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Simple Summary: Energy and nutrient demands of the early lactation period can result in the
development of metabolic disorders, such as ketosis and fatty liver, in dairy cows. Variability in
the incidence of these disorders suggests that some cows have an ability to adapt. The objective
of this study was to discover differences in liver gene expression that are associated with a cow’s
susceptibility (disposition to disorder during typical conditions) or resistance (disposition to disorder
onset and severity when presented a challenge) to metabolic disorders. Cows in a control treatment
and a ketosis induction protocol treatment were retrospectively grouped into susceptibility and
resistance groups, respectively, by a machine learning algorithm using lipid biomarker concentrations.
Whole-transcriptome RNA sequencing was performed on liver samples from these cows. More
susceptible cows had lower expression of glutathione metabolism genes, while less resistant cows
had greater expression of eicosanoid-metabolism-related genes. Additionally, differentially expressed
genes suggested a role for immune-response-related genes in conferring susceptibility and resistance
to metabolic disorders. The overall inferred metabolism suggests that responses to oxidative stress
may determine susceptibility and resistance to metabolic disorders, with novel implications for
immunometabolism.

Abstract: Lipid-related metabolic disorders (LRMD) are prevalent in early lactation dairy cows,
and have detrimental effects on productivity and health. Our objectives were to identify cows
resistant or susceptible to LRMD using a ketosis induction protocol (KIP) to discover differentially
expressed liver genes and metabolic pathways associated with disposition. Clustering cows based on
postpartum lipid metabolite concentrations within dietary treatments identified cows more or less
susceptible (MS vs. LS) to LRMD within the control treatment, and more or less resistant (MR vs. LR)
within the KIP treatment. Whole-transcriptome RNA sequencing was performed on liver samples
(−28, +1, and +14 days relative to calving) to assess differential gene and pathway expression
(LS vs. MS; MR vs. LR; n = 3 cows per cluster). Cows within the MS and LR clusters had evidence
of greater blood serum β-hydroxybutyrate concentration and liver triglyceride content than the LS
and MR clusters, respectively. The inferred metabolism of differentially expressed genes suggested a
role of immune response (i.e., interferon-inducible proteins and major histocompatibility complex
molecules). Additionally, unique roles for glutathione metabolism and eicosanoid metabolism
in modulating susceptibility and resistance, respectively, were implicated. Overall, this research
provides novel insight into the role of immunometabolism in LRMD pathology, and suggests the
potential for unique control points for LRMD progression and severity.
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1. Introduction

The physiological adaptations necessary to make the transition from a gravid, non-
lactating state through parturition and into a lactating state represent several metabolic
challenges for periparturient dairy cows. The principal challenges include onset of neg-
ative net energy and nutrient balance spurred by a reduction in voluntary feed intake
and increasing lactation energy requirements, insulin resistance, immunosuppression,
and mineral imbalance [1–4]. Responses to these challenges, such as the degree of body
nutrient mobilization and hepatic nutrient metabolism, can vary [5–8]. Maladaptation to
these challenges can result in numerous pathologies, including the lipid-related metabolic
disorders (LRMD) hyperketonemia (HYK) and fatty liver syndrome (FLS). These comor-
bid disorders are prevalent in early lactation dairy cows, with an incidence of 43–53%
and 50% for HYK and FLS, respectively [9–12]. Hyperketonemia—defined as elevated
concentrations of blood β-hydroxybutyrate (BHB)—and bovine FLS—characterized by a
substantial accumulation of liver triglyceride (TG)—have been associated with unfavorable
performance outcomes, including greater risk of comorbidities, decreased reproductive
efficiency, productive losses, and premature culling [7,9,13–15]. The deterministic estimate
for total cost per case of hyperketonemia is USD 375 and USD 256 for primiparous and
multiparous cows, respectively [16]. The financial impact of fatty liver on dairy production
is difficult to determine, but was previously expected to cost the industry at least USD
60 million annually [14]. Therefore, these LRMD represent a concern not only for the health
and wellness of dairy cows, but also for the cost of dairy production.

Our understanding of the pathology of these disorders has historically focused on
understanding the liver metabolism of long-chain fatty acids (FA) mobilized from adipose
tissue TG [14,17]. An apparent excess of liver uptake of endogenous FA surpasses the
oxidative and secretory capacity of hepatocytes, promoting ketogenesis and storage of
re-esterified FA [14,17,18]. Thus, most research regarding the prevention and treatment of
HYK and FLS has focused on limiting FA substrates by managing dairy cows’ prepartum
obesity or excessive mobilization of FA during the postpartum period [19–21]. Alterna-
tive approaches have been focused on nutritional interventions to support oxidation via
TCA [22–24] or to improve liver TG secretion [25–27].

The advent of genome-wide gene expression profiling using microarray or RNA-Seq
techniques has expanded our capability to identify and understand the underpinning
regulatory mechanisms of physiological states. With respect to the liver transcriptome,
research concerning LRMD has focused on comparing prepartum dietary treatments
(lower vs. greater dietary energy) [28–31] or feed restriction models [32,33] to either in-
crease the risk of metabolic disorders or induce negative energy balance. In addition, the
liver transcriptome has been compared between cows overfed dietary energy achieving
subclinical HYK and those not progressing to HYK [34]. These papers have given insight
into the pathogenesis of LRMD, such as highlighting the role of key transcription factors
(i.e., peroxisome proliferator-activated receptor) and the contributions of steroid biosynthe-
sis [28–32]. However, the liver transcriptome of periparturient dairy cows experiencing
LRMD absent a challenge protocol has not been compared to apparently healthy controls.
Additionally, there has been no evaluation of whether the differential biology observed
during these experiments is representative of any differential biology in LRMD that occur
without a challenge protocol.

We hypothesize that periparturient cows have divergent physiological adaptations to
lactation that affect their susceptibility or resistance to LRMD. Furthermore, we hypothesize
that there are unique genes and metabolic pathways responsible for LRMD susceptibility
and resistance. Our presupposition is that dairy cows developing LRMD pathologies absent
of a challenge represent an LRMD-susceptible population of cows, while cows with delayed
onset or severity of LRMD when challenged represent a population of LRMD-resistant
cows. To evaluate our hypotheses, we clustered periparturient cows based on postpartum
lipid metabolite concentrations within a control treatment (CTL; no dietary challenge) and
a ketosis induction protocol (KIP; dietary challenge with oversupply of energy prepartum
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and postpartum feed restriction). Within the CTL treatment, we identified a cluster of
cows apparently less susceptible (LS) to LRMD and a cluster more susceptible (MS) to
LRMD; additionally, we determined a cluster apparently more resistant (MR) to LRMD and
a cluster less resistant (LR) to LRMD in the KIP treatment. Our objectives were to evaluate
the liver transcriptome of these clusters via RNA sequencing within the original treatment
for differentially expressed genes (DEGs) and enriched metabolic pathways (EMPs), as well
as to evaluate the common and unique liver transcriptome features of the susceptibility
and resistance models.

