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Abstract
Flourescence-based multiplex immunohistochemistry (mIHC) combined with multispectral imaging and digital image
analysis (DIA) is a quantitative high-resolution method for determination of protein expression in tissue. We applied this
method for five biomarkers (CDX2, SOX2, SOX9, E-cadherin, and β-catenin) using tissue microarrays of a Norwegian
unselected series of primary colorectal cancer. The data were compared with previously obtained chromogenic IHC data of
the same tissue cores, visually assessed by the Allred method. We found comparable results between the methods, although
confirmed that DIA offered improved resolution to differentiate cases with high and low protein expression. However, we
experienced inherent challenges with digital image analysis of membrane staining, which was better assessed visually. DIA
and mIHC enabled quantitative analysis of biomarker coexpression on the same tissue section at the single-cell level,
revealing a strong negative correlation between the differentiation markers CDX2 and SOX2. Both methods confirmed
known prognostic associations for CDX2, but DIA improved data visualization and detection of clinicopathological and
biological associations. In summary, mIHC combined with DIA is an efficient and reliable method to evaluate protein
expression in tissue, here shown to recapitulate and improve detection of known clinicopathological and survival
associations for the emerging biomarker CDX2, and is therefore a candidate approach to standardize CDX2 detection in
pathology laboratories.

Introduction

Protein expression of biomarkers in cancer tissue is routi-
nely assessed by immunohistochemistry (IHC) and relies on
visual and semiquantitative evaluation of staining patterns
and intensity. IHC is easy to perform and does not require
advanced or expensive equipment, making it accessible to
almost every laboratory. The study of biomarkers in large
patient series was greatly facilitated by the development of
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the tissue microarray (TMA) technology [1, 2]. However,
for the majority of biomarkers there are no standard criteria
used for the manual scoring and subsequent semi-
quantitative analysis of protein expression, making char-
acterization at different subcellular locations a subjective
and potentially complex task [3]. The Allred score [4],
which summarizes the intensity and the extent of staining,
and the H-score which multiplies them [5] are two widely
used methods. Consequently, patients are divided into dif-
ferent subgroups depending on which scoring system is
used and the results are therefore not directly comparable.
Furthermore, technical variations in antibody concentration
and detection systems have a major impact on the intensity
of staining, particularly when using chromogenic IHC,
which has a very limited linear dynamic signal range, with
significant consequences for downstream analyses [6].
Moreover, for high-throughput studies and when single-cell
analysis is relevant, visual scoring of chromogenic IHC is
time consuming and, in most cases, not feasible [7].

An alternative method that can address many of these
problems is fluorescence-based multiplex IHC (mIHC)
combined with multispectral imaging and digital image
analysis (DIA). mIHC is based on the interrogation of
multiple antigens on the same tissue section and multi-
spectral imaging enables unmixing of several different
fluorescent spectra, including tissue autofluorescence [8, 9].
The signal obtained by fluorescent detection has a much
larger linear dynamic range than chromogenic detection,
providing the basis for a more precise and objective quan-
tification of protein expression [6, 10, 11].

In this study, we aimed to identify benefits and draw-
backs with DIA and mIHC in comparison with conven-
tional IHC analyzed according to the Allred method for
colorectal cancer research and clinical use, with a parti-
cular focus on the clinically relevant markers CDX2 and
SOX2. We performed DIA of fluorescence-based mIHC
stains of CDX2, SOX2, SOX9, E-cadherin, and β-catenin
in colorectal cancer samples arranged in TMAs, and
compared with previous visually scored chromogenic IHC
stains of the same series [12, 13]. All five markers are
related to tumor differentiation and tumor stemness, and
expected to be largely expressed in both normal mucosa
(except for SOX2) and in epithelial cancer cells of the
colorectum, and only infrequently in stromal cells; CDX2,
SOX2, and SOX9 staining were expected to localize to the
nucleus and to some degree also to the cytoplasm, E-
cadherin was expected to localize to the membrane and
the cytoplasm, and β-catenin should frequently be
expressed in all three cellular compartments (proteinatlas.
org). Finally, we compared clinicopathological associa-
tions obtained by the two methods focusing on the
prognostic assessment of CDX2 and its inverse correla-
tion with SOX2.

Materials and methods

Patient samples

During a 10-year period (1993–2003) 1290 patients were
diagnosed with primary colorectal cancer at Oslo University
Hospital—Aker hospital site (Norway), of whom 927
underwent major resection and tumor samples were inclu-
ded on a TMA (one 0.6 mm tissue core from central tumor
per patient) distributed on four receiver blocks, as described
previously [12]. Aker hospital served a geographically
defined catchment area with a population of about 270,000
inhabitants in this period and the cohort is population
representative for the Oslo area. Relevant clinical data was
collected prospectively, analyzed retrospectively, and
recorded in a local database which was quality controlled at
follow-ups. Our data was cross-checked with the Cancer
Registry of Norway which records data on all patients
diagnosed with CRC. Microsatellite instability (MSI) status
was determined using the consensus markers suggested by
the National Cancer Institute, as described previously [14]
(Table 1).

