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Machine learning and deep
learning frameworks for the
automated analysis of pain and
opioid withdrawal behaviors
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The automation of behavioral tracking and analysis in preclinical research

can serve to advance the rate of research outcomes, increase experimental

scalability, and challenge the scientific reproducibility crisis. Recent advances

in the efficiency, accuracy, and accessibility of deep learning (DL) and machine

learning (ML) frameworks are enabling this automation. As the ongoing opioid

epidemic continues to worsen alongside increasing rates of chronic pain,

there are ever-growing needs to understand opioid use disorders (OUDs) and

identify non-opioid therapeutic options for pain. In this review, we examine

how these related needs can be advanced by the development and validation

of DL and ML resources for automated pain and withdrawal behavioral

tracking. We aim to emphasize the utility of these tools for automated

behavioral analysis, and we argue that currently developed models should be

deployed to address novel questions in the fields of pain and OUD research.

KEYWORDS

pain, opioid withdrawal, opioid use disorder (OUD), deep learning, machine learning,
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Introduction

The ongoing opioid epidemic is currently the worst it has been in the history
of the United States. Exacerbated by the global coronavirus disease 2019 (COVID-
19) pandemic, in 2021 the U.S. saw the highest annual drug overdose death toll ever
recorded, with an estimated 107,622 overdose deaths (Ahmad et al., 2021). Of these
deaths, 75% involved opioid use (Ahmad et al., 2021). Among other factors, one major
contribution to the opioid epidemic is the prevalence of chronic pain (Volkow and
McLellan, 2016). Because of the lack of widespread non-opioid analgesics and alternative
therapeutic options, opioids are continually prescribed for chronic pain management,
despite the number of associated risk factors (Nadeau et al., 2021). As a result of this
factor and increasing accessibility to potent synthetic opioids, including fentanyl, there
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is an ever-growing need to identify treatment strategies that can
mitigate this ongoing crisis (Skelly et al., 2020).

Translational models of pain and opioid withdrawal
behaviors are crucial for the development of safer non-opioid
analgesics and other treatment options for opioid use disorders
(OUDs). A natural aspect of these preclinical experiments is the
characterization of behavioral responses in translational models,
particularly rodent models, which to date has primarily relied on
human visual perception. As such, current behavioral paradigms
in pain or opioid withdrawal research in rodents still rely on
manual scoring (Deuis et al., 2017; Bravo et al., 2020, 2021). This
process is often time-consuming, labor-intensive, and error-
prone, even when conducted by trained researchers. The current
approach of manual scoring also has limited scalability and
introduces potential contributions to the reproducibility crisis.

Recent advances in the efficiency and accessibility of deep
learning (DL) and machine learning (ML) frameworks have
provided a clear route to challenge the issues associated with
manual scoring of pain behavior (Mathis and Mathis, 2020).
Widely accessible open-source tools being developed and used
in preclinical research are now capable of automatically labeling
and quantifying complex behaviors with accuracy that can
match human performance (Table 1; Sturman et al., 2020b).
By addressing the challenges associated with manual scoring,
accurate automated behavioral analysis tools that leverage
the utility of ML and DL frameworks can improve the
rigor and throughput of preclinical and ecological research
(Anderson and Perona, 2014). Moreover, these tools can
provide improved insight into naturalistic behaviors that
may otherwise go unnoticed by human observers (Datta
et al., 2019). In this perspective, we outline the current
ML and DL frameworks being used to label behavior in
translational models and look ahead at how these tools could
be applied to accelerate the preclinical study of pain and
OUD.

