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Abstract

Detecting multiplets in single nucleus (sn)ATAC-seq data is challenging due to data
sparsity and limited dynamic range. AMULET (ATAC-seq MULtiplet Estimation Tool)
enumerates regions with greater than two uniquely aligned reads across the genome
to effectively detect multiplets. We evaluate the method by generating snATAC-seq
data in the human blood and pancreatic islet samples. AMULET has high precision,
estimated via donor-based multiplexing, and high recall, estimated via simulated
multiplets, compared to alternatives and identifies multiplets most effectively when a
certain read depth of 25K median valid reads per nucleus is achieved.
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Background
Single nucleus ATAC-seq (snATAC-seq) [1, 2] technology has accelerated the study of

epigenetic regulation with single-cell resolution [3, 4]. However, the pace of computa-

tional method development for this assay lags behind the pace of data generation. An

open computational problem is the detection of multiplets (i.e., two or more cells/nu-

clei captured and profiled together)—a common challenge for droplet-based single-cell

technologies [5]. The presence of multiplets confounds downstream analyses, such as

cell clustering, annotation, differential accessibility, and allelic accessibility analyses, by

introducing combined epigenomic profiles that originate from two or more nuclei.

Multiplet detection in snATAC-seq is a distinct computational challenge compared to

single-cell RNA-seq assays due to data sparsity and the limited dynamic range of

single-cell chromatin accessibility levels (e.g., 0 reads, closed chromatin; 1, open on

one parental chromosome; and 2, open on both chromosomes).

Current state-of-the-art methods for multiplet detection in snATAC-seq data (i.e.,

SnapATAC [6] and ArchR [7]) are similar in nature to scRNA-seq multiplet detection

methods (e.g., DoubletFinder [8] and Scrublet [9]). These methods simulate multiplets
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by combining genomic profiles of two or more distinct cells/nuclei present in the data

to detect real multiplets based on their similarity to these simulated multiplets. They

are therefore designed to detect multiplets originating from different cell types (i.e.,

heterotypic multiplets) and assume that genomic profiles of multiplets are unique and

distinguishable from the genomic profiles of distinct cell types. Although reasonable,

this assumption has important limitations that may lead to false positive or false nega-

tive annotations. For example, simulation-based methods may not detect multiplets of

functionally similar cell types (e.g., naive and memory CD4+ T cells) since their gen-

omic similarity is higher. In addition, these methods will not detect homotypic multi-

plets (i.e., originating from the same cell type), since their genomic profile resembles

that of the underlying cell type. Filtering out homotypic multiplets is important for the

accuracy of certain downstream analyses (e.g., allelic bias and lineage tracing). To over-

come these limitations and leverage inherent data features of snATAC-seq maps, we

developed a novel computational framework, AMULET (ATAC-seq MULtiplet Estima-

tion Tool), that effectively captures and annotates multiplets by taking advantage of ex-

pected read count distributions per genomic region for each nucleus.

To benchmark the performance of AMULET, we generated snATAC-seq data from

human peripheral blood mononuclear cells (PBMCs) (n=5 donors, 2 captured and

sequenced individually, 3 pooled and sequenced together) and pancreatic islets (n=2

donors, captured and sequenced individually). AMULET’s efficacy was quantified based

on its ability to detect and annotate artificially introduced multiplets and to detect

known multiplets within multiplexed donor profiles. For sufficiently sequenced samples

(i.e., > 25k valid read pairs per nucleus), AMULET detected heterotypic multiplets with

high recall (0.85 in PBMCs), significantly outperforming simulation-based method

ArchR (recall=0.24). With lower read counts per nucleus, ArchR outperformed AMU-

LET (average recall 0.49 versus 0.36 in islets), but the two algorithms uncovered com-

plementary sets of multiplets. Unlike simulation-based methods, AMULET was equally

effective at detecting homotypic and heterotypic multiplets (recall=0.87 for PBMCs,

0.35 for islets). AMULET predictions were also higher in precision compared to ArchR

(0.61 vs. 0.28) for the detection of multiplets from 3 multiplexed PBMC donors identi-

fied via genotype-based demultiplexing [10]. Finally, to gain further insights into the

types and cellular origins of multiplets, we also developed a novel and effective

clustering-based algorithm to annotate them. AMULET (https://ucarlab.github.io/

AMULET/) is a user-friendly computational framework that can effectively detect and

annotate multiplets in snATAC-seq and can be easily integrated into existing computa-

tional pipelines such as Signac [11], Seurat [12, 13], and ArchR [7].

Results
AMULET leverages the principle that the expected number of uniquely aligned reads

overlapping any given open chromatin region ranges from 0 to 2 for diploid nuclei in

snATAC-seq data: 0 = closed chromatin, 1 = open on one chromosome (i.e., either the

maternal or the paternal chromosome), and 2 = open on both chromosomes (i.e., both

parental chromosomes) (Fig. 1a). In this assay, more than two overlapping reads (>2)

can align to a genomic region due to (1) repetitive sequence content, (2) PCR duplica-

tion/jackpot effects, (3) sequencing/alignment errors, or (4) capture of multiple nuclei

in one droplet (multiplets). The type of overlapping reads resulting from repetitive
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element sequences or experimental/technical errors will be localized to specific sites

that can be filtered out using known repetitive elements and will be less frequent across

the genome. In contrast, the capture of multiplets will yield a systematic, genome-wide

increase in regions with >2 overlapping reads.