This study was endorsed by the Norwegian Data Pro-
tection Authority and the Regional Committee for Medical
and Health Research Ethics, South-Eastern Norway (REK
number 1.2005.1629). We obtained informed consent from
all patients prior to enrollment and the research biobanks
were constructed according to national legislation. The
research was performed according to the Declaration of
Helsinki.

Immunohistochemistry

IHC assays were performed on 4 µm thick sections, using
monoclonal antibodies, except for SOX9 (polyclonal).

The chromogenic stains were previously performed and
visually evaluated according to the Allred method for β-
catenin, E-cadherin, and SOX9 [12] and for CDX2 [13].
SOX2 staining was performed using the same protocol as
for CDX2 (not previously published). Allred scores (ran-
ging from 0 to 8) were calculated for each evaluable case
and relevant cellular compartment by adding the estimated
proportion of positive cells (score value ranging from 0 to 5;
0= none, 1 ≤ 1%, 2= 1–10%, 3= 11–33%, 4= 34–66%,
and 5= 67–100%) and the estimated intensity of staining
(score value ranging from 0 to 3; 0= negative, 1=weak,
2= intermediate, and 3= strong) (Fig. S1). The fluorescent
stains were performed on the last sections of the same TMA
blocks and subsequent analyses included only two of the
total four TMA blocks since the other two were exhausted.
Cases with poor tumor preservation, loss of tissue, insuffi-
cient number of epithelial cells (typically <50), extensive
tissue folding, or necrosis were excluded from the analyses.

Digital image analysis of multiplex fluorescence IHC in colorectal cancer recognizes the prognostic. . . 121

http://proteinatlas.org
http://proteinatlas.org


The number of evaluable and overlapping cases for each
stain can be found in Table 2. Only overlapping cases with
evaluable staining were used for comparative analyses.

Indirect detection by fluorescence was based on the
OpalTM Multiplex IHC method (PerkinElmer/Akoya, USA),
and performed on the Autostainer Link 48 system (Agilent/

Table 1 Patient characteristics for cases included in prognostic comparison for CDX2 protein expression with Allred and DIA scoring

Allred DIA

CDX2+ (n= 526) CDX2− (n= 63) P value CDX2+ (n= 522) CDX2− (n= 67) P value

Gender 0.32 0.94

Female 264 (50) 33 (52) 255 (49) 42 (63)

Male 262 (50) 30 (48) 267 (51) 25 (37)

Age 0.59 0.81

30–50 30 (6) 4 (6) 29 (6) 5 (7)

51–70 180 (34) 22 (35) 179 (34) 23 (34)

71–96 316 (60) 37 (59) 314 (60) 39 (58)

Tumor stage 0.33 0.35

1 82 (16) 5 (8) 84 (16) 3 (4)

2 220 (42) 26 (41) 216 (42) 30 (45)

3 136 (26) 16 (25) 133 (26) 19 (28)

4 85 (16) 16 (25) 86 (17) 15 (22)

pT 0.13 0.0075

0 1 (0) 0 (0) 1 (0) 0 (0)

1 20 (4) 1 (2) 21 (4) 0 (0)

2 78 (15) 5 (8) 79 (16) 4 (6)

3 363 (71) 48 (77) 360 (71) 51 (77)

4 50 (10) 8 (13) 47 (9) 11 (17)

pN 0.90 0.42

0 323 (64) 31 (52) 319 (64) 35 (53)

1 133 (26) 18 (30) 132 (26) 19 (29)

2 50 (10) 11 (18) 49 (10) 12 (18)

Tumor differentiation <0.0001 <0.001

High 51 (10) 5 (8) 52 (10) 4 (6)

Moderate 406 (80) 25 (40) 399 (79) 32 (48)

Low 48 (9) 29 (47) 50 (10) 27 (40)

Mucinous 3 (1) 3 (5) 2 (0) 4 (6)

Microsatellite instability <0.0001 <0.0001

MSI 54 (11) 28 (47) 54 (11) 28 (47)

MSS 435 (89) 32 (53) 435 (89) 32 (53)

Tumor location 0.0064 0.0022

Right 193 (37) 42 (67) 188 (36) 47 (70)

Left 182 (35) 9 (14) 180 (34) 11 (16)

Rectum 138 (26) 10 (16) 140 (27) 8 (12)

Synchronous 13 (2) 2 (3) 14 (3) 1 (1)