Artificial intelligence as a tool for
behavioral analysis

Automated behavior tracking in most experimental
protocols generally follows a two-stage pipeline (Figure 1). The
first stage of most of these pipelines involves video recording
and subsequent point labeling/tracking of specific body parts
of the studied animals. Numerous highly effective tools exist
for point-tracking without added markers on the animals
(i.e., markerless tracking). Examples of these tools include
DeepLabCut (Mathis et al., 2018; Lauer et al., 2022), SLEAP
(Pereira et al., 2022), DANNCE (Dunn et al., 2021), and
Anipose (which relies on DeepLabCut) (Karashchuk et al.,
2021). Broadly, these markerless point estimation tools use
convolutional neural network (CNN) models with encoder-
decoder architectures to create probability density plots for

each trained feature. Each pixel value in the output plots
represents the probability of the presence of the feature of
interest. The probability densities are then used to localize
points within the images. Following the identification of the
desired points, whole-body or whole-limb point skeletons can
be constructed for subsequent pose estimation and behavioral
classifications. Moreover, several point estimation models can
produce point labels and point skeletons for multiple animals
within the same video recording (Lauer et al., 2022; Pereira
et al., 2022).

The second stage of automated behavioral analysis involves
the process of extracting meaningful information from the
labeled point data (Sturman et al., 2020a). The approaches in
this stage are much more varied and specific to the desired
type of behavioral analysis being conducted. Many of the
tools used in this stage of analysis rely on traditional tracking
algorithms as well as supervised and unsupervised ML and
DL. Basic behaviors, such as total movement, zone entries, and
even paw flicks, can be tracked and quantified with traditional
algorithms. In contrast, the identification of more abstract
or nuanced behaviors, such as grooming, shaking, licking,
and biting, require the use of more complicated algorithms
[e.g., UMAP (McInnes et al., 2018)], ML algorithms (e.g.,
Random forest classifiers), and DL models (e.g., convolutional
recurrent neural networks). Tools used in this domain to
extract and quantify pose and behavioral information include
SiMBA (Nilsson et al., 2020), B-SOiD (Hsu and Yttri, 2021),
MoSeq (Wiltschko et al., 2015, 2020), and uBAM (Brattoli
et al., 2021), among others (Sturman et al., 2020a; Hu et al.,
2022).

Importantly, numerous tools and pipelines that can be used
for both stages of automated behavioral analysis have been
developed and validated for automated scoring of pain and
opioid withdrawal behaviors. Moreover, several of these tools are
open-source and easily accessible. In the next two sections, we
will discuss the development, validity, and verification of several
automated behavioral analysis tools in these two fields.

Automated analysis of pain
behavior

Pain is a highly subjective experience that involves both
affective and sensory-discriminative neurocircuitry engagement
(Baliki and Apkarian, 2015). Preclinical research relies on
the visual and sometimes acoustic observation of behavioral
alterations in non-human animals to determine the presence
of pain. Without using automated analysis techniques, pain
scoring typically involves real-time visual inspections and
timings of discrete behavioral events, such as paw flicking,
extended paw withdrawals, jumping, grooming, licking/biting,
and even squeaking (Deuis et al., 2017). Behavioral testing
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TABLE 1 Summary of automated pain and opioid use disorder (OUD) behavioral analysis articles.

Citation Relevant field Behaviors tracked Frameworks and software
used

Repository and trained
model links

Abdus-Saboor et al., 2019 Pain Paw and face labeling PainAssaySVM https://github.com/longdecision/
PainAssaySVM

Jones et al., 2020 Pain Peak paw withdrawl height
and guarding duration

SLEAP, PAWS, and ProAnalyst https:
//github.com/crtwomey/paws

Bohic et al., 2021 Pain Allodynia and others DeepLabCut, B-SOiD, MoSeq, PAWS,
pybasicbayes, scikit-learn, and
Gensim

NA

Kopaczka et al., 2018 Pain Mouse grimace scale PyTorch NA

Andresen et al., 2020 Pain Postoperative pain TensorFlow, OpenCV NA

Tuttle et al., 2018 Pain Pain or no pain TensorFlow NA

Kobayashi et al., 2021 Pain and OUD Scratching Keras, OpenCV NA

Wotton et al., 2020 Pain and OUD Licking/non-licking events
such as paw flick

DeepLabCut, MatLab for GentleBoost
model, and k-nearest neighbor
classifier.

https://www.kumarlab.org/2020/
10/05/machine-learning-based-
automated-phenotyping-of-
inflammatory-nocifensive-
behavior-in-mice/

Kopaczka et al., 2019 Pain and OUD General movement,
grooming, and resting

NA NA

Dao et al., 2021 Pain and OUD Rat ultrasonic vocalizations DeepSqueak NA

Murphy et al., 2021 OUD Jumping, rearing, grooming,
tremors, etc.

