Treatments (TARGET)
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Figure 1: The flow chart of the analysis procedure. GDC: Genomic Data Commons Data Portal; TARGET: Therapeutically Applicable
Research to Generate Effective Treatments; ceRNA: competing endogenous RNA; PPI: protein-protein interaction; GO: Gene Ontology;
KEGG: Kyoto Encyclopedia of Genes and Genomes; DEMs: differentially expressed mRNAs; LASSO: the least absolute shrinkage and
selection operator; RTK: rhabdoid tumor of the kidney; ROC: receiver operating characteristic; DCA: decision curve analysis.

Table 1: Clinicopathological characteristics of 50 RTK patients.

Characteristics Median (range) or n (%)

Age at diagnosis in months 11.63 (0.10-179.53)

Gender

Female 24 (48%)

Male 26 (52%)

Protocol

NWTS-5 13 (26%)

AREN03B2 37 (74%)

Stage

I-II 13 (26%)

III-IV 37 (74%)

Survival status

Alive 22 (44%)

Dead 28 (56%)

NWTS-5: the fifth National Wilms’ Tumor Study; AREN03B2: clinical trials
cooperative group protocol name code.
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Program in April 2020, through structured queries [12].
mRNAs and lncRNAs expression data were acquired from
6 normal samples and 57 RTK samples, and miRNAs expres-
sion data were acquired from 6 normal samples and 58 RTK
samples. ENSEMBL (htps://http://www.ensembl.org/) was
used to annotate mRNAs and lncRNAs [13], and miRBase
21 (http://http://www.mirbase.org/blog/2014/06/mirbase-
21-finally-arrives/) was used to annotate mature miRNAs
with arms features through the R software (version 3.6.2)
[14–19]. No ethical approval was required for the study as
all patient data were acquired from the GDC Data Portal. A
flow chart of the analysis procedure is shown in Figure 1.

2.2. Identification of DEMs, DELs, and DEMis. At first, RNAs
(mRNAs, lncRNAs, and miRNAs) that did not have a worth-
while number of reads in any samples were filtered out. To
identify the differentially expressed mRNAs (DEMs),

lncRNAs (DELs), and miRNAs (DEMis) between RTK sam-
ples and normal samples, the “edgeR” package (version
3.28.1) was used to analyze high-throughput sequencing data
on differentially expressed RNAs [20, 21]. The screening con-
ditions for RNAs (mRNAs, lncRNAs, and miRNAs) differen-
tial expression were ∣log2 fold change ∣ >1, and a false
discovery rate (FDR) or adjusted P value < 0.05. These differ-
entially expressed RNAs were further subjected to the ceRNA
network construction, gene enrichment analysis, and RNA-
based prognostic model construction combined with clinico-
pathologic features.

2.3. Construction of ceRNA Network. Basing on DEMs, DELs,
and DEMis, a ceRNA network was built through the
“GDCRNATools” package (version 3.28.1) [22]. The major
criteria for building ceRNA networks included the following:
(1) The mRNAs and lncRNAs must share a significant
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Figure 2: Volcano plots of differentially expressed mRNAs (a), lncRNAs (b), and miRNAs (c). The red dot represents upregulated and the
blue dot represents downregulated. FDR: false discovery rate; FC: fold change.
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Figure 3: Continued.
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Figure 3: ceRNA regulation network (a) and three significant modules identified by MCODE in Cytoscape (b–d). Ellipse indicates mRNAs,
triangle indicates miRNAs, and rectangle indicates lncRNAs. Red represents upregulated and blue represents downregulated.
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Red represents upregulated and blue represents downregulated.
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number of miRNAs. (2) The expression of mRNAs and
lncRNAs should be related positively. (3) miRNAs should
play similar roles in regulating the expression of mRNAs
and lncRNAs [22]. Following the pipelines of GDCRNA-
Tools, miRcode was chosen to collect predicted and experi-
mentally validated miRNA-lncRNA interactions [23], and
StarBase v2.0 was used to predict miRNA-mRNA interac-
tions [24]. Also, the P value of both the hypergeometric test
and Pearson correlation analysis <0.01 was considered statis-
tically significant. Visualization of the ceRNA network was
performed by Cytoscape software (version 3.7.1) [25], and
the subnetwork was generated using the Molecular Complex
Detection (MCODE) plug-in Cytoscape with the default cri-

teria (degree cutoff = 2, node score cutoff = 0:2, Max depth
= 100, and k score = 2) [26].