AMULET first identifies all sites with >2 reads for each nucleus (Fig. 1b) by utilizing

sorted read alignments to detect those with overlapping read intervals. A unified list of

these regions across all nuclei is generated and filtered using known repetitive elements

(Methods) to quantify the number of occurrences where >2 reads align to a region in a

given nucleus (Fig. 1c). Next, it models random occurrences of regions with >2 reads

(i.e., due to experimental or sequencing/alignment errors) with the Poisson cumulative

distribution function. Based on their deviations from the observed Poisson distribution

using false discovery rate (FDR), nuclei determined to contain significantly more

regions with >2 reads are identified as multiplets (Fig. 1c, an example shown in

Additional file 1: Figure S1).

Detected multiplets are assigned to their cell type(s) of origin using a clustering-

based algorithm within the AMULET framework. First, marker peaks for each cell type

are detected via differential analyses in snATAC-seq data. For each nucleus,

Fig. 1 Overview of AMULET. a Tn5 transposase cleaves accessible DNA at maternal and paternal
chromosomes in each nucleus. Number of ATAC-seq read counts per genomic region per nucleus are
expected to be 0, 1, or 2. b Instances where >2 overlapping reads are observed for any genomic region in
a cell are identified using an efficient algorithm for counting the number of overlapping reads. c Poisson
cumulative distribution function is used to detect multiplets based on deviations from expected number of
genomic regions with >2 overlapping reads. d Overview of downstream analyses: (1) quantification of
multiplet detection performances using artificial multiplets, (2) comparison of AMULET to alternative
method ArchR, and (3) annotating cellular origins of multiplets using a clustering-based method
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epigenomic similarity profiles are calculated by studying read count distributions at

cell-type-specific marker peaks. These profiles are then used to trace back the cellular

origins of multiplets and differentiate between heterotypic and homotypic multiplets.

Performance of AMULET has been compared to simulation-based alternative ArchR

[7] by generating reference snATAC-seq data in two primary human tissues (Fig. 1d).

PBMC and islet snATAC-seq profiling to benchmark AMULET

To benchmark AMULET’s performance, we generated snATAC-seq data in two

primary human tissues: peripheral blood mononuclear cells (PBMCs) (n=5 donors:

2 donors independently captured and sequenced (PBMC1, PBMC2) and 3 donors

that were pooled and sequenced together) and islets (n=2 donors, islet 1 and islet

2) using the 10x Genomics Chromium platform [3]. Sequence reads were pre-

processed using the Cell Ranger ATAC pipeline (Methods), yielding an average of

5559 and 6173 nuclei per sample and 24,393 and 16,625 valid read pairs per nu-

cleus for independently sequenced PBMC and islet samples, respectively (Fig. 2a).

Fig. 2 AMULET identifies heterotypic and homotypic snATAC-seq multiplets in primary human tissues. a
Summary of snATAC-seq samples generated and used in this study from human PBMCs and islets. b Valid read
pair distributions for PBMC and islet snATAC-seq samples. c PBMC clusters were annotated based on their
correlations with sorted bulk ATAC-seq data. d All multiplets (heterotypic and homotypic) detected by AMULET
in PBMC1. Selected multiplets refer to multiplets for which aggregated profiles are shown in panel f of this
figure. e The number of cells and percentage of multiplets detected by AMULET in PBMC and islet samples. f
Chromatin accessibility profiles of CD4+ T, myeloid, and selected multiplets around for T cell marker gene
(CD3G) and myeloid cell marker gene (LYZ). CD4+ T and myeloid cells show strong accessibility signals for their
relevant marker genes while selected multiplets have accessible chromatin for both marker genes
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In this context, a valid read pair is a paired-end sequence aligning to an autosomal

chromosome and passing quality control flags/thresholds (Methods). Despite deeper

sequencing for islet samples, fewer valid read pairs per nucleus were observed in

islet samples compared to PBMCs (Fig. 2b). This is likely due, at least in part, to

the increased representation of mitochondrial reads in islet samples (115M and

48M chrM reads in islet 1 and islet 2, respectively) compared to PBMCs (2.6M

and 0.95M chrM reads in PBMC1 and PBMC2).

Nuclei were clustered using a two-pass clustering method [3] (Methods) resulting in

16 and 15 clusters for PBMC1 and PBMC2. By correlating pseudo-bulk accessibility

profiles of these clusters with accessibility maps from sorted bulk ATAC-seq data [14]

(Additional file 1: Figure S2a,b), we annotated 5 major cell types: myeloid (including

CD14+, CD16+ monocytes, and conventional dendritic cells), B, CD4+ T, CD8+ T, and

NK cells (Additional file 1: Figure S2c,d). These annotations were confirmed based on

the chromatin accessibility patterns at literature-supported marker genes (Additional

file 1: Figure S3). The same clustering workflow identified 14 and 12 clusters for islet 1

and islet 2, which we annotated as alpha, beta, delta, and ductal cells, the most frequent

cell types in islets, based on known marker genes [15] (Additional file 1: Figure S4).

After cell type annotation, we applied AMULET to detect high confidence (FDR < 0.01;

Methods) multiplets in the PBMC and islet snATAC-seq datasets. Predicted multiplets

were distributed within each cell-type cluster in all four samples (Fig. 2c, d, Additional file

1: Figure S5). In PBMC1, multiplets also formed their own distinct cluster (cluster 13 in

Additional file 1: Figure S2c) (see selected multiplets in Fig. 2d). The percentage of de-

tected multiplets was higher in PBMCs (7%, 10.84%) compared to islets (5% for both sam-

ples) (Fig. 2e), likely due to the higher number of valid read pairs per nucleus in PBMCs

compared to islets (Fig. 2b). To determine the accuracy of AMULET multiplet predic-

tions, we analyzed chromatin accessibility profiles (Fig. 2f) of a cluster exclusively com-

prised of multiplets in PBMC1 (Fig. 2d). These multiplets were characterized by high

chromatin accessibility at the promoters of both CD3G (T cell marker gene) and LYZ

(monocyte marker gene), confirming the T cell monocyte composition of these multiplets

and supporting the utility of AMULET for snATAC-seq doublet detection.