2. Materials and Methods
2.1. Animal Experimental Design

This research was part of a previously detailed experiment that enrolled multiparous
Holstein cows (n = 25) at the University of Wisconsin–Madison Dairy Cattle Instruction
and Research Center [35]. All animal use and handling protocols were approved by the
University of Wisconsin–Madison College of Agricultural and Life Sciences’ Animal Care
and Use Committee (protocol A005467-R01). Blocked by expected calving date, cows were
randomly assigned to a CTL (n =13) or a KIP (n = 12) treatment. The experimental period
began at −28 days relative to calving (DRTC) and ended at +56 DRTC. Control cows were
allowed ad libitum intake of diets formulated to meet the needs of dry or lactating cows,
respectively (Supplementary Table S1). The KIP cows were offered a daily top-dress of dry,
cracked corn (6 kg) in addition to ad libitum access to the dry cow ration [35]. Post-calving,
KIP cows were offered ad libitum access to the lactating cow ration until +14 DRTC, at
which time feed intake was restricted to 80% of ad libitum intake, based on the average
voluntary intake from the 3 days preceding restriction. Blood BHB was monitored daily
for all postpartum cows with a BHBCheck meter (PortaCheck, Moorestown, NJ); cows
that achieved a blood BHB ≥ 3.0 mmol/L were treated for clinical ketosis, re-alimented
to feed, and allowed ad libitum intake for the remainder of the experiment. All KIP
cows and 2 CTL cows achieved blood BHB ≥ 3.0 mmol/L [35]; treatment for clinical
ketosis included intravenous dextrose (250 mL; Phoenix Scientific Inc., St. Joseph, MO,
USA; 50% dextrose), orally administered Propylene Advantage (300 mL/d for 3 to 5 days;
TechMix LLC, Stewart, MN), and a B-vitamin complex injected intramuscularly (20 mL;
Sparhawk Laboratories, Inc., Lenexa, KS, USA). Additional cow illnesses monitored by
the herd veterinarian included displaced abomasum (n = 1 LR cow), clinical hypocalcemia
(n = 1 LR cow), mastitis (n = 1 LS cow at +53 DRTC), retained placenta (n = 0 cows), and
metritis (n = 0 cows).

Methods regarding sample collection and analysis are detailed in depth in the com-
panion manuscript [35]. Briefly, feed intake and milk yield data were recorded daily, and
composition analysis was performed on monthly composites of feed samples and on milk
samples collected weekly. Sampling occurred at−28,−14, +1, +14, +28, +42, and +56 DRTC
for body weight (BW), body condition score (BCS), blood samples, and blind percutaneous
liver biopsies (Supplementary Methods) [35]. Sample collection at +14 DRTC preceded
feed restriction for the KIP treatment. Additional body weights and BCSs were evaluated
at −7 and +7 DRTC, and additional blood samples were collected at −7, −5, −3, +3, +5,
and +7 DRTC. Blood fractions (serum or plasma) were quantified for BHB and glucose,
respectively, using Catachem VETSPEC reagents on the Catachem Well-T AutoAnalyzer
(Catachem, Oxford, CT, USA). Plasma FA concentration and liver TG concentration were
determined using colorimetric, enzymatic assays [22,35,36].

2.2. k-Means Clustering and Retrospective Selection

Cows assigned to the CTL treatment were absent of an additional dietary challenge,
and were leveraged to identify cows LS or MS to LRMD. Meanwhile, cows assigned to
the KIP treatment were dietarily challenged to induce LRMD and leveraged to identify
cows MR or LR to LRMD. To avoid subjectively choosing cows representing differential
LRMD susceptibility or resistance, a k-means clustering algorithm (R, version 3.5.2) was
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used to empirically group cows within their original dietary (CTL or KIP) treatment based
on metabolic characteristics. Variables supplied to the algorithm included concentrations of
plasma FA, serum BHB, and liver TG from +1, +14, and +28 DRTC, as well as the maximum
postpartum concentration of each lipid metabolite from any DRTC timepoint. This allowed
for a longitudinal assessment of LRMD status, and the maximum concentrations served as
a proxy for LRMD severity. All variables were tested for normality (p ≤ 0.05, Shapiro–Wilk
test) and transformed (log10 or reciprocal) to an empirically Gaussian distribution (p > 0.05,
Shapiro–Wilk test). For each original treatment, we evaluated algorithms allowing for
2–5 clusters, 1000 iterations, and 1000 random starts. Based on silhouette plot evaluation
(R package: cluster, version 2.1.0) [37] and the number of cows within the largest 2 clusters
(n ≥ 4), the optimal number of clusters was 2 and 4 for CTL and KIP cows, respectively.
Two of the clusters from within the KIP treatment had too few cows to be considered for
RNA-Seq (n ≤ 2) and were excluded. From the clusters within CTL and KIP treatments,
cows (n = 4 per cluster) were randomly selected to represent the cluster, and proceeded
to RNA isolation and library preparation for RNA-Seq. Poor RNA integrity, detailed
subsequently, resulted in the elimination of one cow per cluster; therefore, each cluster
was represented by 3 randomly selected cows (n = 6 per original treatment) with adequate
RNA integrity. Assignment of clusters as LS or MS in the CTL treatment and LR or MR in
the KIP treatment was based on the statistical evaluation of the metabolites supplied for
clustering (see Statistical Analysis). Greater concentrations of LRMD biomarkers suggest
progressed pathology and increased risk of negative performance outcomes [14,17,38,39];
therefore, the clusters with greater blood BHB, blood FA, or liver TG were designated MS
and LR within the CTL and KIP treatments, respectively, and clusters with lower lipid
metabolites were designated LS and MR within the CTL and KIP treatments, respectively.
Parity distribution across clusters was 8 second parity, 2 third parity (MS cluster), 1 fourth
parity (LR cluster), and 1 fifth parity (LS cluster).