2.4. PPI Network Construction. The construction of PPI net-
work based on the DEMs involved in the ceRNA network
was performed through the Search Tool for the Retrieval of
Interacting Genes (STRING; http://string-db.org) online
database [27]. Required interaction score > 0:4 was consid-
ered statistically significant. Subsequently, the data from
STRING were downloaded to model the PPI network
through Cytoscape software. MCODE plug-in Cytoscape
with the default criteria was adopted to identify densely con-
nected regions in the PPI network.
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Figure 5: GO and KEGG pathways of up- and downregulated genes. (a–c) The bubble plots showing GO functional enrichment analysis for
genes that were upregulated. (d–f) The bubble plots showing GO functional enrichment analysis for downregulated genes. (g–i) The bubble
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2.5. GO and KEGG Pathway Analyses. Gene Ontology (GO)
functional enrichment analyses including biological process
(BP), cellular component (CC), and molecular function
(MF) [28, 29] and Kyoto Encyclopedia of Genes and
Genomes (KEGG) pathway enrichment analyses of the
DEMs [30–32] were performed through the “clusterProfiler”
R package (v3.6.0) [33]. The P value < 0.05 was considered
statistically significant.

2.6. Construction of Risk Scores Based on RNAs for Survival
Analyses. Due to the lack of important clinical information
such as the survival time of some patients, clinical data of
50 RTK patients were finally collected. In this study, the clin-
ical features include age at diagnosis, gender, cooperative
group protocol, and stage (Table 1). The normalization of
the high-throughput sequencing raw data had already been
carried out by “edgeR”, and the normalized expression data
were converted to log2counts per million (log2CPM) values
using the “cpm” function in edgeR. The “survival” package
in R was used to identify the prognosis-associated RNAs
(mRNAs, lncRNAs, and miRNAs) by univariate Cox regres-
sion analysis, and P < 0:05 was used as the cutoff criterion
[34]. Subsequently, through the “glmnet” package (version
3.0-2) in R, the least absolute shrinkage and selection opera-
tor (LASSO) method was adopted to identify the key RNAs
from RNAs which were significant in univariate Cox analysis
[35, 36]. Ten-time cross-validations were utilized to detect
the best penalty parameter lambda. Then, the risk scores were
calculated based on the formulas generated through the
LASSO Cox regression model, respectively. The optimal cut-
off values for risk scores were generated through the “surv_
cutpoint” function in the “survminer” R package (version
0.4.6). Based on cutoff values, RTK patients in the data set
were divided into low- and high-risk groups correspond-

ingly. Differences in overall survival (OS) between the low-
and high-risk groups were compared via the log-rank test
and Kaplan-Meier analysis. The survival curves were also
constructed through the “survival” package. A P < 0:05
denoted statistical significance.

2.7. Establishment and Validation of a Genomic-
Clinicopathologic Nomogram. The Cox regression analysis
was performed to determine whether the risk scores based
on RNAs and the clinicopathologic features could be predic-
tors associated with OS for RTK patients. Subsequently,
based on the results of Cox regression analysis, a predictive
genomic-clinicopathologic nomogram was generated to pre-
dict 1-, 3-, and 5-year OS through the “rms” package (version
5.1-4) in R. Furthermore, calibration curves were achieved to
visualize the consistency between the actual probability of OS
and the nomogram-predicted probability of OS. Moreover,
time-dependent receiver operating characteristic (ROC)
curve analyses were performed to assess the accuracy by cal-
culating the area under the curve (AUC) through the “time-
ROC” package (version 0.4) in R [37]. Additionally,
decision curve analyses (DCA) were conducted to examine
the clinical value via “stdca.R” statistical code in R [38].

3. Results

3.1. Identification of DEMs, DELs, and DEMis.A total of 4217
mRNAs, 284 lncRNAs, and 286 miRNAs were considered to
be differentially expressed in the present study. Strikingly,
out of 4217 DEMs, 2315 were upregulated and 1902 were
downregulated (Figure 2(a)). There were 135 upregulated
and 149 downregulated DELs (Figure 2(b)). 201 DEMis were
upregulated, and the remaining 85 were downregulated
(Figure 2(c)).
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Figure 6: 10-fold cross-validation and lambdamin (a–c) and coefficient profile (d–f) of mRNAs, lncRNAs, and miRNAs in the LASSO
model.
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3.2. Construction of ceRNA Network. Through GDCRNA-
tools, 103 DEMs, 80 DELs, and 45 DEMis were identified
in the ceRNA network including 440 miRNA-mRNA and
418 lncRNA-miRNA regulatory associations or “edges”(Fi-
gure 3(a)). Through MCODE in Cytoscape, three significant
modules were identified. The first module included two
DEMs (KALRN and GPX8), three DEMis (hsa-miR-15a-5p,
hsa-miR-15b-5p and hsa-miR-424-5p), and one DEL
(SSSCA1-AS1) (Figure 3(b)). The second module consisted
of one DEM (PDSS1), three DEMis (hsa-miR-145-5p, hsa-
miR-212-3p and hsa-miR-132-3p), and two DELs
(AL035425.3 and USP2-AS1) (Figure 3(c)). The third mod-
ule consisted of one DEM (CCDC88A), two DEMis (hsa-
miR-34a-5p and hsa-miR-449a), and two DELs
(AC037459.3 and AC068282.1) (Figure 3(d)).

