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Abstract 

Background:  Distinguishing parotid pleomorphic adenoma (PPA) from parotid adenolymphoma (PA) is important 
for precision treatment, but there is a lack of readily available diagnostic methods. In this study, we aimed to explore 
the diagnostic value of radiomic signatures based on magnetic resonance imaging (MRI) for PPA and PA.

Methods:  The clinical characteristic and imaging data were retrospectively collected from 252 cases (126 cases in 
the training cohort and 76 patients in the validation cohort) in this study. Radiomic features were extracted from MRI 
scans, including T1-weighted imaging (T1WI) sequences and T2-weighted imaging (T2WI) sequences. The radiomic 
features from three sequences (T1WI, T2WI and T1WI combined with T2WI) were selected using univariate analysis, 
LASSO correlation and Spearman correlation. Then, we built six quantitative radiomic models using the selected 
features through two machine learning methods (multivariable logistic regression, MLR, and support vector machine, 
SVM). The performances of the six radiomic models were assessed and the diagnostic efficacies of the ideal T1-2WI 
radiomic model and the clinical model were compared.

Results:  The T1-2WI radiomic model using MLR showed optimal discriminatory ability (accuracy = 0.87 and 0.86, F-1 
score = 0.88 and 0.86, sensitivity = 0.90 and 0.88, specificity = 0.82 and 0.80, positive predictive value = 0.86 and 0.84, 
negative predictive value = 0.86 and 0.84 in the training and validation cohorts, respectively) and its calibration was 
observed to be good (p > 0.05). The area under the curve (AUC) of the T1-2WI radiomic model was significantly better 
than that of the clinical model for both the training (0.95 vs. 0.67, p < 0.001) and validation (0.90 vs. 0.68, p = 0.001) 
cohorts.

Conclusions:  The T1-2WI radiomic model in our study is complementary to the current knowledge of differential 
diagnosis for PPA and PA.
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Background
The morbidity of salivary gland tumours has progres-
sively increased year by year, and nearly 80% of cases 
occur in the parotid gland [1]. The two most common 
parotid tumours are parotid pleomorphic adenoma 

(PPA) and parotid adenolymphoma (PA). Compared with 
PA, PPA shows a higher potential for malignant change 
and recurrence risk. Thus, the operation type for PPA 
patients is quite different from that for PA patients—the 
former needs to undergo partial parotidectomy while 
the latter are treated only with local surgical Li-na Song 
excision of the masses [2, 3]. Therefore, an accurate dif-
ferential diagnosis is mandatory to implement clinically 
appropriate strategies for PA and PPA patients.

Ultrasonography (US)-guided fine needle aspiration 
cytology (FNAC) serves as the primary approach to 
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diagnose parotid tumours. However, FNAC is invasive 
and potentially causes Li-na Song tumour implantation 
along the needle route. Additionally, the diagnostic accu-
racy of FNAC is unreliable Li-na Song because interpre-
tation of this approach requires adequate sampling and 
experienced cytopathologists [4]. In contrast to the tradi-
tional FNAC approach, medical imaging is non-invasive 
and can be used to assess and monitor the entire tumour 
burden temporally and spatially, which reduces the need 
for investigational surgery and avoids the tedious care of 
post-surgical patients [5, 6]. However, the details of fea-
ture changes within radiographic imaging are not always 
obvious to the naked eye, which limits the diagnostic 
accuracy of medical imaging [7, 8].

Radiomics based on artificial intelligence (AI) inte-
grates radiology, oncology, and machine learning algo-
rithms [9, 10]. As a non-invasive and high-throughput 
post-processing technique, radiomics can provide more 
comprehensive information from medical images than is 
possible by eye after converting large amounts of imag-
ing features into high-dimensional mineable data [11]. 
The application of radiomics has led to great strides in 
tumour diagnosis, treatment response assessment and 
prognosis [12, 13]. In head and neck cancer patients, 
computed tomography Li-na Song (CT) and positron 
emission tomography (PET) radiomics signatures can 
predict not only the HPV (p16) status in oropharyngeal 
squamous cell carcinoma [14] but also the hypoxia sta-
tus [15], and the data can be used to distinguish oro-
pharyngeal from hypopharyngeal cancer [16]. Moreover, 
MRI radiomics signatures have also been recognized as 
non-invasive, preoperative and independent prognos-
tic factors for head and neck squamous cell carcinoma 
(HNSCC) and nasopharynx Li-na Song cancer Li-na 
Song (NPC) in clinical practice [17, 18].