AMULET detects multiplets with high precision and recall

To quantify the efficacy of AMULET, we introduced artificial multiplets by randomly

selecting 5% of nuclei in each dataset and forming nuclei pairs by adding their read

count profiles together (repeated 10 times per sample). This random selection was in-

dependently done to simulate heterotypic and homotypic multiplets by taking cell type

annotations into consideration. This generated artificial multiplets that constitute 2.5%

of all nuclei in the sample to serve as true multiplet examples, enabling us to measure

recall (i.e., the fraction of detected artificial multiplets to all artificial multiplets intro-

duced in the sample). Using the same artificial multiplets for each comparison, we

quantified AMULET and ArchR’s ability to detect both heterotypic and homotypic

multiplet types.

In PBMC samples, AMULET had a high recall for detecting heterotypic multiplets

(average recall 0.80 for PBMC1 and 0.90 for PBMC2 over 10 runs), substantially out-

performing ArchR (0.25 and 0.23, respectively) (Fig. 3a). However, for islet 1 and islet
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2, where the number of valid read pairs per nucleus was lower, average recall for AMU-

LET was reduced to 0.37 and 0.35, respectively, while the average recall for ArchR pre-

dictions were 0.68 and 0.30, respectively. AMULET was similarly effective in detecting

homotypic multiplets (average recall 0.82 and 0.91 for PBMC 1 and PBMC 2, 0.38 and

0.31 for islet 1 and islet 2) (Fig. 3b), whereas ArchR mostly missed these multiplets

(average recall ranges from 0.07 to 0.11 for all samples) since homotypic multiplet epi-

genomic profiles are indistinguishable from bona fide singlets.

Fig. 3 AMULET detects multiplets with high precision and recall. a, b Recall for detecting a heterotypic and
b homotypic artificial multiplets. AMULET consistently detected both heterotypic and homotypic multiplets
with similar recall, while ArchR was only effective for predicting heterotypic multiplets for data with high
heterogeneity. c Unsupervised clustering of multiplexed PBMC data identified 8 clusters corresponding to B
cells, T cells, cytotoxic T, NK cells, monocytes, and dendritic cells. Multiplet detection via Vireo identified 244
multiplets among donors. d Multiplets identified by AMULET (red) and both AMULET and Vireo (black). 59%
of AMULET multiplets overlapped with Vireo multiplets, showing high precision for detecting known
multiplets among donors. e Multiplets identified by ArchR (red) and both ArchR and Vireo (black). Only 28%
of multiplets detected by ArchR were also multiplets detected by Vireo. f Comparison of precision and
recall for AMULET (FDR 10%, 5%, and 1%) and ArchR (default parameters). AMULET has higher precision
than ArchR (0.57–0.61 vs. 0.28) for all FDR cutoffs with similar recall (0.17–0.20 vs. 0.20)
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High recall may result from many false positive multiplet calls. Therefore, it is also

critical to assess precision, which quantifies the number of positive class predictions

that actually belong to the positive class (i.e., the ratio of true multiplets detected by

the method). However, calculating precision is challenging without ground-truth singlet

and multiplet classifications. Here, we estimated the lower bound for precision by as-

suming the worst-case scenario; i.e., all nuclei that are called as multiplets and not sim-

ulated as one are false-positive calls. Accordingly, even in the worst-case scenario

AMULET had a higher average precision than ArchR for heterotypic (0.23 versus 0.06

for PBMCs, 0.16 versus 0.11 for islets) and homotypic (0.25 versus 0.02 for PBMCs,

0.16 versus 0.02 for Islets) cases (Additional file 1: Figure S6). Note that the best-case

scenario for precision assumes that all detected multiplets are true positives; hence, the

upper bound for precision for both methods and for all datasets will be 1 (i.e., perfect

precision).

To better estimate the precision of multiplet calls, we generated multiplexed

snATAC-seq data from the PBMCs of 3 individuals that were pooled and sequenced

together. These samples were demultiplexed using Vireo [10] based on naturally occur-

ring genetic variation in each individual, which also effectively detects multiplets among

donors. Although multiplets among donors are a subset of all true multiplets, these

data still enable an unbiased framework to benchmark different methods in terms of

their precision. By using Vireo, we detected 244 true multiplets formed from the nuclei

of different donors out of 3812 nuclei (Fig. 3c), providing an unbiased ground truth to

estimate precision for donor multiplets. We then applied AMULET (FDR 1%, 5%, 10%)

and ArchR (default parameters) to these data to detect 67–84 and 175 multiplets,

respectively. 59% of AMULET multiplets (at 5% FDR) were also Vireo multiplets

(Fig. 3d), while only 28% of ArchR multiplets were also identified by Vireo (Fig. 3e).

Accordingly, AMULET detected Vireo multiplets with higher precision (0.57–0.61)

compared to ArchR (0.28); both methods achieved a similar recall, 0.17–0.20 and

0.20, respectively (Fig. 3f).

Together, these results suggest that read-count-based AMULET can detect multiplets

with high precision (lower false positives assessed by sample multiplexing) and high re-

call (lower false negatives assessed by simulated multiplets), especially when samples

are sequenced deeply (e.g., 20–28K average, 19–28K median valid read pairs for

PBMC1 and PBMC2), serving as an effective alternative to simulation-based methods.