2.3. RNA Isolation, Library Preparation, Sequencing, and Mapping

Liver tissue samples (~50 mg) were homogenized into fine powders in liquid nitrogen
using a mortar and pestle. Sample RNA was extracted following the miRNeasy protocol
with a QIAcube instrument (Qiagen, Foster City, CA, USA). The RNA integrity number
was determined via Bioanalyzer using the RNA 6000 nano kit (Agilent, Santa Clara, CA,
USA) for all samples (n = 48). To improve overall RNA integrity for the experiment, one
cow per cluster was dropped due to excessively low integrity for at least one DRTC. For
the remaining samples (n = 36), RNA integrity was 6.0 ± 1.2 (SD). Library preparation
for RNA sequencing was done using the Illumina TruSeq Ribo-Zero gold kit (Illumina,
San Diego, CA, USA) following the manufacturer’s instructions. For each sample, 1µg
of total RNA was used as the input. The fragment distribution of prepared libraries
was assessed via Bioanalyzer using the DNA 1000 kit (Agilent, Santa Clara, CA, USA).
Quantification of prepared libraries was performed using a Kapa quantification kit (Kapa
biosystems, Darmstadt, Germany) with a QuantStudio5 quantitative PCR instrument
(Thermo Fisher, Waltham, MA, USA). Libraries were further normalized to ensure equal
quantities before sequencing. Normalized, pooled samples were sequenced on an Illumina
NextSeq 500 instrument (Illumina, San Diego, CA, USA) to obtain paired-end, 2 × 75 bp
reads using a 150 high-output kit. Quality of reads was assessed via FastQC (https:
//www.bioinformatics.babraham.ac.uk/projects/fastqc/ accessed on 28 December 2019).
Before sequence alignment, raw reads were filtered to remove those shorter than 50 bp.
The mean number of paired-end reads per library was 34,137,191 ± 646,323 (SEM). The
ribosomal depletion of sample libraries coupled with the deep read count suggests that our
results will be comparable to poly-A-enriched preparation methods, despite the relatively
low library RIN values [40]. For alignment, the genome reference and annotation files for
Bos taurus (release 106, ARS-UCD 1.2) were downloaded from the NCBI (https://www.ncbi.
nlm.nih.gov/assembly/GCF_002263795.1 accessed on 14 March 2020) for use. Raw reads
from the whole transcriptome RNA-Seq libraries were aligned to the Bos taurus reference

https://www.bioinformatics.babraham.ac.uk/projects/fastqc/
https://www.bioinformatics.babraham.ac.uk/projects/fastqc/
https://www.ncbi.nlm.nih.gov/assembly/GCF_002263795.1
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genome using STAR (2.5.2b). Read count quantification was done using cufflinks [41] with
a sorted bam file generated by STAR as the input file. The expression levels of mRNAs in
each sample were normalized to fragments per kilobase of transcript per million mapped
reads (FPKM) by cufflinks [41].

2.4. Statistical Analysis

Due to the dependence of the retrospective cluster assignments on the original dietary
treatment (CTL or KIP), the complete data (n = 12, selected cows) were divided into
datasets based on original dietary treatment; therefore, all statistical analyses compared
either LS vs. MS or LR vs. MR.

Analysis of biometric (i.e., BCS), productive (i.e., milk energy yield), and metabo-
lite data (i.e., serum BHB) was performed using the SAS (version 9.4; SAS Institute Inc.,
Cary, NC) procedures UNIVARIATE and GLIMMIX. Several response variables had non-
Gaussian distributions based on the Shapiro–Wilk test (p < 0.05). For those responses, data
transformations were systematically evaluated, and transformations providing Gaussian
distributions were selected either empirically, by Shapiro–Wilk test (p > 0.05), or subjec-
tively, by histogram visualization (when empirical solutions were not found). The bimodal
nature of calculated net energy balance necessitated downstream analysis to be performed
on prepartum and postpartum timepoints separately. Linear mixed models were used to
evaluate responses for evidence of differences between clusters (LS vs. MS or LR vs. MR,
n = 3 cows/cluster), using the systematic model-building procedure [35]. The typical fixed
effects included cluster, time, and cluster × time; the random effects included cow, cow
nested within week of lactation (models with subsampling), and repeated measures of cow
across time (when applicable). All models were assessed for improvement by additional co-
variates (i.e., previous lactation, 305 d mature equivalent milk yield, parity, and −28 DRTC
measurement), controlling for heterogeneous variance, and the use of alternative variance–
covariance structures (variance components were default) [35]. Preplanned contrasts were
performed to compare clusters (LS vs. MS and MR vs. LR) across postpartum timepoints
(+1 to +56 DRTC), and were reported when they provided new information with respect to
the LMM. Fixed effects with p ≤ 0.05 were considered to have significant evidence for dif-
ferences, while effects with 0.05 < p ≤ 0.10 were considered to have marginal evidence for
differences. Whenever a cluster × time effect had some evidence for a difference (p ≤ 0.10),
we made simple-effect comparisons of treatments within timepoints and corrected for
multiplicity using the Bonferroni method. Treatment means are expressed as least squares
means, and the 95% confidence intervals denoted as (lower limit, upper limit).

Differential gene expression analysis was done using the Cuffdiff function of Cuf-
flinks [41] within each DRTC for LS vs. MS and MR vs. LR. P-values were corrected for
multiplicity by false discovery rate [42], and are hereafter referred to as Q-values. The
Database for Annotation, Visualization, and Integrated Discovery (DAVID) web-based
software was used to evaluate gene ontologies and EMPs [43,44] for DEGs within a DRTC
comparison. Genes supplied to the test list (termed gene list by DAVID) had Q ≤ 0.10
within the respective DRTC timepoint comparison of clusters. Instead of comparing a
gene list to all genes in the Bos taurus genome, a customized background list was supplied
to DAVID for the respective DRTC timepoint comparison of clusters. These customized
background lists included all sequenced genes successfully tested within the respective
DRTC comparison. Fisher’s exact statistics were extracted and corrected for multiplicity by
false discovery rate [42]. Our evidence criteria for DEGs, gene ontologies, and EMPs were
Q ≤ 0.05 and 0.05 < Q ≤ 0.10 for significant and marginal evidence, respectively.

3. Results
3.1. Phenotypic Characterization of Clusters

Biometric indicators of obesity—BW and BCS—were not different between LS and MS
cows (p ≥ 0.85; Figure 1a,c). Milk energy output and dry matter intake (DMI) did not differ
between susceptibility clusters (p = 0.59 and p = 0.41, respectively; Supplementary Table S2).
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Thus, net energy balance did not differ between susceptibility clusters pre- (p = 0.89;
Supplementary Table S2) or postpartum (p = 0.28; Figure 1e). Plasma glucose (Figure 2a)
and FA concentration (Figure 2b) did not differ (p = 0.62 and p = 0.39, respectively) between
LS and MS cows either. Serum BHB concentration showed marginal evidence of being
greater (p = 0.08) for the MS cows than for the LS cows (Figure 2c); a single MS cow was
diagnosed with clinical ketosis (blood BHB ≥ 3.0 mmol/L). In addition, liver TG content
was greater (p = 0.02; Figure 3a) for the MS cows than for the LS cows.
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postpartum samples (bracketed) are indicated within their respective panels. 