3.3. PPI Network Construction. The PPI network of the 103
DEMs including 52 upregulated and 51 downregulated
involved in the ceRNA network was established
(Figure 4(a)). Also following MCODE analysis, one hub-
gene cluster consisting of four core genes (EXOSC2,
PAK1IP1, WDR43, and POLR1D) was identified
(Figure 4(b)). These four key genes, which were all upregu-
lated interestingly, may play an essential role in RTK
progression.

3.4. GO and KEGG Pathway Analyses. To explore the poten-
tial biological functions of the differentially expressed genes,
GO and KEGG pathway enrichment analyses were con-

ducted. In GO functional enrichment terms, BPs (356 up
and 686 down), CCs (126 up and 56 down), and MFs (53
up and 81 down) were identified, respectively. The upregu-
lated genes were significantly enriched in BPs (Figure 5(a))
including “ribonucleoprotein complex biogenesis”, “DNA
repair”, and “establishment of protein localization to organ-
elle”; CCs (Figure 5(b)) including “nuclear chromosome”,
“nuclear chromosome part”, and “chromatin”; and MFs
(Figure 5(c)) including “chromatin binding”, “structural con-
stituent of ribosome”, and “catalytic activity, acting on RNA”.
Correspondingly, the downregulated genes were significantly
enriched in BPs (Figure 5(d)) including “blood vessel mor-
phogenesis”, “angiogenesis”, and “inflammatory response”;
CCs (Figure 5(e)) including “anchoring junction”, “adherens
junction”, and “cell-cell junction”; and MFs (Figure 5(f))
including “lipid binding”, “transmembrane signaling recep-
tor activity”, and “ion transmembrane transporter activity”.
The KEGG pathway analyses showed the upregulated genes
were significantly enriched in 14 pathways including “ribo-
some”, “RNA transport”, “cell cycle”, “spliceosome”, and
“alcoholism”, while the downregulated genes were signifi-
cantly enriched in 25 pathways including “pathways in
cancer”, “PI3K-Akt signaling pathway”, “human papilloma-
virus infection”, “MAPK signaling pathway”, and “focal
adhesion”(Figures 5(g)–5(i)).

3.5. Construction of Risk Scores Based on RNAs for Survival
Analyses. Among the differentially expressed RNAs, 211
mRNAs, 8 lncRNAs, and 12 miRNAs associated with OS
were obtained via the univariate Cox analysis. Then, 5
mRNAs (PLAUR, ACADVL, GHR, RAD50, and GPSM2),
7 lncRNAs (SNHG5, HOTAIR, AC016708.1, PSMG3-AS1,
AP003068.2, AC022613.1, and SLC25A21-AS1), and 7 miR-
NAs (hsa-miR-22-5p, hsa-miR-199a-5p, hsa-miR-212-3p,
hsa-miR-128-1-5p, hsa-miR-424-5p, hsa-miR-542-5p, and
hsa-miR-769-3p) were identified using LASSO Cox regres-
sion model analysis (Figure 6). Moreover, the coefficients of
identified RNAs signatures were calculated, and the formulas
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Figure 7: Risk score distribution (a–c), survival status (d–f), and the differentially expressed levels of identified mRNAs, lncRNAs, and
miRNAs via heat map plot (g–i) for patients in low- and high-risk groups.