We hypothesized that a radiomics model established 
using a set of quantified features captured by MRI may act 
as a precise and non-invasive diagnosis method for PPA 
and PA. Thus, we delineated the region of interest (ROI) 
in PPA and PA patients who underwent MRI scanning. 
Furthermore, we constructed radiomics models based on 
the selected radiomics features from both T1-weighted 
imaging (T1WI) sequences and T2-weighted imaging 
(T2WI) sequences from MRI. Additionally, we compared 
the diagnostic efficacy of the radiomics model with that 
of the clinical feature model.

Methods
Patients
This study was approved by the Ethics Review Commit-
tee of the First Affiliated Hospital of Henan University 
of Science and Technology, and all procedures were per-
formed in accordance with the principles of the Helsinki 

Declaration. We retrospectively Li-na Song enrolled 412 
patients with parotid tumours undergoing MRI exami-
nation at the First Affiliated Hospital of Henan Univer-
sity of Science and Technology between 2013 and 2019. 
The following inclusion criteria were used: (1) patients 
received no treatment before the examination; (2) the 
T1WI and T2WI sequences of the MRI scans were com-
plete and available; (3) the images were clear and without 
artefacts; (4) a definite pathological diagnosis by surgery 
and pathology was provided for the patients. Finally, data 
from 112 PA patients and 140 PPA patients were col-
lected in this study.

The clinical features of the 252 subjects are listed in 
Table Li-na Song 1. Among the PA patients, the aver-
age age Li-na Song was 55.57 ± 1.29  years (range: 
23–77  years) and the Li-na Song gender Li-na Song 
ratio (M:F) was 1.38:1. Among the PPA patients, the 
average age Li-na Song was 47.81 ± 1.473  years (range: 
15–81 years) and the Li-na Song gender Li-na Song ratio 
(M:F) was 0.67:1. All 252 subjects were randomly allo-
cated to the training cohorts and validation cohorts at a 
ratio of 7:3, according to previous published reports [19, 
26]. Therefore, 176 cases were assigned to the training 
cohort (PA/PPA = 78/98) and the other 76 patients were 
assigned to the validation cohort (PA/PPA = 34/42). The 
flow chart of the procedure is given in Fig. 1.

Image acquisition
All subjects underwent routine 1.5  T MRI scanning 
(GE Signa HDX 1.5  T; GE Healthcare, Milwaukee, WI) 
with a head-neck coil. The scanning sequence was 
acquired including the fast spin echo T1WI and the fast 
spin echo T2WI with fat saturation. The parameters of 
T1WI were: TR of 700.0  ms, TE of 8.9  ms, matrix size 
of 320 × 192 mm, FSE of 24 cm × 24 cm, slice thickness 
of 5 mm, spacing of 1 mm. The parameters of the T2WI 
sequence were: TR of 3900.0 ms, TE of 100.0 ms, matrix 
size of 320 × 256, FSE of 24  cm × 24  cm, slice thickness 
of 5  mm, slice spacing of 1  mm in Li-na Song the axial 
images; TR of 3300.0 ms, TE of 100.0 ms, matrix size of 
320 × 224, FSE 24  cm × 24  cm, slice thickness of 5  mm, 
slice spacing of 1 mm in coronal Li-na Song images.