Multiplets detected in PBMCs and islets with AMULET and ArchR

After benchmarking the two methods, we applied AMULET and ArchR on PBMCs and

islets to detect multiplets in these samples. Each algorithm detected similar percentages

of multiplets in both tissues: 5–11% with AMULET and 7–10% with ArchR (Fig. 4a).

Multiplets detected by both methods were located on the periphery of single-cell type

clusters or formed their own distinct clusters (Fig. 4b, c, Additional file 1: Figure S7a-c)

comprised of mostly heterotypic multiplets with unique epigenomic profiles, which are

more readily detected by simulation-based methods. However, their outputs were

mostly disjointed (Additional file 1: Figure S7d). For example, in PBMC1, ArchR de-

tected 663 multiplets compared to 430 multiplets from AMULET, of which only 75

overlapped. In islet profiles, delta cells were disproportionately labeled as multiplets
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using ArchR (47% in islet 1, Additional file 1: Figure S8a), likely due to their epige-

nomic similarity to beta cells (Additional file 1: Figure S8b). In contrast, AMULET mul-

tiplets were more balanced across cell types.

AMULET’s performance improves with increased library depth

AMULET’s recall was better in highly sequenced PBMC samples compared to islets

(Fig. 3a, b). To further study the library depth effects on AMULET’s performance, we

applied it on snATAC-seq data with different library depth: (1) publicly available mouse

CD45+ cells [16] and innate lymphoid cells (ILCs) data [17] and (2) down-sampled

PBMC1 and PBMC2 samples at 5% increments starting at 50%. To quantify AMULET’s

performance, we simulated multiplets in each sample by randomly selecting nuclei

pairs and used them to calculate recall. For immune cells (PBMCs, CD45+ cells, and

ILCs), AMULET achieved 88–89% recall for samples when the median read count per

Fig. 4 AMULET is robust to cell type similarity and improves increased with read depth. a Total number of nuclei
and multiplets detected by each method. Differences in number of nuclei are due to differences in inputs (i.e.,
alignment (BAM) files and Cell Ranger cell annotations for AMULET, fragment files (Cell Ranger output) and ArchR
cell annotations for ArchR). Overall, ArchR detects more nuclei as multiplets using default parameters than
AMULET. b Reference annotations for islet 1. Islet 1 annotations correspond to alpha, beta, delta, and ductal cell
types. c Multiplets detected by AMULET and ArchR for islet 1. Majority of multiplets detected were not shared
between the two methods. Note: ArchR detected the majority of delta cells as multiplets. d Average recall for
detecting artificially introduced multiplets in immune and islet samples with respect to median read count per
nucleus. AMULET reaches its peak performance for ~25K median valid read pairs per nucleus. Differences between
immune and islet cells likely stem from the overall differences in their accessibility levels and patterns
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nuclei was 25–28K valid read pairs, and we observed a linear trend between recall and

read count per nuclei until a certain depth is achieved (Fig. 4d). The variation in AMU-

LET’s performance between immune and islet cells is likely due to the differences in

their overall chromatin accessibility levels and patterns that might arise from distinct

cellular differentiation potential and/or functions. We further investigated the number

of valid read pairs required to detect multiplets using AMULET by randomly pairing

5% of the total nuclei per sample (repeated 100 times). We used AMULET to detect

these artificial multiplets, then studied the read count distribution of the ones that are

accurately identified. These analyses revealed that in both PBMCs and islets, ~25K valid

read pairs per cell/nucleus is sufficient for detecting artificial multiplets with high recall

using AMULET (Additional file 1: Figure S9). Together, these analyses show that AM-

ULET’s performance depends on the read depth and that maximum performance is

achieved when the median read count per nuclei is at least 25K valid read pairs regard-

less of the tissue type.

The likelihood of a cell type to form multiplets is associated with its frequency within the

tissue

To understand whether certain cell types are more likely to form multiplets and to gain

insights into the types (heterotypic versus homotypic) and potential sources of multi-

plets in snATAC-seq data, we developed a multiplet annotation method (Fig. 5a). For

this, we first identify marker peaks for each cell type and then calculate each nuclei’s

likelihood to belong to these cell types using their epigenomic signal at marker peaks

(cell type association score, Methods). For example, in PBMCs, we calculated five

scores for each nucleus, which correspond to the five major cell types studied here

(Fig. 5b). As expected, nuclei in cluster 5 (B cell cluster) had high scores for B cell

marker peaks, whereas nuclei in cluster 13 (i.e., multiplet cluster) had high scores

for multiple cell types: NK, CD4+ T, CD8+ T, and myeloid cells (Fig. 5b). With this

framework, we can infer the cellular origins of each multiplet and also distinguish

the type of the multiplet (heterotypic versus homotypic) (Methods).

First, we evaluated the efficacy of this multiplet annotation pipeline using artificial

multiplets. Our method inferred the cellular origins of artificially simulated homotypic

and heterotypic multiplets with high accuracy: 82% and 86% in PBMC1 and PBMC2,

and 86% and 85% in islet 1 and islet 2 (Fig. 5c). For example, in PBMC1, 96% of all sim-

ulated B and myeloid multiplets were correctly annotated, whereas annotations of arti-

ficial multiplets generated from cells with similar functions were less accurate (e.g., 86%

for simulated NK and CD8+ T cell multiplets), since they have similar epigenomes. Our

framework was similarly effective for annotating homotypic and heterotypic multiplets,

showing 84% accuracy on average to annotate homotypic multiplets and 86% accuracy

to annotate heterotypic multiplets in both tissues.