Table 2: The cutoff values for risk scores of RNAs and the number
of patients in different groups based on the cutoff values.

mRNAs lncRNAs miRNAs

Cutoff values 1.663179 -2.15316 1.155198

Risk group

Low 32 30 15

High 18 20 35
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of the prognostic index model were imputed, respectively, as
follows: ð0:1148 × expression value of PLAURÞ + ð0:2591 ×
expression value of ACADVLÞ + ð0:02925 × expression value
of GHRÞ + ð−0:1355 × expression value of RAD50Þ + ð
0:03125 × expression value of GPSM2Þ in mRNAs, ð−0:4556
× expression value of SNHG5Þ + ð−0:05992 × expression
value of HOTAIRÞ + ð−0:1043 × expression value of AC
016708:1Þ + ð0:5186 × expression value of PSMG3 −AS1Þ +
ð0:1395 × expression value of AP003068:2Þ + ð0:1243 ×

expression value of AC022613:1Þ + ð−0:1373 × expression
value of SLC25A21 −AS1Þ in lncRNAs, and ð0:2033 ×
expression value of hsa‐miR‐22‐5pÞ + ð−0:3799 × expression
value of hsa‐miR‐199a‐5pÞ + ð0:1156 × expression value of
hsa‐miR‐212‐3pÞ + ð0:6258 × expression value of hsa‐miR‐
128‐1‐5pÞ + ð0:2997 × expression value of hsa‐miR‐424‐5pÞ
+ ð0:02988 × expression value of hsa‐miR‐542‐5pÞ + ð
0:3347 × expression value of hsa‐miR‐769‐3pÞ in miRNAs.
Also, the risk scores for RTK patient were calculated and all
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the patients were divided into high- and low- groups, respec-
tively, based on the optimal cutoff values for risk scores
(Figure 7, Table 2). Patients in each high-risk group had a sig-
nificantly worse OS than those in the corresponding low-risk
group (Figure 8(a), Table 3). Notably, the subgroup analyses
based on stage revealed that the prognostic value of risk
scores was independent of stage, except for miRNAs risk
score in stage I-II subgroup (P = 0:1444)(Figures 8(b) and
8(c), Table 3).

3.6. Establishment and Validation of a Genomic-
Clinicopathologic Nomogram. To more accurately determine
the prognostic value of risk scores based on RNAs (mRNAs,
lncRNAs, and miRNAs), univariate and multivariate Cox
regression analyses were performed. According to the results
from univariate Cox analysis, the stage and risk scores were
all significantly associated with OS for RTK patients
(Table 4). The subsequent multivariate Cox analysis further
demonstrated that the risk scores based on mRNAs and miR-
NAs remained powerful and independent prognostic factors
(P = 0:01078 and P = 0:00816) (Table 4). Through integrat-
ing the stage and risk scores, a genomic-clinicopathologic
predictive nomogram (combined model) was developed
(Figure 9(a)). The calibration curves also showed high con-
sistency between the actual proportion of 1-, 3-, and 5-year
OS and the nomogram-predicted probability (Figures 9(b)–
9(d)). Furthermore, the predictive accuracy of nomogram

was evaluated by time-dependent ROC curves among three
models including stage, RNAs combined, and RNAs and
stage combined. The results illustrated the RNAs and stage
combined model had a significantly greater AUC than that
of the stage model (1-year, P = 1:05e − 6; 3-year, P = 5:17e
− 5; 5-year P = 0:0117) (Figures 9(e)–9(g), Table 5,
Table 6). Additionally, DCA curves illustrated that the net
benefit for the combined model was higher than that for
the stage model, verifying the clinical value of the genomic-
clinicopathologic nomogram (Figures 9(h)–9(j)).

4. Discussion

RTK is a rare, highly aggressive type of cancer accounting for
only 2% of all renal tumors in childhood [39]. There are only
about 20 to 25 new cases of malignant rhabdoid tumor diag-
nosed each year in the United States. In Europe, only 107
RTK patients were identified from 1993 to 2005 [2]. The
overall outcomes of RTK remain poor, although the progno-
sis for limited patients has improved partly [1, 3, 4]. Conse-
quently, researchers keep on searching for the molecular
pathogenesis of RTK and novel treatment strategies for
improving prognosis in children with RTK. Even though pre-
vious studies have demonstrated that the majority of rhab-
doid tumors arise as a consequence of homozygous
inactivation of the SMARCB1 (INI1/SNF5/BAF47) gene

Table 3: The results of survival analyses and subgroup analyses based on the stage via log-rank test.

mRNAs lncRNAs miRNAs
Chi-square value P value Chi-square value P value Chi-square value P value

All 46.25 1:04E − 11 24.26 8:42E − 07 15.05 1:05E − 04
Subgroup

Stages I-II 11.00 9:11E − 04 4.21 4:01E − 02 2.13 0.1444

Stages III-IV 28.87 7:74E − 08 21.34 3:85E − 06 12.60 3:87E − 04

Table 4: Univariate and multivariate Cox regression analyses of overall survival for RTK patients.