Tumour segmentation
MRI imaging data came from our organization’s image 
archiving and communication system (PACS). Two 
board-certified senior radiologists (readers 1 and 2, with 8 
and 13 years of clinical experience in head and neck diag-
nosis, respectively) independently interpreted the MRI 
images (including the T1WI and T2WI sequence scans) 
in the PACS of the Radiology Department (Fig. 2a, b). The 
two radiologists manually delineated the ROI (region of 
interest) by using MATLAB (2014b, MathWorks, Natick, 
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Fig. 1  The flow chart of patient recruitment and model construction in this study

Fig. 2  a, b The ROI in PPA (red) and PA (green) patients was delineated manually on head-neck MRI scans, including T1WI (a) and T2WI (b) 
sequences. c, d The stability of the features from the T1WI (c, d) and T2WI (e, f) sequences were evaluated for both inter-observer (c, e) and 
intra-observer (d, f) agreement by ICC. The features with satisfactory agreement (ICCs > 0.75) are shown above the red cut-off line
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MA, USA) and an open source program software, Imag-
ing Biomarker Explorer (IBEX, http://​bit.​ly/​IBEX_​MD 
Anderson). The extracted features included the intensity 
histogram, grey co-occurrence matrix (GLCM), grey run 
length matrix (GLRLM) and shape (Additional file  1). 
Reader 1 extracted features twice with the same proce-
dure, which were used to measure the intra-observer 
consistency. At the same time, reader 2 extracted features 
independently, and the feature data collected by reader 2 
were compared with those obtained by reader 1 to evalu-
ate inter-observer consistency. The intraclass correlation 
coefficient (ICC) was used to calculate the consistency, 
and the features with robust consistency (ICC > 0.75 for 
both in the intra-observer and inter-observer rates) were 
retained for subsequent selection.

Radiomics feature selection
After z-score normalization, the extracted features 
(ICC > 0.75) of the T1WI and T2WI sequences were 
examined by an independent sample t-test (continu-
ity variable) or a Mann–Whitney U test (classified vari-
able). Here, the selected features of the T1WI and T2WI 
sequences (p < 0.05) were combined as the T1-2WI fea-
tures. All of the retained T1WI, T2WI and T1-2WI fea-
tures were processed by dimensionality reduction using 
the LASSO method to improve the accuracy and degree 
of modelling fit [20]. Data within 1-standard error of 
the minimum criterion measure were used in this study. 
Then, the correlation coefficients of the radiological fea-
tures were assessed by Spearman analysis, and the radio-
logical features with high linear correlations (correlation 
coefficients of 0.90–1.00) were excluded.

Construction of the radiomics models
After the dimensionality reduction procedure, the impor-
tant and independent T1WI, T2WI and T1-2WI features 
were separately used to construct radiomics models by 
two machine learning methods (MLR and SVM). The 
discriminatory performance of the models was quanti-
fied and evaluated in the training and validation cohorts 
according to the AUC, accuracy, sensitivity, specificity, 
positive predictive value (PPV), negative predictive value 
(NPV), and F-1 score. The calibration of the radiomics 
model was calculated by the Hosmer–Lemeshow test. 
The independent clinical feature model was established 
with the clinical features by MLR. Then, the diagnostic 
efficacy was compared between the radiomics model and 
the clinical feature model for both the training cohort 
and the validation cohort.

Statistical analysis
R (version 3.4.1, https://​www.r-​proje​ct.​org/) was used 
for the statistical analysis. The normality of the dis-
tribution and the homogeneity of the variance were 
evaluated by the Shapiro–Wilk test and Bartlett’s test, 
respectively. Continuous variables were compared by 
independent t-tests or Wilcoxon rank sum test, while 
categorical variables were compared by chi-square 
or Fisher’s exact test. LASSO regression was car-
ried out using the “glmnet” package with multivariate 
binary logistic regression. The correlation coefficient 
matrix was visualized Li-na Song by the “ggplot2” and 
“ggcorrplot” packages. SVM models and ROC curves 
were generated with the “e1071” and “pROC” pack-
ages, respectively. The AUCs were compared using the 
“DeLong” test in both the MLR and SVM models. A p 
value < 0.05 indicated a significant difference.

Results
Clinical characteristics
The baseline characteristics of the patients in this study 
are summarized in Table  1. There were no significant 
differences in the case distributions within the training 
cohort and validation cohort (p = 0.95). Of the five char-
acteristics measured, age, gender and smoking behaviour 
were significantly different between the PA patients and 
PPA patients in both the training and validation cohorts 
(p < 0.05). Thus, these three clinical characteristics (age, 
gender and smoking behaviour) were applied to build the 
clinical model.