Next, we applied this annotation framework on multiplets detected from PBMCs and

islets, which revealed that the majority of multiplets are homotypic: 77–84% in islets,

63–79% in PBMCs (Fig. 6a, b, Additional file 1: Figure S10a,b). Chromatin accessibility

profiles at marker gene promoters for each cell type confirmed that homotypic and het-

erotypic multiplets have distinct profiles. For instance, homotypic B cell multiplets had

strong accessibility signal for B cell marker gene MS4A1 and not for marker genes of
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other cell types, whereas heterotypic multiplets originating from CD8+ T cell and B

cells had high accessibility signals for both B cell marker gene MS4A1 and CD8+ T cell

marker gene CD8A (Fig. 6c for PBMC2). In both tissues, homotypic multiplets clus-

tered together with the underlying cell type, whereas heterotypic multiplets either

formed their own clusters or were located between cell type clusters (Fig. 6d, e, Add-

itional file 1: Figure S10c,d). Notably, the delta cell cluster in islet 1 also included many

heterotypic multiplets, supporting the hypothesis that these cells are similar to multiple

major cell types in islets and are more likely to be mistaken as multiplets by

simulation-based multiplet detection methods.

Further inspection of multiplet annotations revealed that the likelihood of a cell type

to form a multiplet is positively correlated with the proportion of that cell type within

the tissue (Pearson’s R = 0.824, 0.897, P values < 0.087, 0.04 for PBMC1 and PBMC2,

Pearson’s R = 0.931, 0.475 P values < 0.07, 0.525 for islet 1 and islet 2) (Fig. 6f, g,

Additional file 1: Figure S10e,f), suggesting that snATAC-seq multiplets are more likely

to be technical (i.e., due to random coupling of nuclei) than biological (e.g., due to

Fig. 5 Multiplet cell-type origins are predicted with high accuracy. a Overview of the cell origin annotation
pipeline. First, cells are clustered. Second, marker peaks are identified. Third, multiplets and their k-nearest
neighbor cells are used to generate cluster similarity scores. b Example of aggregate cluster profiles for
predicting cell origin annotations. Clusters corresponding to cell types observe strong signal for their
respective cell types (e.g., cluster 5) while clusters corresponding to multiplets show a mixed profile of cell
types (e.g., cluster 13). c Heatmaps of cell origin annotation accuracies for predicting artificial multiplets
derived from cells of the specific cell type pairings. Multiplet annotations showed high accuracies for the
majority of cell type compositions
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cellular interactions). For example, the most abundant cell type in islet 1 was beta cells

(46.62% of the cell population) which contributed to 51.96% of multiplets (Fig. 6g). Het-

erotypic multiplet annotations in islet samples mostly originated from alpha, beta, and

delta cells (Additional file 1: Figure S10b). In PBMCs, the most frequent heterotypic

multiplets contained CD4+ T or CD8+ T cells (Additional file 1: Figure S10a).

Fig. 6 Majority of multiplets are homotypic and correspond to cell type proportions. a, b Heterotypic and
homotypic multiplet cell distributions (left bars). Homotypic cell type annotations (right bars) for PBMC (a)
and islet (b) samples. Majority of multiplets are annotated as homotypic. Homotypic cell type distributions
show similar distribution to the overall proportions of each cell type in their respective samples. c
Accessibility maps for cell origin annotations for multiplets identified in PBMC2. Homotypic multiplets
observe strong signal for their respective marker genes. Heterotypic multiplets observe a combined signal
at respective marker genes corresponding to the respective annotated cell types. d, e UMAP clustering for
heterotypic and homotypic multiplet annotations in PBMC1 (d) and islet 1 (e). Heterotypic multiplets are
found between major cell type clusters. Homotypic multiplets are observed on the periphery of major cell
type clusters. f, g Cell and multiplet proportions for PBMC2 (f) and islet 1 (g). Multiplet cell type proportions
are highly correlated with overall cell proportions
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Discussion
Detecting and removing multiplets from snATAC-seq data is an important step to

improve the quality and accuracy of downstream analyses. AMULET exploits

unique data features of snATAC-seq assays to detect and eliminate multiplets, of-

fering a read count-based alternative to current simulation-based methods (e.g., the

method implemented as part of the ArchR framework). This read count-based

approach equips AMULET to uniquely and effectively detect both heterotypic (i.e.,

multiplets originating from different cell types) and homotypic (i.e., multiplets

originating from the same cell type) multiplets. Eliminating heterotypic multiplets

is essential for improved clustering and differential analyses between clusters and

samples, whereas eliminating homotypic multiplets can improve allele-specific or

lineage tracing analyses that require accurate read counts per nucleus. AMULET

was designed to detect multiplets in diploid cells, by systematically searching for

sites with >2 read counts. This method can be improved in the future to analyze

snATAC-seq data from haploid cells (e.g., gametes), polyploid cells, or aneuploid

cancer cells by adjusting the expected number of reads per genomic region param-

eter or restricting the analyses to specific portions of the genome.