Chemotherapy 0.11 0.61

Yes 58 (11) 9 (16) 55 (11) 12 (19)

No 454 (89) 49 (84) 453 (89) 50 (81)

Residual tumor 0.077 0.24

R0 414 (79) 44 (70) 410 (79) 48 (72)

R1 24 (5) 1 (2) 23 (4) 2 (3)

R2 87 (17) 18 (29) 88 (17) 17 (25)

Numbers in parentheses indicate percentages. Of note, adjuvant chemotherapy was first offered as standard treatment in Norway from 1997 for
patients with stage III colorectal cancer below 75 years of age. Tumor stage, pT and pN were determined according to TNM version 5. P values
were calculated using Wilcoxon rank-sum test (2 independent variables) or Kruskal-Wallis H test (>2 independent variables) and indicate
correlation between CDX2 expression and the indicated patient characteristic for Allred scores and DIA, respectively. Ungrouped Allred scores
and continuous DIA scores were used as input for the statistical tests. Only overlapping cases with evaluable CDX2 expression were included in
the analyses

DIA digital image analysis, R0 complete resection—no residual tumor, R1 microscopic residual cancer at the resection margin, R2 macroscopic or
radiologic evidence of residual cancer
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Table 2 Number of evaluable and overlapping cases for Allred and DIA scoring of SOX9, CDX2, SOX2, β-catenin, and E-cadherin available for
comparisons