Intra‑ and inter‑observer variability assessments 
of the extracted features
A total of 429 features from the T1WI sequence 
(T1WI features) were extracted (intra-observer mean 
ICC = 0.843708, inter-observer mean ICC = 0.7079306), 
of which 174 features were excluded, including 100 fea-
tures with substandard for inter-observer reproducibility 
(ICC < 0.75) and 74 features that were substandard for 
both intra-observer and inter-observer reproducibility 
(ICC < 0.75) (Fig.  2c, d). The remaining 255 T1WI fea-
tures were included in the follow-up analysis. A total of 
414 features of the T2WI sequence (T2WI features) were 
extracted by ROI (inter-observer mean ICC = 0.8031534 
and intra-observer mean ICC = 0.8989001), of which 
148 features were excluded, including 106 features that 
were substandard for inter-observer reproducibility 
(ICC < 0.75) and 42 features that were substandard for 
both intra-observer and inter-observer reproducibility 
(ICC < 0.75) (Fig. 2e, f ). The remaining 266 T2WI features 
were included in the follow-up analysis.

http://bit.ly/IBEX_MD
https://www.r-project.org/
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Feature selection and radiomics feature building
The 207 T1WI features and 239 T2WI features with 
significant differences were selected using t-tests or 
Mann–Whitney U tests (p < 0.05). Then, the 207 T1WI 
features and 239 T2WI features were combined as the 
T1-2WI radiomics features. Further, 7 T1WI features, 8 
T2WI features, and 8 T1-2WI features were respectively 
extracted by LASSO regression under the 1-SE criteria by 
tenfold cross-validation. (Fig. 3 a–f). There were no pairs 
of features that showed a very strong positive correlation 
with any of the three feature groups (T1WI, T2WI and 
T1-2WI), as determined by Spearman’s correlation coef-
ficient (Fig. 3g–i). The extracted radiomics features of the 
three groups were used respectively to construct diag-
nostic models to distinguish PPA from PA.

Construction of the radiomics model
The models were built with MLR and SVM analysis, and 
the discriminatory performance of the six models were 
depicted by AUC, accuracy, sensitivity, specificity, PPV, 
NPV, and F-1 score (Table 2). The T1-2WI features model 
was more robust than the T1WI features model or the 
T2WI features model, as determined by MLR and SVM 
analysis. Subsequently, the discriminatory performance 
was compared between the T1-2WI features model and 
the clinical model based on the clinically individual fea-
tures (Table 3). The DeLong test showed that the AUC of 
the T1-2WI feature model was significantly better than 
that of the clinical model both in the training cohort 

(p < 0.001) and the validation cohort (p = 0.001) (Fig. 4a, 
b). We further visualized these results with a decision 
curve (Fig. 4c). Additionally, the p value of the Hosmer–
Lemeshow test was not significant; therefore, the calibra-
tion of the T1-2WI features model was reliable (Fig. 4d) 
[21].

Discussion
Traditionally pathological and imaging methods largely 
depend on some subjective factors or the specific knowl-
edge and experience of the clinical operators, so their 
current diagnostic accuracy for parotid gland tumours 
is limited. Comparatively, radiomics are based on an 
increasing amount of imaging data and the rapid devel-
opment of AI techniques, and they show advantages of 
objectivity, quantification and repeatability as clinical 
diagnostic methods [22]. Our study identified the poten-
tial role of radiomics for the diagnosis of PPA and PA.