AMULET detected multiplets with high precision (assessed by sample multiplexing)

and high recall (assessed by simulated multiplets), especially when samples are se-

quenced to a certain read depth, serving as an effective alternative to simulation-based

ArchR. In depth analyses of published data from other groups and data from our stud-

ies showed that AMULET reaches its maximum performance (recall is ~90% for im-

mune cells) when on the average each nucleus has ~25K valid read pairs (i.e., uniquely

aligning, autosomal read pairs). In both tissues, this is achieved when a sample has

~120–130K total reads (prior to any data filtering and quality control) per nucleus on

the average. Since AMULET does not depend on simulated multiplets, it is equally ef-

fective for cell types that are functionally similar, and hence share similar transcrip-

tional regulatory architecture. For example, in islets, delta cell epigenomes resemble

that of beta cells (Additional file 1: Figure S8b). These instances are particularly chal-

lenging for simulation-based methods (e.g., ArchR for snATAC [7] or DoubletFinder

[8] and Scrublet [9] for scRNA-seq) as evident by the fact that ArchR categorized 47%

of delta cells as multiplets in islet 1 while AMULET categorized just 11% as multiplets,

closer to the expected multiplet ratio based on cell compositions and scRNA-seq stud-

ies [15]. Given the success of AMULET for identifying multiplets from snATAC-seq

data with sufficient sequencing depth, this method can also be employed on the

ATAC-seq component of multiomic assays to detect multiplets, where transcriptomes

and epigenomes from the same nuclei are profiled simultaneously [18].

Epigenomic signal at marker peaks can be effectively used to annotate the cellular

identities of the detected multiplets, as we achieved 85% accuracy on average in our

simulations. Annotation of detected multiplets showed that the majority are from the

same cell type. Furthermore, the likelihood of a multiplet to include nuclei from a cer-

tain cell type significantly correlated with the abundance of that cell type in the biospe-

cimen. Since cells are lysed and nuclei are captured and profiled in snATAC-seq

protocols [3], these assays likely do not contain many biological multiplets (i.e., due to

cell-cell interactions) and multiplets were more likely to occur randomly among all nu-

clei. Hence, the most abundant cells are the most likely to form multiplets.
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Conclusions
Multiplets are inevitable in current droplet-based single-cell sequencing platforms, and

their removal is essential for precise analyses and understanding of biological phenom-

ena. AMULET is a novel and effective read count-based solution to detect and annotate

multiplets from snATAC-seq data. Compared to simulation-based ArchR, AMULET

had higher precision (0.61 vs. 0.28) assessed via donor demultiplexing. Furthermore,

when snATAC-seq samples were sequenced to adequate depths (e.g., 25K valid reads

per nucleus), AMULET achieved a very high recall (e.g., 0.85 in PBMCs) compared to

ArchR (0.24 in PBMCs) while detecting simulated multiplets.

AMULET is a fast and efficient tool that can detect multiplets with a runtime that

scales near linearly with the number of cells/valid reads (Additional file 1: Figure

S11a,b), while requiring less than 3GB of memory (Additional file 1: Figure S11c,d).

These analyses suggest that for most samples, AMULET will generate results within

hours using a standard laptop. Code and documentation is freely available under a GPL

V3 license at https://ucarlab.github.io/AMULET/, providing step by step guides and

vignettes to easily integrate AMULET outputs into the frequently used Signac [11],

Seurat [12, 13], and ArchR [7] pipelines.

Methods
PBMC1 and PBMC2 samples from human subjects

All studies were conducted following approval by the Institutional Review Board of

UConn Health Center (IRB Number: UCONN IRB#16-071J-1). Following informed

consent, blood samples were obtained from 2 healthy older volunteers (65 years and

older) residing in the Greater Hartford, CT, USA region recruited by the UConn

Center on Aging Recruitment and Community Outreach Research Core (http://health.

uconn.edu/aging/research/research-cores/). Subjects were carefully screened to exclude

potentially confounding diseases and medications, as well as frailty. Individuals who re-

ported chronic or recent (i.e., within 2 weeks) infections were also excluded. Subjects

were deemed ineligible if they reported a history of diseases such as congestive heart

failure, ischemic heart disease, myocarditis, congenital abnormalities, Paget’s disease,

kidney disease, diabetes requiring insulin, chronic obstructive lung disease, emphysema,

and asthma. PBMCs were isolated from fresh whole blood using Ficoll-Paque Plus (GE)

density gradient centrifugation.

Human islet procurement

Human islets from two de-identified cadaveric organ donors were obtained through

partnerships with the Integrated Islet Distribution Program (IIDP, http://iidp.coh.org/).

Human islet functionality was assessed by static incubation glucose stimulated insulin

secretion (GSIS) assays on the day after arrival, according to the IIDP protocol. Primary

human islets were cultured in Prodo media (PIM-S + supplements PIM-G + PIM-ABS)

in 5% CO2 at 37°C for approximately 24 h prior to dissociation and preparation for

snATAC-seq profiling. To dissociate islets into single-cell suspension, 1ml of Stem-

ProAccutase (Thermo Fisher Scientific) per 1000 islet equivalent (IEQ, 1 IEQ=~1000

cells) was added, and cells were incubated for 10 min at 37°C with periodic pipetting at

2-min intervals. Islet single-cell suspension was washed three times in PBS + 0.03%
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BSA and passed through a 20-μm mesh filter to remove clumped cells and debris. Cell

number was determined using Countess II FL Automated Cell Counter (Life

Technologies).