Risk factors N
Univariate analysis Multivariate analysis

HR 95% (CI) P value HR 95% (CI) P value

Age 50 0.9995 0.9987-1 0.268

Gender

Female 24 1
0.233

Male 26 0.6295 0.2942-1.347

Protocol

NWTS-5 13 1
0.522

AREN03B2 37 0.7644 0.336-1.739

Stage

I-II 13 1
0.0248

1
0.11831

III-IV 37 3.9569 1.191-13.15 2.7683 0.7714-9.934

Risk scores based on mRNAs 50 122.5950 23.41-642 1:25E − 08 17.4276 1.9371-156.792 0.01078

Risk scores based on lncRNAs 50 4.0815 2.227-7.481 5:36E − 06 1.8739 0.9245-3.798 0.08146

Risk scores based on miRNAs 50 3.6148 1.91-6.84 7:83E − 05 2.4325 1.2591-4.700 0.00816

HR: hazard ratio; CI: confidence interval; NWTS-5: the fifth National Wilms’ Tumor Study; AREN03B2: clinical trials cooperative group protocol name code.
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[5], potential biomarkers to predict the prognostic outcomes
in children with RTK have rarely been identified.

Lately, the essential roles of the ceRNA network in gene
expression regulation have aroused interest of researchers.
In the present study, we first identified differentially
expressed mRNAs, lncRNAs, and miRNAs in patients with
RTK. Then, 103 DEMs, 80 DELs, and 45 DEMis were

selected to construct a ceRNA regulatory network, and three
significant modules were revealed through cluster analyses.
Subsequently, we constructed the PPI network of the 103
DEMs including 52 upregulated and 51 downregulated
involved in the ceRNA network, and a hub-gene cluster con-
sisting of four core genes (EXOSC2, PAK1IP1, WDR43, and
POLR1D) was identified. GO and KEGG pathway
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Figure 9: Establishment and validation of the predictive nomogram. The nomogram (a), the calibration curves (b–d), the time-dependent
ROC curves (e–g), and the DCA curves (h–j) of the nomogram for predicting probabilities of patients with 1-, 3-, and 5-year OS. ROC:
receiver operating characteristic; DCA: decision curve analysis.
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enrichment analyses also revealed the functional characteris-
tics of differentially expressed mRNAs, which demonstrated
that the variations in biological processes, cellular compo-
nents, molecular functions, and pathways may play an essen-
tial role in the pathogenic mechanism of RTK, necessitating
further research to verify.

As far as we know, biomarker-based prognostic models
or combined models built for predicting the outcomes of
children with RTK have not been reported. In the present
study, reasonable normalization of the raw data was achieved
to eliminate the influence of differences in the platforms,
prior to screening the prognosis-associated RNAs (mRNAs,
lncRNAs, and miRNAs) for modeling. Moreover, the proce-
dures of identifying the optimal RNAs for modeling were
precise, such as the selection of the differentially expressed
RNAs at step one, the selection through univariate Cox
regression analysis at step two, and the selection through
LASSO analysis at step three. Ultimately, 5 mRNAs, 7
lncRNAs, and 7 miRNAs were identified and the risk score
formulas were constructed correspondingly. The following
evaluations further confirmed the predictive value of risk
scores for OS in children with RTK.

Nomograms, which are commonly used tools to estimate
prognosis in oncology and medicine, can generate an indi-
vidual probability of clinical events by incorporating multiple
prognostic characteristics [40]. In the present study, a
genomic-clinicopathologic nomogram was constructed by
integrating the stage and risk scores based on RNAs. The
combined model demonstrated significantly higher predic-
tive accuracy than that of the stage model, which was further
validated through calibration curves and time-dependent
ROC curve analyses. The following DCA also verified the
higher clinical value of the combined model compared with
that of the stage model.

However, there were still several limitations to the pres-
ent study. First of all, the sample size of RTK was small
because RTK is a rare tumor. Second, for the same reason,
neither an external validation cohort for the prognostic
model nor the collection of RTK samples to verify the results
of bioinformatics through RT-qPCR was available, and all
the data we analyzed were collected from the GDC Data Por-
tal, which might result in some bias. Finally, the results were
not further validated in cell lines.

5. Conclusions

In summary, this study for the first time identified a ceRNA
network that potentially regulated RTK progression, revealed
probable genes and pathways associated with RTK, and con-
structed a genomic-clinicopathologic nomogram by integrat-
ing the stage and RNAs-based prognostic index, which might
present a practicable tool for predicting the prognosis in chil-
dren with RTK.
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