DeepLabCut, SimBA, NA

sessions are also frequently recorded for subsequent timing and
count verifications or for delayed behavioral scoring.

Both real-time and recording-based behavioral scoring
are highly subjective skills that require expert training and
careful, rigorous attention. Real-time behavioral observations
can suffer from experimenter fatigue, impaired viewing angles,
and differing opinions over discrete events. Recording-based
observations offer improvements over real-time scoring, as
behavioral observations can be more carefully confirmed with
repeated inspections, provided that the multiple viewing angles
and high frame rates are used to prevent missed or obscured
behavior by animal movement or crouching. However, this latter
approach can involve long hours of staring at screens, which can
lead to experimenter fatigue and potential inaccuracies. With
careful recording setups and pipeline validation, automated
analysis techniques offer the ability to overcome several of
these issues (Fried et al., 2020). Indeed, numerous models
have been developed to automate the analysis of scratching,
paw withdrawal, general pain states, and mouse-grimace scale
scoring.

Several automated models have been independently
developed to identify scratching and hind paw
flicking/withdrawal behaviors. One model used a convolutional
recurrent neural network that relies on an extended temporal
window of behavioral information to determine whether
scratching was occurring in any given frame (Kobayashi et al.,
2021). The authors reported an overall 94.8% accuracy of
scratching detection and validated the automated detection

in a dinitrofluorobenzene-induced dermatitis experiment
(Kobayashi et al., 2021). Another group used DeepLabCut
to track paw movement from a bottom-up view and the
GentleBoost classifier to label licking/non-licking behavioral
events (Wotton et al., 2020). This model had a 98% accuracy
in second-by-second behavioral classification, and the practical
performance of this model was validated with analgesic and
formalin injections (Wotton et al., 2020). Lastly, a third group
developed an ML-based analysis pipeline that uses manual paw
and face labeling to generate a rigorous pain score (Abdus-
Saboor et al., 2019). The pipeline reduces paw and facial
movement feature dimensionality with principal component
analyses into principal component scores, which are fed into a
trained support vector machine (SVM) that provides a single
pain metric. Importantly, this approach could be further
automated in the future by using point-labeling models to
automatically track paw and facial movement (Abdus-Saboor
et al., 2019).

Indeed, the same group from the previous study
later introduced two updated pain analysis pipelines that
automatically track paw and body movement and then extract
and analyze the features of the movement. In the first updated
pipeline, SLEAP was used to track paw movement and then
various algorithms were used to extract information from
the paw movement, including peak paw withdrawal height,
and guarding duration (Jones et al., 2020). Then, a univariate
pain score is generated using ordinal logistic regression. This
first pipeline was validated with the presentation of different
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FIGURE 1

Overview of an example workflow for deep learning (DL)-assisted automated pain/withdrawal behavioral analysis. Animal behavior is first
recorded on video, including both neurotypical behavior and potential pain/withdrawal behavior. Distinct frames are then sampled from the
video pool, and the points of interest in the frames are manually annotated. The labeled frames are then used to train an encoder-decoder
convolutional neural network (CNN) with tools such as DeepLabCut or SLEAP. Once the model is trained and achieves a desired level of
accuracy, the full videos are fed into the model to generate pose-estimation data for all mice. Finally, behavioral information is extracted from
the estimated pose data and quantified ahead of statistical comparisons. This extracted behavioral information can then be fed into
field-standard global scoring algorithms and models, thus allowing for comparison of pain/withdrawal behavior between control and
experimental groups of mice. Importantly, there are many easily accessible and open-source tools for each step of the example analysis
pipeline, many of which have been tested and validated in the context of translational pain and opioid abuse research. Figure created with
BioRender.com.

innocuous and noxious stimuli and the chemogenic activation
of the pain assembly in the basolateral amygdala (Jones
et al., 2020). In the second updated pipeline, the same group
uses a wide group of tools and algorithms, including high
speed behavioral tracking, time-of-flight infrared tracking,
DeepLabCut, principal component analysis, B-SOiD, MoSeq,
and learned embedding with doc2vec, to automatically extract
and quantify allodynia and other pain behaviors in mice (Bohic
et al., 2021).