Biomarker Evaluable cases Overlapping cases DIA/Allred IHC staining method

CDX2 nucl (DIA) 4-plex IF mIHC

Min 0.03

Max 6.5

n (mean; sd) 373 (1.9 ± 1.4) 363

CDX2 nucl (DIA)a 5-plex IF mIHC

Min 0.001

Max 7.4

n (mean; sd) 814 (1.1 ± 1.1) 589

CDX2 nucl (Allred) DAB chromogen+ hematoxylin counterstain

Min 0

Max 8

n (mean; sd) 642 (7.4 ± 1.7) 363/589b

SOX2 nucl (DIA) 4-plex IF mIHC

Min 0.006

Max 23.6

n (mean; sd) 373 (0.58 ± 1.88) 361

SOX2 nucl (Allred) DAB chromogen+ hematoxylin counterstain

Min 0

Max 8

n (mean; sd) 645 (1.2 ± 2.6) 361

SOX9 nucl (DIA) 3-plex IF mIHC

Min 0.13

Max 5.3

n (mean; sd) 181 (1.2 ± 1.0) 172

SOX9 nucl (Allred) DAB chromogen+ hematoxylin counterstain

Min 0

Max 8

n (mean; sd) 761 (5.6 ± 1.5) 172

β-catenin nucl (DIA) 3-plex IF mIHC

Min 0.045

Max 34.5

n (mean; sd) 380 (6.4 ± 5.8) 321

β-catenin nucl (Allred) DAB chromogen+ hematoxylin counterstain

Min 0

Max 8

n (mean; sd) 637 (3.9 ± 2.0) 321

β-catenin cyto (DIA) 3-plex IF mIHC

Min 0.1

Max 21.2

n (mean; sd) 380 (4.6 ± 3.7) 361

β-catenin cyto (Allred) DAB chromogen+ hematoxylin counterstain

Min 0

Max 8

n (mean; sd) 722 (6.7 ± 1.3) 361

E-cadherin cyto (DIA) 3-plex IF mIHC

Min 0.18

Max 20.9

n (mean; sd) 420 (5.1 ± 3.0) 386

E-cadherin cyto (Allred) DAB chromogen+ hematoxylin counterstain

Min 0

Max 8

n (mean; sd) 720 (6.6 ± 0.9) 386

For DIA, min, max, and mean are calculated from raw DIA scores

DIA digital image analysis, nucl nuclear, cyto cytoplasm, mIHC multiplex immunohistochemistry, IF immunofluorescence, DAB 3,3'-
diaminobenzidine
aThis stain was performed on TMA sections from a replicate TMA set and the data were only used for prognostic comparison between Allred
scoring and DIA. All other stains were performed on sections with tissue cores from the same replicate TMA set and used for correlation analyses
and visualizations. See Table S1 for an overview of the individual stains
b363 and 589 cases with evaluable CDX2 staining were overlapping with the 4-plex and the 5-plex IF mIHC stain, respectively
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Dako, Denmark) with a PT link module to standardize the
staining process. Deparaffinization, antigen retrieval, and
antibody stripping were carried out for 20 min at 97 °C
using the EnVision™ FLEX Target Retrieval Solution
(3-in-1) pH 9 (Agilent/Dako), in 65 °C preheat mode.
Subsequent staining was performed using the OpalTM 4-
Color Manual IHC Kit (PerkinElmer/Akoya, USA)
according to the manufacturer’s recommendations. Signal
amplification and covalent binding of fluorophore was
achieved by using a tyramide signaling amplification
reagent (included in the Opal kit) that is conjugated with a
different fluorophore for each cycle [8]. Each fluorescent
stain performed included markers for epithelial tissue and
DAPI (described further below). Thus, in a 3-plex stain
there is room for analysis of one biomarker, in a 4-plex
there is room for two, and in a 5-plex there is room for
three. A total of three 3-plex stains (for analysis of SOX9, β-
catenin, and E-cadherin), one 4-plex stain (for analysis of
CDX2 and SOX2), and one 5-plex stain (for analysis of
CDX2 and two unpublished markers) were performed in the
study (see also Table 2 for a list of all stains and Table S1
for an overview of the staining procedure for each multiplex
stain and included biomarkers). Tissue samples were incu-
bated for 30 min with the following primary antibodies:
CDX2 (1:50, clone 88, Abcam, UK; detected by Opal 520
at 1:100), SOX2 (1:25, clone SP76, Cell Marque/Sigma-
Aldrich, Germany; detected by Opal 570 at 1:100), SOX9
(1:500, Sigma-Aldrich; detected by Opal 570 at 1:100), E-
cadherin (1:16000, clone 36, Becton Dickinson, USA;
detected by Opal 570 at 1:100), and β-catenin (1:3000,
clone 14, Becton Dickinson; detected by Opal 570 at
1:100). In the last cycle of antibody staining, the tissue was
hybridized with a cocktail of epithelial markers to allow for
complete and accurate epithelial segmentation by the DIA
algorithm (anti-pan Cytokeratin (1:1500, clone C-11,
Abcam) and anti-pan Cytokeratin Type I/II (1:1000, clone
AE1/AE3, Thermo Fisher Scientific, USA); these were
detected by Opal 670 at 1:100. For the 4- and 5-plex stains,
anti-E-cadherin (1:16000, Clone 36, Becton Dickinson) was
included in the epithelial antibody cocktail. Counterstaining
was performed using DAPI (PerkinElmer/Akoya) according
to the manufacturer’s protocol. Finally, the slides were
mounted using ProLong Diamond Antifade Mountant
(Invitrogen/Thermo Fisher Scientific). A separate single-
plex stain was performed for each fluorophore to create
spectral libraries for unmixing of individual spectral sig-
natures in the multiplex. In addition, one slide was not
probed with any fluorophore, thus providing the spectral
signature of the tissue autofluorescence. The chosen con-
centration of antibodies was based on optimizing the
staining specificity, signal intensity, and signal-to-noise
level for both chromogenic DAB and fluorescence staining
among control tissues embedded on a separate test TMA,

including 42 primary colorectal cancer cases and six sam-
ples from normal colon mucosa (Fig. S2). Fluorescence
signal intensities for all markers were balanced and kept
within the recommended signal range for optimal spectral
unmixing of fluorophores with the Vectra 3 system, at
between 0 to about 30 counts with the UV lamp power set
to 10%. In addition, a negative control experiment where
the primary antibody was omitted was performed. To con-
firm that antibodies were properly stripped away or dena-
tured between cycles [15], the following control experiment
was performed for each antibody: after deparaffinization/
antigen retrieval, sections were probed with the antibody
and stained with its paired fluorophore. This was then fol-
lowed by heat-treatment in the PT-link. A new round of
staining was then performed, however, this time omitting
any primary antibody and applying a different fluorophore
after secondary antibody incubation. The tissue was imaged
and analyzed to confirm that there was no signal above
noise originating from the second fluorophore applied.
Uniformity of staining was assessed visually and by scat-
terplots and Spearman’s correlation coefficients assessing
the association between protein expression and sample age
(Fig. S3).

Fluorescence-based detection of CDX2 was performed
for two separate cocktails, one 4-plex with SOX2, and one
5-plex with two other markers on sections from a replicate
TMA where samples from all blocks were available. Hence,
the number of available cases for evaluation of CDX2
expression was much higher and facilitated comparison of
prognostic value between the Allred method and DIA. 5-
plex staining for CDX2 and other markers (data not shown)
was performed manually using the OpalTM 5-color Manual
IHC Kit (PerkinElmer/Akoya) according to the manu-
facturer’s recommendations, except for deparaffinization,
antigen retrieval and antibody stripping steps being per-
formed in the PT link module, as described previously.

Image acquisition and digital image analysis

Multispectral images were acquired at ×20 magnification
using the Vectra 3.0 Automated Quantitative Pathology
Imaging System, 200 slides (Vectra software version 3,
PerkinElmer/Akoya). Standard settings were used for mul-
tispectral image acquisition.