Figure 1. Body weight (panels a and b), body condition score (BCS; panels c and d), and calculated
energy balance (panels e and f) for dairy cows clustered based on postpartum lipid metabolites within
the original dietary treatment. Left-hand panels compare cows less (LS) or (MS) susceptible to lipid-
related metabolic disorders, while right-hand panels compare cows more (MR) or less (LR) resistant
to lipid-related metabolic disorders (n = 3 cows per cluster). Data are presented as least squares
means (points) and their 95% confidence intervals (error bars); the exceptions are the arithmetic
mean and 95% confidence interval for the −28 DRTC timepoint covariates (panels a–d). Statistics
for the fixed effects of cluster, day relative to calving (DRTC), and their interaction (C × D) across
the experimental period (panels a–d) or the postpartum period (panels e and f) are displayed in the
top-right corner of each panel. Significant (*, p ≤ 0.05; Bonferroni adjusted) or marginal evidence
(†, p = 0.07; Bonferroni adjusted) for the effects of cluster within DRTC or contrast of cluster across
postpartum samples (bracketed) are indicated within their respective panels.
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Figure 2. Blood fraction concentrations of glucose (panel a), fatty acids (FA; panel b), and β-hydroxybutyrate (BHB; panel c)
for dairy cows less (LS) or more (MS) susceptible to lipid-related metabolic disorders (n = 3 cows per cluster). Data are
presented as least squares means (points) and their 95% confidence intervals (error bars). Statistics for the fixed effects of
cluster, day relative to calving (DRTC), and their interaction (C × D) are displayed in the top-right corner of each panel.
Contrasts of cluster across postpartum samples did not reveal additional evidence of differences (p > 0.10; panels a and b).
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Figure 3. Liver triglyceride (TG) content for dairy cows clustered based on postpartum lipid metabolites within the original
dietary treatment. Panel (a) depicts cows less (LS) or more (MS) susceptible to lipid-related metabolic disorders, while
panel (b) compares cows more (MR) or less (LR) resistant to lipid-related metabolic disorders (n = 3 cows per cluster).
Data are presented as least squares means (points) and their 95% confidence intervals (error bars). Statistics for the fixed
effects of cluster, day relative to calving (DRTC), and their interaction (C × D) are displayed in the top-right corner of each
panel. Significant evidence (*, p ≤ 0.02; Bonferroni adjusted) for simple effects of cluster within DRTC are indicated in their
respective panels.

For the resistance clusters within the KIP treatment, cows were individually feed-
restricted after the +14 DRTC sampling until blood BHB≥ 3.0 mmol/L. The number of days
feed-restricted until achieving the threshold was 4, 8, and 13 d for the MR cows, and 0, 2,
and 8 d for the LR cluster cows. A single LR cow was diagnosed with displaced abomasum
and hypocalcemia by the herd veterinarian. Resistance clusters did not differ in BCS
(p = 0.91; Figure 1d), but the MR cows had greater BW from +7 to +56 DRTC (p ≤ 0.07 for
Bonferroni-adjusted simple effects; Figure 1b) compared to LR cows. Milk energy output
and milk lactose yield were similar (p > 0.99 and p = 0.52, respectively; Supplementary
Table S3) between resistance clusters. Marginal evidence of greater postpartum DMI
(p = 0.09, contrast) for MR cows compared to LR cows was observed, contributing to the
significantly (p = 0.01) attenuated negative energy balance observed for MR cows compared
to LR cows (Figure 1f). Plasma glucose concentrations showed marginal evidence of being
greater postpartum (p = 0.07, contrast) for MR cows than for LR cows (Figure 4a). Compared
to their LR contemporaries, MR cows showed marginal evidence of lower concentrations of
postpartum plasma FA (p = 0.06, contrast; Figure 4b) and serum BHB (p = 0.10; Figure 4c),
as well as significant evidence of lower liver TG (p = 0.03; Figure 3b).
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for dairy cows more resistant (MR) or less (LR) resistant to lipid-related metabolic disorders (n = 3 cows per cluster). Data
are presented as least squares means (points) and their 95% confidence intervals (error bars). Statistics for the fixed effects of
cluster, day relative to calving (DRTC), and their interaction (C × D) are displayed in the top-right corner of each panel.
Marginal evidence (†; p = 0.07, panel a; p = 0.06, panel b) for contrasts of cluster across postpartum samples (bracketed) are
indicated within their respective panels.

3.2. Differentially Expressed Genes and Enriched Metabolic Pathways

For the comparison of LS and MS clusters, the count of genes with FPKM > 0 was
13,151 genes at −28 DRTC, 13,011 genes at +1 DRTC, and 13,211 genes at +14 DRTC tested
for differential expression (Table 1). Genes with significant (marginal) evidence on −28,
+1, and +14 DRTC totaled 165 (58), 116 (31), and 199 (39), respectively (Supplementary
Microsoft Excel File). A selection of genes with significant or marginal evidence for
differential expression across all DRTC within the susceptibility cluster comparisons is
listed in Table 2. Metabolic pathways enriched within the DEGs with significant (marginal)
evidence numbered 0 (2), 4 (3), and 5 (2) for −28, +1, and +14 DRTC, respectively (Table 3).
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Table 1. The numbers of genes tested within days relative to calving (DRTC; diagonal) that were
shared within and across comparison of clusters 1.

Susceptibility Resistance

DRTC −28 +1 +14 −28 +1 +14

Susceptibility
−28 13,151 12,752 12,837 12,833 12,757 12,519
+1 21,009 13,011 12,784 12,670 12,744 12,512

+14 20,891 20,978 13,211 12,768 12,774 12,620

Resistance
−28 20,962 20,939 20,834 13,139 12,736 12,518
+1 20,874 21,001 20,828 20,865 13,150 12,525

+14 21,065 21,198 21,103 21,076 21,071 12,718
1 The number of tested genes shared (pairwise) across DRTC and across cluster comparisons (susceptibility or
resistance) are above the diagonal, while the number of untested genes shared are below the diagonal. There
were 34,411 genes that were potentially tested across the Bos taurus genome (release 106, ARS-UCD 1.2).

Table 2. Fold change 1 of genes with significant or marginal evidence of differential expression at all
days relative to calving in liver samples from cows less or more susceptible to lipid-related metabolic
disorders 2.

Gene Symbol −28 +1 +14

BOLA class I histocompatibility antigen, alpha
chain BL3-6 BOLA −1.3 −1.3 −1.4

Major histocompatibility complex, class II, DQ
beta BOLA-DQB −2.2 −3.0 −3.0

Coiled-coil domain-containing 80 CCDC80 −5.0 −1.4 −3.4
C-C motif chemokine 14 precursor CCL14 −1.7 −1.9 −1.6

B-cell receptor CD22 CD22 1.4 1.1 0.9
Acetylcholine receptor subunit epsilon CHRNE 2.3 1.3 † 1.5

C-type lectin domain family 4 member F CLEC4F −1.3 −1.3 † −1.5
GTPase IMAP family member 6 GIMAP6 −1.3 −1.7 −1.7
GTPase IMAP family member 8 GIMAP8 −2.2 −2.0 −2.4

ISG15 ubiquitin-like modifier ISG15 −1.6 −1.0 † 1.1
Methylenetetrahydrofolate dehydrogenase