Another line of work has sought to automate the application
of the mouse grimace scale (MGS), which uses a collection of
five facial features to characterize the presence of pain (Langford
et al., 2010). Because MGS scoring requires trained individuals
to provide the analyses, automation of this scoring was well-
needed (Kopaczka et al., 2018). In the first example of automated
MGS analysis, one group used a U-Net architecture to segment

the regions of interest, including the ears, eyes, and body. The
regions of interest are then fed into a CNN that outputs to
a single unit with a linear regression classifier to label input
images with 0–9 grimace scores (based on the 0–1 regression
output) (Kopaczka et al., 2018). Moreover, the authors provide
a GUI and server-client architecture to access automated and
real-time tracking of behavioral experiments. The model that
they developed had a 0.871 mean absolute error on their 0–9
scale (Kopaczka et al., 2018). A second group trained a CNN
with MGS labels to identify the presence of pain (Andresen et al.,
2020). With accuracy levels approaching >90%, the group was
able to accurately identify the presence of postoperative pain in
mice (Andresen et al., 2020). Lastly, another group used transfer
learning from an InceptionV3 architecture that was pretrained
on ImageNet (Tuttle et al., 2018). The final FC and two Softmax
layers were retrained to provide “pain”/“no pain” confidence
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scores. When analyzing their entire test image set, the model had
a reported accuracy of 84%.

Automated analysis of opioid
withdrawal behavior

Opioid use disorder is a chronic debilitating condition
driven by a cycle of compulsive opioid use, withdrawal,
craving, and relapse (Strang et al., 2020). Importantly, opioid
dependence and opioid withdrawal syndrome are fundamental
features of OUD. These features are thought to induce long-
term behavioral and physiological changes as well as increase
motivation and propensity for future opioid abuse (Strang
et al., 2020). In preclinical research, opioid dependence,
and withdrawal are key aspects of modeling OUD. In
rodents, opioid dependence is generally achieved through
either continual access (e.g., volitional self-administration) or
through a paradigm of escalating doses of injections (i.e., non-
volitional exposure) (Spanagel, 2022). Opioid dependence in
rodents has been shown to produce a range of withdrawal
symptoms, including increased grooming, wet-dog shakes,
tremors, jumping, rearing, wall climbing, diarrhea, and anxiety-
like behavior, among others (Bravo et al., 2020, 2021;
Gipson et al., 2020). Along with a withdrawal-like syndrome,
opioid dependence in rodents also induces opioid-induced
hyperalgesia (Liang et al., 2006; Roeckel et al., 2016).

As with pain behavior scoring, manual scoring of rodent
withdrawal behavior involves visual inspection and timing of
discrete behavioral events (e.g., grooming, wet-dog shakes,
tremors, etc.). Given the drawbacks of manual scoring,
automated analysis techniques offer the ability to increase
efficiency and decrease error in the assessment of opioid
withdrawal in preclinical models of OUD (Fried et al., 2020).
However, there has been a remarkable absence of automated
analysis in this context. Notably, only one identified study
focused on the automated analysis of opioid withdrawal
behavior. In this preliminary study, Murphy and colleagues
set out to establish a translational model of oral oxycodone
self-administration using automated and open-source tools
(Murphy et al., 2021). Specifically, markerless pose estimation
and subsequent supervised ML predictive classifiers for opioid
withdrawal-related behavior were used in C57BL/6J mice that
were trained to self-administer oxycodone orally for 12 days
with ad libitum access. DeepLabCut was used for markerless
pose estimation of head, paw, torso, and tail movements.
Quantification and extraction of behavioral information were
subsequently performed using SimBA, thus allowing Murphy
and colleagues to assess jumping, climbing, rearing, grooming,
tremors, and Euclidean distance of displacement of all body
parts. Ultimately, this automated withdrawal behavioral analysis
pipeline was able to detect and quantify physical signs

of dependence that are consistent with opioid withdrawal
syndrome in mice (Murphy et al., 2021).