Multispectral image analysis of multiplex IHC stains was
performed using inForm Image Analysis Software (version
2.3, PerkinElmer/Akoya). A representative set of training
images were first loaded and spectrally unmixed by using
spectral libraries generated from the library stains for each
fluorophore and the autofluorescence slide. Next, a machine
learning algorithm was trained by user-specified tissue
annotations aided by the signal from the epithelial markers
to accurately segment tumor tissue versus stromal tissue and
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background, as well as individual cells using the nuclear
DAPI signal. Optimization of the membrane segmentation
algorithm for β-catenin and E-cadherin analysis was aided
by the signal from the pan-cytokeratin staining. All images
were reviewed after batch processing; normal glands,
necrotic tissue, tissue folds, and other technical artefacts
were excluded from further image analyses (Fig. S4). Pro-
tein expression was calculated in segmented tumor tissue as
the mean signal intensity within the respective cellular
compartment.

Statistics

All statistical analyses were performed using RStudio ver-
sion 1.1.463 (R version 3.3.2). Five-year overall survival
plots with risk tables were generated according to the
Kaplan–Meier method using the Survminer package (ver-
sion 0.4.3). Survival curves were compared using the log
rank test, and hazard ratios and 95% confidence intervals
(CI) were estimated using univariable and multivariable
Cox proportional hazards models. The overall survival time
was defined from surgery to death from any cause. Follow-
up was complete in the study period. Scatterplots were
generated with the ggscatter function in the ggpubr package
(version 0.1.6) using the Spearman method to calculate
correlation coefficients and P values. Density distribution
plots were generated using the ggdensity function in the
ggpubr package (version 0.1.6). All P values were two-
sided and derived from statistical tests with a significance
level at 0.05.

Results

Reasonable concordance between visual and digital
scoring, but digital analysis of membrane staining is
challenging

The protein expression levels and patterns of CDX2, SOX2,
SOX9, E-cadherin, and β-catenin were evaluated visually
by singleplex chromogenic-based (DAB) IHC and by
fluorescence-based mIHC. Both staining methods showed
that all markers were expressed predominantly in epithelial
cells (all but SOX2 were also expressed both in the normal
mucosa and the cancer cells); CDX2, SOX2, and SOX9
were expressed predominantly in the cell nuclei, whereas E-
cadherin was expressed in the cell membrane and cyto-
plasm, and β-catenin was expressed in all cellular com-
partments (Fig. 1).

The chromogenic stains were scored visually within the
epithelial compartment with discrete values from 0 to 8,
while the fluorescent stains were scored digitally on a
continuous scale within the epithelial compartment. The

distributions of nuclear and cytoplasmic scores were similar
between the two methods (Fig. 1, middle) and they showed
a reasonable concordance considering the inherent differ-
ences in scoring methodology (Spearman’s rho test, corre-
lation coefficients (r) from 0.45 to 0.72; Fig. 2), but analysis
of membrane staining showed a poor concordance (Spear-
man’s rho test, r= 0.095 for β-catenin and r= 0.39 for E-
cadherin, Fig. S5). This can in part be explained by chal-
lenges with the membrane segmentation algorithm
(Fig. 3a–d). Hence, further comparisons for analysis of
membrane staining were not performed.

Fluorescence-based IHC combined with DIA captures
variation in protein expression within Allred scoring
groups and improves differentiation among cases

In general, we observed a large variation in protein
expression scores from the fluorescently labeled and digi-
tally analyzed samples within the Allred scoring groups. To
illustrate this variation we selected three samples that were
scored into the highest Allred category (Allred= 8) for
CDX2 expression, but which had large differences in rank
(and absolute score) when analyzed by fluorescence and
DIA. The distribution of Allred scores were somewhat
shifted toward the higher values as compared with the DIA
scores (Figs. 1, 2). We also observed that minor differences
between samples stained with DAB could translate to much
larger differences when the samples were stained with
fluorescent probes (Fig. 4a–c). DIA analysis at the single
cell level classifying CDX2 protein expression into ten bins
showed that the protein expression differed substantially
between these cases, although this was not evident by DAB-
staining and visual analysis. DIA accurately quantified the
fluorescence signal from each individual cell and calculated
the average signal per case and was thus able to objectively
measure the average protein expression also in samples with
heterogeneous staining patterns (Fig. 4d), which are difficult
to assess by visual analysis.