1-like MTHFD1L −1.4 −1.3 † −1.6

Olfactory receptor 4 × 2 OR4S1 1.0 0.9 † 0.8
Prodynorphin PDYN −2.4 −2.9 −2.2

Secreted frizzled-related protein 2 SFRP2 5.6 4.4 2.0
Pulmonary surfactant-associated protein A

precursor SFTPA1 −3.7 −2.1 −1.6

Teneurin transmembrane protein 1 TENM1 −2.1 −1.3 † −0.9
1 Values represent the log2-transformed fold change within each timepoint. Positive values indicate greater
expression for more susceptible than for less susceptible cows, and vice versa for negative values. 2 Genes were
considered to have significant evidence of differential expression within days relative to calving (−28, +1, and
+14) when Q ≤ 0.05 (p-value corrected for multiplicity by false discovery rate); meanwhile, marginal evidence (†)
was declared at 0.05 < Q ≤ 0.10.
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Table 3. Kyoto Encyclopedia of Genes and Genomes metabolic pathways enriched within the genes with significant or marginal evidence of differential expression in liver samples from
cows less or more susceptible to lipid-related metabolic disorders 1.

DRTC ID Metabolic Pathway FE Q-Value Gene Symbols 2

−28
bta04514 Cell adhesion molecules (CAMs) 5 0.098 MGC126945, ITGAV, NRCAM, LOC534578, CD22, BOLA-DQB, LOC100848815
bta04145 Phagosome 4 0.098 SEC61G, SFTPA1, MRC2, MGC126945, ITGAV, SEC61B, BOLA-DQB
bta03320 PPAR signaling pathway 6 0.136 SCD, CYP8B1, APOA5, SLC27A6, FADS2

+1

bta05204 Chemical carcinogenesis 7 0.023 LOC615303, CYP1A1, GSTA4, GSTT1, GSTA1, CYP2C87
bta00480 Glutathione metabolism 8 0.026 ODC1, GSTA4, GSTT1, ANPEP, GSTA1

bta00980 Metabolism of xenobiotics by cytochrome
P450 7 0.026 LOC615303, CYP1A1, GSTA4, GSTT1, GSTA1

bta05164 Influenza A 4 0.04 RSAD2, OAS1X, DDX39B, DDX58, LOC784541, BOLA-DQB, LOC100848815
bta04141 Protein processing in endoplasmic reticulum 3 0.079 CKAP4, HSPA5, HYOU1, DNAJB11, MOGS, SEC23B, WFS1
bta00982 Drug metabolism-cytochrome P450 6 0.079 LOC615303, GSTA4, GSTT1, GSTA1
bta04514 Cell adhesion molecules (CAMs) 4.0 0.085 NRCAM, LOC534578, CD22, BOLA-DQB, LOC100848815

+14

bta04512 ECM-receptor interaction 9 6.3 × 10−5 COL6A3, COL6A1, COL5A1, COL5A3, COL3A1, COL1A1, COL1A2, COL5A2, VWF, TNXB
bta04974 Protein digestion and absorption 10 6.8 × 10−5 COL6A3, COL6A1, COL5A1, COL5A3, COL3A1, COL1A1, COL1A2, COL5A2, COL15A1
bta04611 Platelet activation 4.0 0.046 COL5A1, COL5A3, ADCY1, COL3A1, COL1A1, COL1A2, COL5A2, VWF
bta04510 Focal adhesion 3 0.046 COL6A3, COL6A1, COL5A1, COL5A3, COL3A1, COL1A1, COL1A2, COL5A2, VWF, TNXB
bta05146 Amoebiasis 5 0.046 COL5A1, COL5A3, ADCY1, COL3A1, COL1A1, COL1A2, COL5A2
bta04923 Regulation of lipolysis in adipocytes 7 0.058 PTGER3, ADCY1, FABP4, LIPE, IRS2

bta04151 PI3K–Akt signaling pathway 3 0.058 IFNAR1, COL6A3, COL6A1, COL5A1, COL5A3, LPAR1, COL3A1, COL1A1, COL1A2,
COL5A2, VWF, TNXB

1 Enrichment analysis was performed within days relative to calving (DRTC) using the Database for Annotation, Visualization, and Integrated Discovery (version 6.8) by comparing a list of genes with significant
or marginal evidence (Q ≤ 0.10; p-value adjusted for multiplicity by the false discovery rate method) to a custom background list including all tested genes within a DRTC. Fold enrichment (FE) and Fisher’s
exact statistics were extracted; tests were corrected for multiplicity via the false discovery rate method (Q-value). 2 Annotation of gene transcripts and affiliated gene symbols are based on the Bos taurus reference
genome (release 106, ARS-UCD 1.2).
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Comparing the MR and LR cows, the count of genes with FPKM > 0 was 13,139 genes
at−28 DRTC, 13,150 genes at +1 DRTC, and 12,718 genes at +14 DRTC tested for differential
expression (Table 1). Significant (marginal) evidence for differential expression was found
for 127 (30), 142 (50), and 102 (31) genes at −28, +1, and +14 DRTC, respectively (Supple-
mentary Microsoft Excel File). A selection of genes with significant or marginal evidence
for differential expression across all DRTC within the resistance cluster comparisons is
listed in Table 4. Metabolic pathways enriched within the DEGs with significant (marginal)
evidence numbered 0 (5), 6 (2), and 0 (0) for −28, +1, and +14 DRTC, respectively (Table 5).

Table 4. Fold change 1 of genes with significant or marginal evidence of differential expression at all
days relative to calving in liver samples from cows more or less resistant to lipid-related metabolic
disorders 2.

Gene Symbol −28 +1 +14

Major histocompatibility complex, class II, DQ beta BOLA-DQB 1.9 2.1 2.6
GTPase IMAP family member 4 GIMAP4 −0.8 † −1.2 −1.2

17-Beta-hydroxysteroid dehydrogenase 13 HSD17B13 1.2 1.8 1.2
Interferon-induced protein 44 IFI44 1.3 1.8 1.3

Interferon alpha-inducible protein 6 IFI6 1.8 2.6 1.0
MHC Class I JSP.1 JSP.1 0.8 † 1.1 0.7 †

Myomesin 1 MYOM1 0.9 1.8 0.8
2′,5′-Oligoadenylate synthetase 1, 40/46kDa OAS1X 2.3 1.8 1.4
Proto-oncogene tyrosine-protein kinase ROS ROS1 −1.1 −1.4 −3.0

1 Values represent the log2-transformed fold change within each timepoint. Positive values indicate greater
expression for less resistant than for more resistant cows, and vice versa for negative values. 2 Genes were
considered to have significant evidence for differential expression within days relative to calving (−28, +1, and
+14) when Q ≤ 0.05 (p-value corrected for multiplicity by false discovery rate); meanwhile, marginal evidence (†)
was declared at 0.05 < Q ≤ 0.10.
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Table 5. Kyoto Encyclopedia of Genes and Genomes metabolic pathways enriched within the genes with significant or marginal evidence of differential expression in liver samples from
cows more or less resistant to lipid-related metabolic disorders 1.