The quantitative T1-2WI radiomics model performed 
better in distinguishing PPA and PA in a non-invasive 
way (sensitivity = 0.88, specificity = 0.80), compared with 
FNAC or MRI, both of which showed high specificity 
(range 0.85–0.97) but unstable sensitivity (range 0.70–
0.86) [23, 24]. Moreover, a previous study segmented 
and classified parotid gland tumours using the apparent 
Li-na Song diffusion Li-na Song coefficient Li-na Song 
(ADC) based on a two-dimensional (2D) convolution 
neural network (CNN) [25]. Our T1-2WI model per-
formed better (accuracy = 0.82–0.88) than the ADC-
based method (accuracy = 0.70–0.80). Additionally, this 

Table 1  The clinical features of the train and validation cohorts

Continuous variables were compared using independent t tests or Wilcoxon Rank Sum tests; Categorical variables were were compared using chi-square tests or 
Fishers exact tests

Clinical feature The training cohort The validation cohort

Parotid adenolymphoma
n = 78

Parotid pleomorphic 
adenoma
n = 98

p value Parotid adenolymphoma
n = 34

Parotid pleomorphic 
adenoma
n = 42

p value

Gender

Male 44 40 0.04 21 16 0.04

Female 34 58 13 26

Age (years) 54.72 ± 1.67 46.45 ± 1.86 < 0.01 57.53 ± 1.81 51.71 ± 2.09 0.04

Smoking

Yes 48 40 < 0.01 21 12 < 0.01

No 30 58 13 30

Number of tumor

1 58 82 0.13 28 34 0.88

> 1 20 16 6 8

Capsule of tumor

+ 24 26 0.54 8 6 0.30

− 54 72 26 36
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Fig. 3  a–f LASSO regression was used for feature selection. The deviance curve was plotted, and the parameter (λ) selection was tuned using 
tenfold cross-validation. Dotted lines denote the minimum criterion (right) and 1-SE of the minimum criteria (left). The 1-SE criterion was applied, 
and there were respectively 7 features in the T1WI sequence (a, b) with non-zero coefficients (the optimal value of λ = 0.07543); 8 features of the 
T2WI sequence (c, d) with non-zero coefficients (the optimal value of λ = 0.03457); 8 of the T1-2WI sequence (e, f) with non-zero coefficients (the 
optimal value of λ = 0.06485). g–i Spearman’s correlation coefficients were calculated for the features in the T1WI, T2WI and T1-2WI sequences. No 
pair of features showed extremely strong positive correlations among the feature groups (0.90–1.00)
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finding suggested that the use of a combination of T1WI 
and T2WI sequences and ADC to construct a radiomics 
model might further improve the diagnostic accuracy for 
parotid gland tumours.

The application of MRI features improved the per-
formance of our radiomics model. Compared with US, 
MRI reveals the interface of a tumour and surrounding 
tissues better and is superior for investigating the large 
tumours (more than 4 cm) or tumours in deep structures. 

Compared with CT, MRI can eliminate dental artefacts 
and is recommended specifically to distinguish tumours 
from obstructing secretions [4]. Moreover, a combina-
tion of the features from the T1WI and T2WI sequences 
provided more information than either single sequence. 
Therefore, the performance of the T1-2WI features 
model was more robust than the model with T1WI or 
T2WI features alone when machine learning methods 
were applied (MLR or SVM).

Table 2  Performance of radiomic models built by the MLR and SVM for the training and validation cohorts

PPV, positive predictive value; NPV, negative predictive value; T1WI, T1-weighted imaging; T2WI, T2-weighted imaging; SVM, Support vector machine; MLR, 
multivariable logistic regression

Radiomic model AUC​
(95% Cl)

Accuracy Sensitivity Specificity PPV NPV F-1 score

T1WI model The training cohort MLR 0.85
(0.80–0.91)

0.81 0.82 0.80 0.83 0.78 0.82

SVM 0.95
(0.92–0.99)

0.92 0.92 0.92 0.94 0.90 0.92

The validation cohort MLR 0.71
(0.81–0.91)

0.71 0.76 0.65 0.73 0.69 0.74

SVM 0.85
(0.77–0.94)

0.74 0.71 0.76 0.79 0.68 0.75

T2WI model The training cohort MLR 0.87
(0.80–0.95)

0.83 0.88 0.77 0.83 0.83 0.85

SVM 0.97
(0.95–0.99)

0.95 0.98 0.92 0.94 0.97 0.96

The validation cohort MLR 0.85
(0.90–0.94)

0.80 0.86 0.71 0.78 0.80 0.82

SVM 0.74
(0.62–0.85)