Islet and PBMC snATAC-seq cell labeling, capture, library preparation, and sequencing

For single nucleus ATAC sequencing (snATAC-seq) experiments, viable single-cell sus-

pensions from each sample were used to generate snATAC-seq data using the 10X

chromium platform according to the manufacturer’s protocols (Demonstrated Protocol

Nuclei Isolation for ATAC Sequencing Document CG000169; Chromium Single Cell

ATAC_User Guide RevB Document CG000168). Briefly, >100,000 cells from each sam-

ple were centrifuged and the supernatant was removed without disrupting the cell pel-

let. Lysis buffer was added for 5 min on ice to generate isolated and permeabilized

nuclei, and the lysis reaction was quenched by dilution with Wash Buffer. After centri-

fugation to collect the washed nuclei, diluted nuclei buffer was used to re-suspend

nuclei at the desired nuclei concentration as determined using a Countess II FL

Automated Cell Counter and combined with ATAC buffer and ATAC enzyme to form

a transposition mix. Transposed nuclei were immediately combined with Barcoding

Reagent, Reducing Agent B and Barcoding Enzyme and loaded onto a 10X Chromium

Chip E for droplet generation followed by library construction. The barcoded sequen-

cing libraries were subjected to bead clean-up, checked for quality on an Agilent 4200

TapeStation, quantified by qPCR (KAPA Biosystems Library Quantification Kit for Illu-

mina platforms), and pooled for sequencing on an Illumina NovaSeq 6000 S2 flow cell

(2x50bp libraries).

Pooled PBMC snATAC-seq data from three donors

Cryopreserved PBMCs isolated from three healthy unrelated donors were obtained

from Hemacare (Los Angeles, CA, USA). PBMCs were thawed and cultured in RPMI

1640 with GlutaMax and HEPES (ThermoFisher) supplemented with 10% FBS and 1%

pen/strep overnight on ultra-low-attachment 10cm dishes (Corning). Following over-

night culture, suspension PBMCs were transferred to a 50mL conical tube and placed

on ice. Adherent PBMCs were lifted using TrypLE and pooled with the suspension

PBMCs. The cells were then washed twice with ice-cold PBS before nuclei isolation ac-

cording to the “Nuclei Isolation for Single Cell ATAC Sequencing” protocol from 10x

Genomics. Isolated nuclei were then resuspended in ice-cold 10x Genomics diluted nu-

clei buffer and counted. 15,000 nuclei from each PBMC donor were then subjected to

transposition according to the “Chromium Next GEM Single Cell ATAC Reagent Kits

v1.1” protocol from 10x Genomics. After transposition, nuclei from each donor were

pooled, pelleted, resuspended in 10x Genomics ATAC Buffer B, and counted prior to

microfluidic capture (targeting ~10,000 recovered nuclei). Next-generation sequencing

library preparation was then performed according to supplier recommendations before

sequencing on a single lane of an Illumina NovaSeq SP100 flow cell.

snATAC-seq data processing, alignment, and nuclei clustering

snATAC-seq data was processed and aligned to the hg38 (PBMC1 and PBMC2) and

hg19 (islet 1, islet 2, pooled PBMC) reference genomes using Cell Ranger ATAC
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pipeline (10x Genomics Cell Ranger ATAC 1.2.0). Position-sorted alignment files and

barcodes passing QC (i.e., barcodes marked as cells) from Cell Ranger ATAC were then

provided as input for AMULET. Nuclei were clustered using their accessibility profiles

based on a two-pass clustering method previously described [3] (https://github.com/

UcarLab/snATACClusteringPipeline), with two notable differences. First, we restrict

the number of top bins (2.5kb in length) in the first pass clustering to the top 50k bins,

up from 20k bins. Second, for second pass clustering, we increase the number of peaks

to include all peaks identified in pass 1 up to 200k.

Identifying snATAC-seq sites with >2 reads

Position sorted, paired-end read alignments from snATAC-seq data were compared to

detect all sites with >2 unique reads per nucleus. To avoid instances where reads overlap

due to technical reasons, we removed all read pairs that were marked using the following

criteria available from the HTSJDK [19] library: (1) ReadPairedFlag = True, (2) ReadUn-

mappedFlag = False, (3) MateUnmappedFlag = False, (4) SecondaryOrSupplementary =

False, (5) DuplicateReadFlag = False, and (6) ReferenceIndex != MateReferenceIndex (i.e.,

read pairs map to the same chromosome). Overlaps due to alignment errors were reduced

by excluding reads based on (i) mapping quality scores less than or equal to 30 and (ii) in-

sert sizes (i.e., the end-to-end distance between 5′ and 3′ read positions) greater than

900bp (~6 nucleosomes) in length.

To identify instances of >2 reads overlapping at any specific site, all intervals

were identified for which an overlap was observed for at least two valid read

pairs. Reads defining each interval were then compared to one another to identify

all subintervals that exceed the specified overlap threshold (i.e., 2). To efficiently

identify these subintervals, for each subset, interval breakpoints were defined at

the start and end positions of each paired-end read. For each interval breakpoint,

an integer value of 1 was assigned to all breakpoints originating from start posi-

tions, and −1 to all breakpoints originating from an end position. Interval break-

points were then visited in position sorted order to generate a cumulative sum

based on the assigned values at each breakpoint. The cumulative sum indicates

the total number of overlaps between two interval breakpoints and efficiently

identifies all sub-intervals with a number of overlaps greater than the specified

threshold. Once all subintervals satisfying the threshold (i.e., 2) were identified

for a subset of reads, the algorithm repeated this process for the remaining

paired-end read subsets.

Identifying the initial intervals from coordinate sorted reads was performed using a lin-

ear time algorithm (i.e., O(n), n is the number of total reads), with an additional O(log(m))

(m equals the number of nuclei) overhead to identify their respective nucleus origin,

resulting in O(n*log(m)) runtime. Identifying subintervals includes a sorting procedure

that is dependent on the number of reads overlapping in the initial interval of overlapping

reads identified. In the theoretical worst case, all reads overlap one another, resulting in

O(n*log(n)) time to sort the start and end positions. In practice, the algorithm will run

closer to n*log(m) time, as there are fewer instances of overlapping reads than total reads.