To our knowledge only a single paper has been published
that explicitly focused on the automated analysis of opioid
withdrawal behaviors; however, other pipelines have been
built to track behaviors that are related to opioid withdrawal
(Kopaczka et al., 2019). For example, as described, one group
built a two-stream model with the ResNet101 architecture to
classify general activity patterns in mice, including general
movement, grooming, resting, turning, and facing away from
the camera (Kopaczka et al., 2019). Importantly, the grooming
and movement classifications from this model could be
generalized and applied to opioid abuse research. Interestingly,
another study automated the analysis of rat ultrasonic
vocalizations during a chronic fentanyl self-administration
paradigm (Dao et al., 2021). This was achieved using
DeepSqueak, a DL-based system for analyzing ultrasonic
vocalizations (Coffey et al., 2019). Given that ultrasonic
vocalizations are thought to correlate with rodent affect, this
tool could be valuable in analyzing another translational aspect
of withdrawal syndrome. Finally, other models described in the
previous sections, such as the paw flick (Wotton et al., 2020) or
scratching (Kobayashi et al., 2021) classification models could
also be generalized and used in the context of opioid dependence
and withdrawal.

Limitations

As no tool is perfect, it is important to note that
these automated pipelines have their own sets of pitfalls, in
common with manual scoring. Automated models still require
manual labeling of training data (although frankly minimal,
e.g., 100–150 frames for accurate DeepLabCut models). The
frames that are automatically labeled and automated analysis
frameworks must also be manually validated, which means
there is still a need for local expertise over the behaviors
that are being automatically scored. Moreover, many of
these pipelines require a certain degree of technical and
computational proficiency and technological specifications. In
terms of confirming model tracking and analysis accuracy,
an additional limitation is that there is currently no unified
database of labeled pain or OUD behavioral recordings that
can be used for model validations. Nonetheless, automated
behavioral tracking and analysis pipelines are being actively
improved, and their associated pitfalls are being minimized.
In that regard, we argue that it is important for the
developers of automated behavioral analysis tools to consider
the end-user in mind when creating and deploying automated
analysis packages. Future tools should be open-source and
easily accessible in public codebase repositories, and tools
should ideally have high-level APIs or even GUIs for
accessible deployment.
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Future directions

Automated behavioral tracking and analysis tools are well-
positioned to blossom in the fields of pain and opioid abuse
research. We argue that the accuracy and validation testing of
these tools have demonstrated their feasibility in the contexts
of pain and OUD research. Particularly in the context of pain
research, the articles described in this review have demonstrated
the potential to classify and quantify several nuanced behaviors
with high levels of accuracy. Preliminary work in the context
of OUD has demonstrated similar effectiveness of DL and ML
tools for automated scoring of withdrawal-related behaviors in
mice. These already highly accurate and primarily open-source
automated pipelines discussed here will act as the foundation
for a future of automated pain and OUD behavioral testing
(Supplementary Table 1).

Taken together, ML and DL automated behavioral analysis
pipelines have proven to be highly powerful across many
fields. With their increased implementation, automated ML and
DL-based automated behavioral analysis have the potential to
increase the efficiency of pre-clinical investigation of pain and
opioid abuse, as well as increase its rigor and reproducibility.
Now is the time for scientists working in the fields of pain and
OUD research to move beyond the validation stages and begin
implementing automated behavioral analysis tools to test novel
research questions. In doing so, researchers may be afforded
an opportunity to ask more complex and comprehensive
questions in their pursuit of novel pain therapeutics with less
abuse potential.
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