DRTC Metabolic Pathway FE Q-Value Gene Symbols 2

−28

Cytokine–cytokine receptor interaction 4.6 0.099 PF4, CXCR2, CXCR1, IL1R2, CCR1, CSF2RB
Cell adhesion molecules (CAMs) 4.5 0.099 VCAN, JSP.1, SELL, LOC534578, BOLA-DQB

Viral myocarditis 6.4 0.099 JSP.1, MYH7, CD55, BOLA-DQB
Chemokine signaling pathway 3.5 0.099 PF4, NCF1, CXCR2, CXCR1, CCR1, CCL24

Hematopoietic cell lineage 5.7 0.099 MS4A1, LOC515418, IL1R2, CD55

+1

Metabolic pathways 14.1 0.041
IDI1, HAL, SDS, LOC511161, KYAT1, ALPI, FOLH1B, LOC615045, BCO1, OAT, GCSH,

ASAH2, PLB1, FDPS, FUT1, HDC, AKR1B10, MBOAT2, ACSS2, MTHFD1L, ADH4, ENPP3,
B4GALT4, PLA2G2A, CYP2J2, LOC100125266, CYP2B6

Arachidonic acid metabolism 2.6 0.041 PLB1, LOC615045, PLA2G2A, CYP2B6, CYP2J2
Linoleic acid metabolism 2.1 0.041 PLB1, LOC615045, PLA2G2A, CYP2J2

Autoimmune thyroid disease 2.1 0.041 JSP.1, LOC524810, LOC100300716, BOLA-DQB
Allograft rejection 2.1 0.041 JSP.1, LOC524810, LOC100300716, BOLA-DQB
Viral myocarditis 2.6 0.041 JSP.1, LOC524810, LOC100300716, CD55, BOLA-DQB

Intestinal immune network for IgA production 2.1 0.083 LOC524810, PIGR, LOC100300716, BOLA-DQB
alpha-Linolenic acid metabolism 1.6 0.086 PLB1, LOC615045, PLA2G2A

1 Enrichment analysis was performed within days relative to calving (DRTC) using the Database for Annotation, Visualization, and Integrated Discovery (version 6.8) by comparing a list of genes with significant
or marginal evidence (Q ≤ 0.10; p-value adjusted for multiplicity by the false discovery rate method) to a custom background list including all tested genes within a DRTC. Fold enrichment (FE) and Fisher’s
exact statistics were extracted; tests were corrected for multiplicity by the false discovery rate method (Q-value).2 Annotation of gene transcripts and affiliated gene symbols are based on the Bos taurus reference
genome (release 106, ARS-UCD 1.2).



Animals 2021, 11, 2558 14 of 22

4. Discussion

The purpose of this work is to provide novel insight into the genes and metabolic
pathways integral to the pathology of LRMD. To that end, we retrospectively identified
groups of periparturient dairy cows within a relatively normal dietary scenario and within
a metabolically challenging dietary scenario, with apparently different metabolic statuses.
These differences in metabolic status were determined via k-means clustering of cows based
on postpartum liver and blood characterization as indicators of HYK and FLS [17,38,45]. It
is important to acknowledge that the sample size for the cluster comparisons was relatively
small (n = 3 cows/cluster), which can impede the detection of response differences or limit
generalizability. Nevertheless, evidence for differences in lipid biomarkers—particularly
liver TG and blood BHB—were found between clusters. Although nutrient partitioning is
a normal physiological adaptation that may support feed efficiency, metabolic health, and
productivity [46–49], dysregulation or imbalance can reflect metabolic disorders, which are
the focus herein. Sequencing of the liver transcriptomes at several peripartum timepoints
suggested numerous genes and metabolic pathways associated with LRMD at one or more
timepoints. Therefore, this discussion will only concern the phenotypic characterization
of the clusters within the original dietary treatment, along with a selection of genes, gene
families, and metabolic pathways.

4.1. Phenotypic Characterization of Clusters

Cows within the CTL treatment were subject to typical pre- and postpartum diets for
dairy cows, without additional imposed challenges [35]. Differential regulation of genes
and metabolic pathways may underlie facets of liver metabolism that may predispose an
individual cow to the progression of LRMD. The principal metabolic differences between
the LS and MS cows were the greater serum BHB (p = 0.08; Figure 2c) and liver TG (p = 0.02;
Figure 4a) concentrations observed for the MS cows. As mentioned, these metabolites
serve as the primary biomarkers for HYK and FLS, with greater concentrations suggesting
pathology [17,38,45]. Thus, the MS cluster appears to be in a less favorable metabolic con-
dition and prone to LRMD. Greater plasma FA concentration is also a biomarker of LRMD,
and would be expected in the MS cluster [39,50]. Although plasma FA were numerically
greater for MS cows postpartum (Figure 2b), they was not significantly different from the
LS cows. This lack of difference in FA is corroborated by the similar BW and BCS between
the susceptibility clusters peripartum (Figure 1), suggesting unappreciable differences in
the lipolysis of adipose TG between clusters. Additionally, these clusters did not differ
in DMI, milk energy output, energy balance (Figure 1e), or plasma glucose (Figure 2a).
Although these differences are in contrast to the present dogma of insufficient nutrient
supply and over-mobilization of body energy reserves leading to LRMD [17,18,45], it is
important to remember that the lack of differences here may be due to the small sample
size with regard to metabolite analysis. Conversely, these data may suggest that some cows
are susceptible to onset of LRMD despite the lack of energetic challenges that are classically
associated with the dogma, and may be susceptible due to independent risk factors.

The KIP treatment imposed on the cows in the resistance clusters (MR and LR) was
intended to predispose cows to LRMD. All cows in the KIP treatment progressed to a clini-
cal HYK blood BHB threshold (BHB ≥ 3.0 mmol/L). Thus, the aim of metabolic clustering
was to identify cows more resistant to the KIP treatment, with lower metabolite concentra-
tions (plasma FA, serum BHB, and liver TG) or a greater number of feed restriction days
until blood BHB ≥ 3.0 mmol/L. Consistent with this goal, dairy cows in the MR cluster
had lower concentrations of serum BHB (p = 0.10; Figure 4c) and liver TG postpartum
(p = 0.03; Figure 4b) compared to the LR cluster. Furthermore, MR cows required more
feed restriction days to achieve BHB ≥ 3.0 mmol/L. Together, these data suggest that cows
in the MR cluster were more resistant to LRMD than LR cows. Compared to LR cows,
MR cows had greater postpartum BW (Figure 1b) and less negative energy balance postpar-
tum (Figure 1f), suggesting that the MR cows did not mobilize as much of their endogenous
energy reserves to support lactation nutrient requirements as the LR cows. Greater plasma
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FA concentration for the LR cows (Figure 4b) corroborates greater lipolysis of adipose tissue
TG. The greater plasma glucose concentration for the MR cows postpartum (Figure 4a),
with similar milk lactose output, may suggest that MR cows had greater hepatic gluconeo-
genesis or decreased peripheral glucose utilization compared to LR cows [1,8,51]. Overall,
the MR cows appeared to experience a more favorable adaptation to lactation when a
dietary challenge was imposed than the LR cows.