Multiplex IHC combined with DIA improves
detection of histopathological and biological
relationships

By analyzing both serial stains and the multiplex staining
of CDX2 and SOX2 we confirmed their inverse relation-
ship in colorectal cancer [16]; however, the inverse cor-
relation was considerably stronger for DIA (Spearman’s
rho test, Allred r=−0.16; DIA r=−0.51; n= 357;
Fig. 5a). Furthermore, the DIA method also detected a
stronger association between loss of CDX2 and MSI, and
this result could be effectively visualized by the denser
distribution of MSI tumors with low CDX2-expression
(Spearman’s rho test, Allred r= 0.26, DIA r= 0.31; n=

Digital image analysis of multiplex fluorescence IHC in colorectal cancer recognizes the prognostic. . . 125



Fig. 1 Representative images of chromogenic (left) and fluorescent
(right) staining patterns for SOX9 (a), CDX2 (b), SOX2 (c), E-
cadherin (d), and β-catenin (e). Distributions of Allred scores (middle-
left column) and DIA (middle-right column) scores are shown in the

middle columns for comparison; nuclear scores for SOX9, CDX2, and
SOX2, and cytoplasmic scores for E-cadherin and β-catenin. DAPI
staining is shown in blue, epithelial staining in red, and marker
expression in yellow (a–c). Scale bar, 0.1 mm
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343, Fig. 5a). Similarly, the correlation between SOX2 and
MSI was stronger for DIA as well (Spearman’s rho test,
Allred r= 0.088, DIA r= 0.26; n= 341, Fig. 5a). The
correlation between loss of CDX2 and a low differentiation
grade was similar for the two methods (Spearman’s rho
test, Allred r= 0.22; DIA r= 0.18; n= 349). Overall, the
correlations among markers and with clinicopathological
variables were stronger for the digital analysis as compared
with the visual analysis (Fig. S6). Continuous data, having
a higher resolution, are particularly suited to visualize
these biological relationships, as illustrated in Fig. 5b. We
performed single-cell analysis of CDX2/SOX2 colocali-
zation for the multiplex staining and found a similarly
strong inverse relationship between the two markers
(Fig. 5c). Interestingly, a small subset of the tumors
showed a nearly mutually exclusive expression on the
single cell-level (Fig. 5d).

DIA recapitulates prognostic associations for the
CDX2 biomarker

To evaluate potential differences in predictive performance,
the two analytical approaches were compared with respect
to their ability to detect well known prognostic relationships
for the biomarker CDX2 [13, 17, 18]. A predetermined
cutoff for CDX2-positivity at the 11th percentile was used
to reduce confirmation bias and was originally set near the

inflection point for the bimodal distribution using the
Binarization Across multiple SCales algorithm [13]. We
confirmed that the fluorescence-based CDX2 protein
expression data showed a similar bimodal distribution
(Fig. 1b). Kaplan–Meier analysis of 5-year overall survival
showed that DIA confirmed the association between a low
CDX2 expression and a poor prognosis (Allred: HR 1.27,
95% CI 0.89–1.83, P= 0.19; DIA: HR 1.43, CI 1.02–2.01,
P= 0.039; n= 589; Fig. 6; patient characteristics Table 1),
as well as recapitulating the strong prognostic value of
CDX2 in stage IV colorectal cancer (Fig. S7) [13]. Results
were also similar in multivariable analyses including the
covariates age, gender, tumor stage, MSI, and differentia-
tion grade (Allred: HR 1.54, 95% CI 1.01–2.38, P= 0.047;
DIA: HR 1.81, 95% CI 1.17–2.80, P= 0.0072; n= 530).

Discussion

Overall a good correlation between visual and
digital biomarker analyses

Our study supports fluorescence-based mIHC combined
with DIA using machine learning as a good method
to quantify biomarker expression. We obtained reasonable
correlations for nuclear and cytoplasmic staining
when comparing chromogenic singleplex IHC with
fluorescent mIHC results for five known colorectal cancer
markers (CDX2, SOX2, SOX9, E-cadherin, and β-cate-
nin), considering that the scoring methodologies are
inherently different and that the tissue sections used to
compare these methodologies were not neighboring sec-
tions in the TMA. Similar correlations between the two
scoring methods have been reported for several cancer
types [19–25].

The nature of the staining and scoring methods
explains inconsistencies

Nonetheless, scores from one method are not directly
translatable to the other. These differences between
methods can in part be attributed to technical issues. First,
the fact that the tissue sections used for chromogenic and
fluorescent staining were not adjacent reduces the accu-
racy of the comparison between the methods. Also, loss of
tissue, detachment during processing, and staining of
“exhausted” paraffin blocks limited the comparisons. For
downstream survival analyses with respect to the bio-
marker CDX2 we stained a replicate TMA set to increase
the number of samples analyzed by fluorescence. Even
though the samples stained by DAB and fluorescence
were from different areas of the same donor block, the
survival analyses remained highly similar. Further, it is