AMULET assumes that reads are sorted beforehand and is otherwise superseded by the

time necessary to sort reads by their chromosome and start positions (i.e., O(n*log(n)).
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Statistical detection of multiplets from snATAC overlap counts

Sites with >2 reads were first filtered using simple repeats, segmental duplications, re-

peat masker, and exclusion regions obtained from UCSC Genome Browser [20] and

ENCODE [21, 22]. Next, filtered sites from all nuclei were merged if they overlapped

by at least one base pair. Using this unified list of filtered sites with >2 reads, a binary

matrix was generated where rows in the matrix represent sites with >2 reads for at least

one nucleus, and the columns represent the individual nuclei within the sample. Values

within the matrix were assigned to 1 if the nucleus and genomic site combination

observed >2 reads overlapping, and 0 otherwise. From this matrix, multiplets can be de-

tected using column sums (i.e., the total number of >2 read overlap instances for each

nucleus) while repetitive element sequences can be inferred using row sums (i.e., the

total number of cells observing >2 reads at the same genomic region).

Observing >2 reads overlapping across multiple sites within the same nucleus (or

within the same site for multiple nuclei for inferring repetitive regions) can be modeled

using the Poisson distribution. Occurrences of >2 reads overlapping are independent,

counted within set intervals (i.e., counting sites across the entire genome within cells or

counting nuclei within the same genomic site), are either present or not within these

intervals, and have a constant average rate of occurring, satisfying the assumptions of

the Poisson distribution. We therefore detected significant multiplets and inferred re-

petitive sequences with the Poisson cumulative distribution function, using respective

mean row and column sum counts as the expected values to calculate Poisson probabil-

ities. In this process, we first used Poisson probabilities to infer repetitive sequences

(FDR < 0.01) where a significant number of nuclei observe >2 reads at the same gen-

omic site. All inferred repetitive sequence genomic regions were removed from further

analysis. Next, we calculated the Poisson probability of observing more sites with >2

reads than expected in a nucleus (i.e., multiplets) using column sums. Poisson probabil-

ities for both detecting repetitive sequences and multiplet detection were corrected

using the Benjamini-Hochberg procedure to adjust for multiple hypothesis testing.

Repetitive sequences and multiplets were predicted by selecting sites or nuclei with ad-

justed Poisson probabilities less than 0.01.

Simulating artificial multiplets to measure multiplet detection performances

To measure recall for detecting multiplets, artificial multiplets were simulated by com-

bining accessibility profiles of nuclei within each sample population tested. For each

sample, cells were randomly selected equal to 5% of the total cell population and addi-

tively paired together to introduce artificial multiplets equivalent to 2.5% of the total

population. Introducing 2.5% artificial multiplets ensured that they were not the major-

ity compared to real multiplets (5–11% of cells across all samples) present in the data.

For heterotypic and homotypic multiplet comparisons, cell pairs were randomly rese-

lected until they formed heterotypic or homotypic multiplets based on cell type annota-

tions for 10 runs of simulations each. Simulated multiplets used for measuring the

number of valid read pairs per nucleus did not have restrictions based on cell type and

were selected at 5% of the total nuclei in the sample for 100 repetitions, selecting nuclei

at random (i.e., Additional file 1: Figure S9). Artificial multiplets were introduced by

generating modified barcode mappings (i.e., singlecell.csv output from CellRanger for
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AMULET) or barcodes in fragment files (i.e., Cell Ranger Fragments file for ArchR [7]),

which assigned artificial multiplet reads to the same cell identifier (i.e., the first nucleus

in the pair).

Multiplet annotation pipeline

Detected multiplets are annotated using clusters identified for snATAC-seq samples,

merging them with respect to specific cell types present in the cell population. In our

study, PBMC clusters were merged to represent CD4+ T, CD8+ T, Natural Killer (NK),

myeloid, and B cells and islet clusters were merged to represent alpha, beta, delta, and

ductal cells. Marker peaks for all cell type clusters with at least 150 cells were identified

with the FindMarkers function in Seurat [12], using the logistic regression setting. For

the sake of unison, the top 100 marker peaks are then identified for each cell type clus-

ter based on Bonferroni's adjusted p value of average log fold changes.

To account for data sparsity in snATAC-seq data, aggregate read profiles are calcu-

lated for each cell and marker peak. Aggregate read profiles are found by taking average

read counts for each cell’s 15 nearest neighbors using the top 50 singular value decom-

position (SVD) components. The cumulative distribution function in R (i.e., ecdf) is

then used to find the abundance of reads for each cluster’s marker peaks. Distribution

values represent the percent of each cell type’s accessibility profiles present within the

cell and are referred to as cell type association scores. In order to distinguish multiplet

types (i.e., heterotypic or homotypic) singlet profiles were calculated for each cell type

in the sample. For each cell type’s singlet cells, cell type association scores at every

marker peak were averaged to find the representative score profile for that cell type.

Multiplets that have a profile close to their abundant cell type’s singlet profile were

classified as homotypic. Euclidean distance was used to measure the similarity between

the profiles of multiplets and singlets. Mixture models were then fitted to the distances

with the Mclust R package [23] to group the closeness of the multiplets to their corre-

sponding cell type’s singlet profile. Multiplets in the group with largest distance to the

singlet profile are considered heterotypic. Multiplets are then annotated using the top 1

(for homotypic) or 2 (for heterotypic) cell type association scores.
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