0.68 0.76 0.59 0.70 0.67 0.73

T1-2WI model The training cohort MLR 0.95
(0.91–0.99)

0.86 0.90 0.82 0.86 0.86 0.88

SVM 0.96
(0.92–0.99)

0.92 0.96 0.87 0.90 0.94 0.93

The validation cohort MLR 0.90
(0.85–0.95)

0.84 0.88 0.79 0.84 0.84 0.86

SVM 0.93
(0.87–0.99)

0.87 0.81 0.94 0.94 0.80 0.87

Table 3  Performance of the clinical and radiomics model in the training and validation cohorts

PPV: positive predictive value; NPV: negative predictive value

AUC (95% CI) Accuracy Sensitivity Specificity PPV NPV F-l score

Radiomic model The training cohort 0.952 (0.907–0.996) 0.8636364 0.8979592 0.8205128 0.8627451 0.8648649 0.88

The validation cohort 0.898
(0.850–0.946)

0.8409091 0.8775510 0.7948718 0.8431373 0.8378378 0.86

Clinical model The training cohort 0.670
(0.5904–0.75)

0.6534091 0.7653061 0.5128205 0.6637168 0.6349206 0.71

The validation cohort 0.678
(0.5535–0.801)

0.6184211 0.7142857 0.5000000 0.6382979 0.5862069 0.67

Combined model The training cohort 0.906
(0.8632–0.9498)

0.8522727 0.8877551 0.8076923 0.8529412 0.8513514 0.87

The validation cohort 0.957
(0.9183–0.9963)

0.8947368 0.8333333 0.9705882 0.9722222 0.8250000 0.90
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In addition, the optimization for feature selec-
tion and modelling also improved the performance of 
our radiomics model. We extracted features from two 
sequences of MRI scans (T1WI and T2WI), and used 
three steps for feature selection (univariate analysis, 
LASSO, and Spearman correlation) and constructed 

six radiomics models based on two machine learn-
ing methods. The tenfold cross-validation was used to 
avoid the risk of modelling deviation and over-fitting as 
much as possible [26]. However, the model constructed 
by MLR performed better than that constructed by 
SVM based on the T1WI features (n = 7) and T2WI 

Fig. 4  a, b ROC curves comparing the radiomics model based on the TW1-2 sequence and the clinical model for the training cohort (a) and 
the validation cohort (b); c, d The discrimination and calibration of the radiomics model based on TW1-2 were validated by a decision curve and 
Hosmer–Lemeshow test
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features (n = 8). We inferred that the possible reason 
for the different performances may be because, com-
pared with the model constructed by MLR, the model 
constructed by SVM is too complex to prevent over-
fitting [27].

Studies have reported that PPA is more common in 
young adults, while PA is more common in elderly men 
with a history of smoking [28]. In our study, the clinical 
features age, gender and smoking behaviour were signifi-
cantly different in PPA and PA patients and thereby were 
used to construct the clinical model. The clinical model, 
another non-invasive and quantitative tool, was used to 
assess Li-na Song the performance of the T1-2WI fea-
tures model in our study. Moreover, we incorporated 
these three clinical features into the T1-2WI features 
to construct the combined model. It was found that the 
combined model performed better than the T1-2WI fea-
tures model only in the training cohort but was limited in 
the validation cohort (Additional file1: Fig. 1a, b). We will 
explore the performance of the combined model using 
large clinical sample sets in the future. Li-na Song.

Our research also had some limitations. First, we did 
not carry out multicentre case research. Second, we 
did not combine the radiological features with tumour 
molecular markers or genomic information [29, 30]. 
The multi-omics involving Li-na Song radiomics and 
genomics is much more likely to lead to a precise diag-
nosis of PA and PPA.

In summary, the proposed T1-2WI model in our study 
showed greater ability to classify PPA and PA than tradi-
tional pathological and physical diagnostic methods or a 
quantitative model based on clinical features. Our study 
further supports the concept that a radiomics model can 
objectively and quantitatively provide information about 
intra-tumour heterogeneity and the inter-tumour micro-
environment hidden within the image [31, 32].
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