Fig. 2 Correlation between Allred and DIA scores for CDX2, SOX2,
SOX9, E-cadherin, and β-catenin. Correlation coefficients were cal-
culated using the Spearman’s rho method. DIA scores were log2
transformed for visualization. nucl nucleus, cyto cytoplasm, mem
membrane, DIA digital image analysis
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important to keep in mind the inherent differences
between DAB-based visual (Allred) scoring and
fluorescence-based digital analyses. Inconsistencies
between data obtained with the two scoring approaches

are partly due to DIA being a more quantitative method
that yields continuous values, while visual assessment
according to the Allred score produces discrete values on
a nonlinear and discontinuous scale from 0 to 8. For

128 N. Lopes et al.



example, the Allred scores 4, 5, and 6 can be ambiguous
since different staining patterns can underlie these scores,
typically biasing the evaluation of results toward high
scores and masking variability within tumor samples.
Here, DIA offers a simpler and more objective approach
to accurately measure the protein expression in the tissue.
Saturation of DAB signal leading to compression and
right-shifting of the data distribution is an additional
likely explanation for some of the observed discrepancies
with DIA scores.

Of note, the ‘optimal’ scoring approach may vary from
biomarker to biomarker. Some proteins may exert their
strongest influence on biology by number, with increasing
amounts of protein being related to some cellular or tumor
phenotype. Other biomarkers may be better described by
the number of cells expressing the protein. The Allred
score is based on categorization of each of these para-
meters prior to summation, while the scores provided
through the current DIA algorithm are intrinsically based
on both of these measures by analyzing the mean score
across all tumor cells. This scoring method for direct
comparison of DIA with Allred was chosen as it does not
require any definition of threshold for biomarker positivity
and is thus robust. However, with the cell-by-cell data
obtained through DIA, more complex scoring schemes are
straightforward to develop. For instance, cells can readily
be categorized based on expression levels and analyzed for
colocalization with other markers, as illustrated for CDX2
and SOX2.

Furthermore, visual scoring is performed with dichot-
omization in mind, meaning that uncertain “strong” or
“weak” cases are typically given a score closer to the middle
(classified as “moderate”), to keep the “strong” and “weak”
categories robust. Importantly, chromogenic detection has a
narrow linear dynamic range [6] and reaches saturation fast,
thus being prone to compressing “moderate” and “strong”
signals as compared with fluorescence-based detection.
Accordingly, fluorescence-based IHC provides the basis for

more accurate quantification of protein expression for cases
at the high end of the spectrum, particularly for proteins
with a large expression range.

Scoring of membrane staining: a challenge for the
digital analysis

Evaluation of membrane staining is relevant for many
clinically important biomarkers, such as β-catenin, E-
cadherin, and HER2. Unfortunately, the digital scoring of
membrane staining correlated poorly with the visual
analysis, which was better at discerning cytoplasmic and
nuclear staining from specific membrane staining. This
observation might have several explanations, including
inherent limitations of the machine learning algorithm to
segment cell–cell borders consistently across cases with
different morphologies and technical issues, despite
thorough optimization of segmentation parameters. Also,
the specificity of the marker used for guiding the mem-
brane segmentation, inherent limitations set by image
resolution, various physical characteristics of the tissue
sections where individual cells/nuclei, and membranes are
often not distinguishable, as well as general difficulties in
differentiating between diffuse cytoplasmic staining and
specific membrane staining at cell–cell borders, are other
important factors that can explain the discrepancy
between the scoring methods. The staining pattern of the
biomarker is inherently important for how well the
methods compare; β-catenin, due to its potential presence
in any cellular compartment is more sensitive to inac-
curacies in compartment-based scoring, when compared
with scoring of a biomarker that is more or less exclu-
sively found in one cellular compartment. That said, it is
possible that a more specific membrane marker and
alternative software packages and machine learning tools
could mitigate some of these limitations.

Digital analysis facilitates biomarker combination
assessments and confirms the prognostic value of
CDX2

We found a strong inverse relationship between the expression
levels of CDX2 and SOX2 in colorectal cancer, confirming a
previous study by Lundberg et al. [16]. This correlation is well
documented in the gastric setting, namely in intestinal meta-
plasia [26–28]. We also confirmed previous observations
showing that low CDX2 expression is associated with the MSI
phenotype [13, 18]. We further observed that tumors with low
CDX2 expression typically have high SOX2 expression and
are poorly differentiated, and demonstrated that identification
and visualization of these clinicopathological and biological
relationships can be substantially improved by the higher and
linear data resolution obtained with a multiplex fluorescence-