4.2. Inferred Differential Regulation of the Liver Transcriptome

Mobilization of adipose tissue TG as FA and their linear uptake by the liver results in
a tremendous supply of liver FA for metabolism in dairy cows [52,53]. Oxidation of these
FA in the hepatocyte mitochondria and peroxisomes to produce energy can also produce
reactive oxygen species (ROS). Accumulation of hepatic ROS in early postpartum dairy
cows can induce oxidative stress, characterized by excessive oxidation of proteins and lipids
and induction of apoptosis [54,55]. Glutathione is a protein that can serve as an antioxidant,
protecting cells from ROS-induced oxidative damage [26,55,56]. In the present experiment,
the KEGG pathway glutathione metabolism was enriched in the DEGs identified in the
comparison of susceptibility clusters on +1 DRTC (Table 3). The LS cows had greater
expression of genes in the glutathione-centered antioxidant defense system than MS cows:
GSTA4 (2.6-fold), GSTT1(2.0-fold), and GSTA1 (2.5-fold); these genes catalyze glutathione
conjugations with electrophilic compounds (i.e., drugs, xenobiotics, lipid hydroperoxides),
and some have glutathione peroxidase activity [57–59]. Thus, the LS cows appear to have
improved their antioxidation capacity compared to their MS contemporaries.

Eicosanoids, a subcategory of oxylipids, are signaling molecules made by the enzy-
matic or non-enzymatic oxidation of arachidonic acid or other polyunsaturated FA [54,60].
These molecules can have either pro- or anti-inflammatory properties, while influencing ox-
idative stress [54]. Eicosanoids can directly promote oxidative stress through the production
of ROS, or indirectly via the production of ROS during biosynthesis. Some eicosanoids—
such as 15-deoxy-delta 12 and 14-Prostaglandin J2—exert antioxidant effects by directly or
indirectly targeting and decreasing ROS production by other cellular metabolic processes
(i.e., mitochondrial oxidation) [54,60]. At +1 DRTC, the KEGG pathways linoleic acid
metabolism, alpha-linoleic acid metabolism, and arachidonic acid metabolism were en-
riched for the comparison of the LRMD resistance cluster (Table 5). All of the specific DEGs
were expressed more in the livers of LR cows: PLB1 (36.8-fold), PLA2 (infinity (∞)-fold),
PLA2G2A (∞-fold), CYP2B6 (2.6-fold), and CYP2J2 (4.3-fold). The inferred promotion of
eicosanoid synthesis may be a byproduct of the greater ROS production and pathology of
LRMD. However, the greater eicosanoid production may be an adaptation by the LR cows
to accelerate the termination of the liver’s inflammatory state.

The role of the immune system in the progression of metabolic syndromes is an emerg-
ing scientific field in dairy science [61,62]. In humans, there appears to be crosstalk between
metabolism and the immune response, which furthers the progress of non-alcoholic fatty
liver to steatohepatitis and cirrhosis [63]. In the present experiment, many of the most
consistent DEGs across the DRTC were the immunity-related genes involved in expressing
components of the major histocompatibility complex (MHC; classes I and II) and genes
in the interferon-inducible protein (IFI) family for LRMD susceptibility and resistance
comparisons.

The MHC molecules are responsible for the presentation of antigens on the cell surface,
and recruit other mechanisms of the innate immune response when antigens represent “non-
self” proteins [64]. Expression of MHC molecules—particularly MHC class II—has been
implicated in the pathology of liver metabolic and inflammatory disease in humans [63,64].
In our data, the expression of MHC elements was found in the cell adhesion molecules path-
way at −28 and +1 DRTC for the susceptibility clusters and −28 DRTC for the resistance
cluster comparison. Of note, bovine lymphocyte antigen-DQB (BOLA-DQB)—an MHC class
II protein—was one of the few DEGs observed at every DRTC for the LRMD susceptibility
and resistance cluster comparisons. Liver tissue is composed of several cell types, including
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hepatocytes, hepatic stellate cells, Kupffer cells, and sinusoidal cells [65]. Expression of
MHC class II molecules is typically restricted to professional antigen-presenting cell types
such as Kupffer cells, and not hepatocytes [66]; however, hepatocytes from humans with
clinical hepatitis do express MHC class II molecules [67], which may be capable of attract-
ing CD4+ T lymphocytes [64]. It is theorized that ROS-induced peroxidation of cellular
components, such as proteins and lipids, can induce MHC expression and presentation
of the oxidized component antigens to the cell surface [63]. The subsequent recruitment
of CD4+ T lymphocytes and cytokine expression promote the apoptosis and clearance of
ROS-damaged hepatocytes by the immune system [63,64]. Even though hepatocytes are
the predominant liver cell type, differential expression of these genes may be found within
Kupffer cells. Fatty acid binding to Kupffer Toll-like receptors has been demonstrated to
promote macrophage recruitment through the C-JNK and NF-κB pathways, promoting
liver lipid synthesis and mitochondrial dysfunction [68,69]. Interestingly, BOLA-DQB and
other MHC components generally had greater expression for the LS and LR cows than for
the MS and MR cows, respectively. Considering that the LS group was the metabolically
preferable group within the susceptibility cluster, we did not expect the relative direction-
ality of these DEGs to be similar to LR—the less preferable resistance cluster. It may be
the case that cows not experiencing additional dietary challenges benefit from sensitive
clearance of ROS-damaged hepatocytes, while cows challenged with additional prepartum
energy may suffer from an excessive quantity of ROS-damaged cells or oversensitive pre-
sentation of antigens, resulting in disproportional apoptosis and clearance, but this would
require further examination.

Interferons are cytokines that are best known for their secretion in response to viral
infections, but have been implicated in the pathology of non-alcoholic fatty liver disease in
humans [70,71]. The IFI and other interferon-stimulated genes are downstream effectors of
interferon [72]. Similar to the MHC genes, IFI genes—specifically IFI6, IFI27, IFI44, and
IFI44L—had greater relative expression (range of 2.0- to 5.6-fold) for LS and LR cows than
for MS and MR cows, respectively, across all DRTC. It is possible that the IFI genes serve as
the upstream regulators promoting the expression of the MHC molecules [72], and promote
the clearance of ROS-damaged hepatocytes, as previously discussed.