Fig. 3 Challenges with digital analysis of membrane staining. Illus-
tration of tumor cores displaying strong (a, left side) and weak (a, right
side) membrane staining for β-catenin, visualized by the chromogenic
substrate DAB. The same staining pattern is seen by fluorescent
labeling (b); pan-cytokeratin (panCK) is shown in red, DAPI in white,
and β-catenin in yellow. Digital analysis of β-catenin membrane
staining in the epithelium based on nuclear segmentation (green seg-
ments) and membrane segmentation (red lines) aided by nuclear DAPI
staining and panCK membrane staining (c). Membrane regions are
fairly well segmented, and in the example on the left side, these
regions pick up strong β-catenin staining correctly. However, in the
example on the right side, the segmented membrane region is primarily
picking up diffuse cytoplasmic β-catenin staining. Illustration of
membrane segmentation in densely nucleated tissue areas showing
how signal originating from the nuclei may be picked up in the seg-
mented membrane region (d)
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based IHC approach combined with DIA, as well as by the
ability to perform serial stains on the same tissue section. The
value of fluorescence-based mIHC combined with DIA tech-
nology for colocalization analyses [29] has been well
demonstrated in immunoprofiling studies [9, 19, 30–32], and
we illustrate the feasibility of such analyses also for assessing
the relationship between important tumor differentiation mar-
kers such as CDX2 and SOX2.

We also show that mIHC combined with DIA is an
efficient approach to assess the prognostic value of CDX2
protein expression, highlighting the potential clinical
utility of this technology to assess nuclear and cyto-
plasmic markers in a more standardized fashion, in line
with results in esophageal cancer [33], breast cancer [34],
and colorectal cancer [35]. The Wistuba lab recently
reviewed multiplex staining and DIA platforms,

Fig. 4 Strongly and weakly stained cases for CDX2 are better sepa-
rated by fluorescence-based IHC, which has a higher data resolution
compared with chromogenic detection using 3,3′-diaminobenzidine
(DAB). Three cases illustrating the large variation in CDX2 protein
expression among cases with Allred score 8 (a–c). Chromogenic
staining with DAB is prone to signal saturation, whereas fluorophores
have a much larger linear dynamic signal range enabling DIA to more
accurately detect and quantify differential protein expression on a
continuous scale. Example of a discrepant case with CDX2 Allred
score 8 and DIA score in the lowest quartile showing how cases with
clearly reduced protein expression can be scored as strong because the
dynamic signal range of DAB is not sufficient to differentiate both the
weak and the strong cases, leading to some of the weaker cases being

stained too strong to be readily separated by visual analysis (d).
Single-cell analysis (right image column) furthermore enables a more
accurate and objective scoring of cases with large variation in protein
expression between individual cells, here illustrated by the gradual
difference in CDX2 expression from left to right on the histospot
which is less noticeable for the DAB stain. CDX2 signal intensities
were binned into 10th percentiles on a cell-by-cell basis. Bin1 corre-
sponds to the lower percentile (blue colour) and Bin10 (dark red
colour) to the higher percentile. Fluorescent images are scaled relative
to each other; hence CDX2 staining in A appears oversaturated due to
the relatively much higher protein expression in this sample. Scale
bar, 0.1 mm
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Fig. 5 Illustrations of
clinicopathological and biological
relationships analyzed by
chromogenic and fluorescent
IHC. Scatterplots for Allred and
DIA scoring separately show the
inverse relationship between
CDX2 and SOX2 and their
association with microsatellite
instability (MSI). Accompanying
density plots show the probability
distribution of each variable (a).
Relationship between CDX2,
SOX2, MSI-status, and
differentiation grade; tumors with
low CDX2 expression tend to
have high SOX2 expression,
show MSI and have a low
differentiation grade (b). Single-
cell analysis of CDX2 and SOX2
(C/D). Distribution of CDX2 and
SOX2 scores at the single-cell
level (c). Scores were calculated
as the mean fluorescent intensity
within individual cell nuclei. The
plot was downsampled by
randomly selecting 10,000 cells
for analysis to facilitate
visualization. Illustrative example
of a nearly mutually exclusive
relationship between CDX2 and
SOX2 at the single-cell level (d).
Thresholding was performed
automatically within the Inform
Software for visualization.
Correlation coefficients were
calculated using the Spearman’s
rho method. DIA scores were
log2 transformed for
visualization. Colocalization
analysis was performed by
inForm Image Analysis Software
Version 2.3. Scale bar, 0.1 mm
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concluding with their utility and advantages for transla-
tional research and clinical applications [36], and a recent
systematic review and meta-analysis of biomarker mod-
alities for predicting response to PD-1/PD-L1 checkpoint
blockade concluded that mIHC has improved diagnostic
performance as compared with conventional PD-L1
IHC, tumor mutational burden, and gene expression pro-
filing [37].

Conclusions

In conclusion, fluorescence-based mIHC combined with
DIA is a reliable and efficient method to quantify biomarker
protein expression in TMAs and to detect clin-
icopathological and biological relationships, although
robust analysis of membrane staining remains a challenge.
Our results advocate the use of mIHC and DIA for research
and clinical applications, here successfully shown for the
colorectal cancer biomarker CDX2.
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