Serum amyloid A (SAA) is an acute phase response protein associated with the
inflammatory cascade that has been previously associated with HYK [73–75]. The isoforms
SAA1 and SAA2 are generally considered to be the predominant proinflammatory proteins
expressed in the liver, while SAA3 has generally been viewed as an adipokine [73,75].
Expression of SAA3 was significantly greater for LS than MS cows at −28 DRTC (6.1-fold),
but LS cows had significantly lower SAA3 expression (3.2-fold) at +1 DRTC than MS cows.
At +14 DRTC, the LS cluster had greater expression of SAA2 (6.1-fold), SAA4 (1.7-fold),
and LOC104968478 (21.1-fold) than the MS cluster. The LR cluster had consistently greater
expression of all SAA isoforms than the MR cluster, ranging from 4- to 9.8-fold. Comparison
of resistance clusters is consistent with previous works associating greater abundance
of SAA and states with LRMD [74,76]. However, the susceptibility cluster comparison
suggests a more nuanced regulation of SAA in the absence of additional dietary challenges.
It has been previously suggested that a priming of the inflammatory response may exert
protective effects in peripartum dairy cows [77], which the relative expression pattern of
SAA3 for the susceptibility clusters may support.

4.3. Insight into LRMD Pathology

There is considerable variation in the metabolic health of dairy cows peripartum;
this is evident in the variable prevalence of LRMD and their comorbidities [12,38,78]. In
addition, the variation in the occurrence and severity of LRMD is still evident when cows
are subjected to a dietary challenge [32,35]. Our retrospective clustering of dairy cows
based on lipid metabolites within the CTL and KIP dietary treatments empirically identified
groups of cows with divergent metabolic health, as previously discussed. The apparent
presence of these divergent groups within both dietary conditions indicated two potential
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control points for LRMD pathology: susceptibility to LRMD incidence, and resistance to
LRMD severity. Even though the gross pathology of LRMD pertaining to lipid metabolism
and gluconeogenesis has been investigated, there has been limited investigation into the
divergent metabolic regulation responsible for these LRMD susceptibility or resistance
control points. The evaluation of the liver transcriptome through RNA sequencing allowed
for a more holistic evaluation of what unique and shared metabolic pathways underpin
these control points [79].

The genes and metabolic pathways presented in this work appear to be centered
around hepatic adaptation to the lipotoxic effects of ROS through the innate immune
system and inflammatory response. As discussed, the intersection of nutrient metabolism,
immunity, and inflammation in the peripartum physiological adaptations and LRMD
pathology has been a growing cross-disciplinary topic in dairy science [62,76]. These
observations support further investigation into immunometabolism—specifically on the
contributions of glutathione metabolism, eicosanoid metabolism, and MHC molecules
in liver tissue. The observed regulation for these pathways is summarized in Figure 5.
Interestingly, the susceptibility and resistance comparisons each had a unique inferred
metabolic pathway at +1 DRTC. Glutathione metabolism was unique to the susceptibil-
ity comparison, while eicosanoid metabolism was a unique to the resistance comparison
(Table 3; Table 5). Of course, these differences could be due to differences in the expressed
genes available for testing between these +1 DRTC comparisons (Table 1). The relevance
of MHC molecules and the innate immune response is apparently shared across the sus-
ceptibility and resistance comparisons. However, the relative expression of the DEGs
and EMPs (i.e., BOLA–DQB) was greater for the metabolically preferable susceptibility
cluster (LS) and the metabolically less preferable resistance cluster (LR). This discordant
direction of expression across LRMD susceptibility and resistance comparisons suggests
that experimental conditions—especially induction protocols—require nuanced interpre-
tation. While some differentially regulated genes and pathways may be shared between
“natural” LRMD development and induction, the observed response directionality may
reflect adaptive mechanisms to mitigate the severity of LRMD rather than their progression
or risk. Additionally, there may be unique mechanisms to the natural pathology of LRMD,
as well as mechanisms that resist the progression of LRMD.
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reactive oxygen species (ROS). Interferon (IFN) production is promoted by ROS, stimulating major 
histocompatibility complex (MHC) expression. Antigens (ANT) are oxidized (ANT●) by ROS. The 
ANT● are presented by the MHC promoting CD4+ T lymphocyte recruitment and cytokine (CK) 
production. Eicosanoids (EC) are formed by FA oxidation by ROS, and may promote ROS produc-
tion. Glutathione (GSH) reduces ROS and other oxidized products. Arrows demonstrate the direc-
tionality and specificity of metabolic pathways: pathways not differentially regulated are grey 
dashed lines (----), pathways upregulated in cows less resistant to LRMD are blue (⸺⸺), pathways 
upregulated in cows less susceptible to LRMD are red (⸺⸺), and pathways generally upregulated 
in cows less susceptible and less resistant are solid black (⸺⸺). 
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Figure 5. A working model of differentially regulated metabolic pathways in the liver of dairy cows
that contribute to the pathology of lipid-related metabolic disorders. Fatty acids (FA) entering the
hepatocyte are oxidized in the mitochondria (MITO) and peroxisomes (POX), producing energy and
reactive oxygen species (ROS). Interferon (IFN) production is promoted by ROS, stimulating major
histocompatibility complex (MHC) expression. Antigens (ANT) are oxidized (ANT•) by ROS. The
ANT• are presented by the MHC promoting CD4+ T lymphocyte recruitment and cytokine (CK)
production. Eicosanoids (EC) are formed by FA oxidation by ROS, and may promote ROS production.
Glutathione (GSH) reduces ROS and other oxidized products. Arrows demonstrate the directionality
and specificity of metabolic pathways: pathways not differentially regulated are grey dashed lines
(—-), pathways upregulated in cows less resistant to LRMD are blue (——), pathways upregulated
in cows less susceptible to LRMD are red (——), and pathways generally upregulated in cows less
susceptible and less resistant are solid black (——).

5. Conclusions

There is substantial individual variation in the metabolic responses of dairy cows
to peripartum conditions, suggesting that the underpinning regulation of key metabolic
pathways may confer susceptibility or resistance to LRMD. We empirically grouped multi-
parous Holstein cows within normal and challenged peripartum dietary conditions based
on their blood lipid metabolite profiles and liver TG contents. This approach revealed two
metabolic health groups within each dietary condition, suggesting differential suscepti-
bility to LRMD incidence or resistance to LRMD induced by a dietary challenge. These
metabolic differences were realized in the liver transcriptomes of these cow groups, with
the inferred differential metabolism highlighting the role of the inflammatory response and
innate immunity in LRMD pathology. Novel insights included the differential regulation of
MHC molecules and IFI, which may aid the response to the ROS-induced cellular damage
that occurs in liver tissue peripartum. Furthermore, the contributions of liver glutathione
and eicosanoid metabolism to LRMD pathology immediately postpartum appear to be
of greater biological importance relative to dietary condition—normal and challenged,
respectively. Future work should build on the contributions of these specific mechanisms
in liver cell types and delineate their dependence on specific dietary conditions.
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