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Abstract

Context: Content‑based image retrieval (CBIR) systems allow for retrieval of images from 
within a database that are similar in visual content to a query image. This is useful for 
digital pathology, where text‑based descriptors alone might be inadequate to accurately 
describe image content. By representing images via a set of quantitative image descriptors, 
the similarity between a query image with respect to archived, annotated images in a 
database can be computed and the most similar images retrieved. Recently, non‑linear 
dimensionality reduction methods have become popular for embedding high‑dimensional 
data into a reduced‑dimensional space while preserving local object adjacencies, thereby 
allowing for object similarity to be determined more accurately in the reduced‑dimensional 
space. However, most dimensionality reduction methods implicitly assume, in computing the 
reduced‑dimensional representation, that all features are equally important. Aims: In this 
paper we present boosted spectral embedding (BoSE), which utilizes a boosted distance metric 
to selectively weight individual features (based on training data) to subsequently map the data 
into a reduced‑dimensional space. Settings and Design: BoSE is evaluated against spectral 
embedding (SE) (which employs equal feature weighting) in the context of CBIR of digitized 
prostate and breast cancer histopathology images. Materials and Methods: The following 
datasets, which were comprised of a total of 154 hematoxylin and eosin stained 
histopathology images, were used: (1) Prostate cancer histopathology (benign vs. malignant), 
(2) estrogen receptor  (ER) + breast cancer histopathology  (low vs. high grade), and 
(3) HER2+ breast cancer histopathology  (low vs. high levels of lymphocytic infiltration). 
Statistical Analysis Used: We plotted and calculated the area under precision‑recall 
curves (AUPRC) and calculated classification accuracy using the Random Forest classifier. 
Results:  BoSE outperformed SE both in terms of CBIR‑based (area under the precision‑recall 
curve) and classifier‑based (classification accuracy) on average across all of the dimensions 
tested for all three datasets:  (1) Prostate cancer histopathology  (AUPRC: BoSE = 0.79, 
SE = 0.63; Accuracy: BoSE = 0.93, SE = 0.80), (2) ER + breast cancer histopathology (AUPRC: 
BoSE = 0.79, SE = 0.68; Accuracy: BoSE = 0.96, SE = 0.96), and (3) HER2+ breast cancer 
histopathology  (AUPRC: BoSE  =  0.54, SE  =  0.44; Accuracy: BoSE  =  0.93, SE  =  0.91). 
Conclusion: Our results suggest that BoSE could serve as an important tool for CBIR and 
classification of high‑dimensional biomedical data.
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INTRODUCTION

Content‑based image retrieval  (CBIR) systems allow a 
user to retrieve images from a database based on visual 
similarity to the query image. This is particularly useful 
for digital pathology and medical imaging databases, 
where text‑based descriptors alone might be inadequate 
to accurately describe image content.[1‑7] In CBIR 
systems, a query image is used as the input and based on 
image attribute matching; the most similar images from 
within a database are retrieved. Two main components 
of a CBIR system are  (a) the image  (or feature) 
representation, and  (b) choice of similarity metric for 
performing retrieval. An ideal similarity metric  (distance 
measure) would yield a large value when comparing 
visually dissimilar images and a small value when similar 
images are compared. For any given query image, the 
most similar images in the database as determined 
by the similarity metric are retrieved in decreasing 
order of relevance. However, in cases where images are 
represented by a large number of image attributes, the 
similarity measure might be affected by the so called 
“curse of dimensionality” problem, wherein the number 
of attributes may be greater than the total number of 
instances in the database.

Dimensionality reduction  (DR) is a technique 
that is used to project high‑dimensional data into 
a reduced‑dimensional embedding space. The 
low‑dimensional data representation allows for more 
consistent and accurate similarity computations, 
compared to the high‑dimensional space, to help 
determine image similarity[8,9] DR techniques can be 
broadly categorized as linear or nonlinear. Linear DR 
techniques such as principal component analysis (PCA)[10] 
fail to accurately capture object  (image) relationships 
where the data reside on some non‑linear manifold.[11] 
Objects residing on different ends of the manifold could 
potentially be mapped closer to each other in the 
lower‑dimensional space, since linear DR methods use 
the Euclidean norm as opposed to the geodesic 
distance (appropriate for adjacency determination for 
objects residing on nonlinear manifolds). Nonlinear 
dimensionality reduction  (NLDR) methods[12‑15] attempt 
to capture object adjacency on nonlinear manifolds by 
preservation of the local linear neighborhood structure.[16] 
However, NLDR methods such as Isomap[12] and locally 
linear embedding  (LLE)[13] are sensitive to the choice 
of the size of the local neighborhood  (𝜅) within which 
linearity is assumed. Diffusion Maps,[14] another NLDR 
method, is sensitive to the number of time steps specified 
for the random walk. spectral embedding  (SE)[15] is a 
NLDR method that unlike neighborhood preserving 
NLDR schemes  (such as LLE, Isomap), defines object 
adjacency by using a Gaussian kernel in conjunction with 
the Euclidean distance metric (EDM) to yield a similarity 
matrix for all objects. The eigenvalue decomposition of 

this similarity matrix is then determined to yield the 
low‑dimensional representation (eigenvectors) of the data. 
While SE is still sensitive to the parameters of the kernel, 
it has been shown to be more robust compared to LLE 
and Isomap.[17] CBIR could be performed in conjunction 
with SE by mapping the query and database images 
into a reduced‑dimensional space and then retrieving 
relevant images as those in the neighborhood of the 
query instance. A key shortcoming of the EDM, however, 
is that it implicitly assumes all features  (dimensions) are 
equally relevant. In the context of CBIR, features that are 
poor in discriminating between two image classes could 
potentially map dissimilar images close to each other in 
the low‑dimensional space. Hence, in order to determine 
a more optimal low‑dimensional representation of the 
data, it is desirable to weight the discriminatory attributes 
higher compared to the erroneous or noisy features prior 
to computing the similarity matrix.

There has been some previous work in the development 
of SE variants. Tiwari et  al. proposed a weighted 
multi‑kernel learning scheme to yield an improved weight 
matrix for use in conjunction with SE.[18] ElGhawalby 
and Hancock[19] formulated a variant of SE that used an 
edge‑based wave kernel that embedded the nodes of a 
graph as points on the surface of a manifold, and used 
the resulting point‑set to compute graph characteristics. 
Robles‑Kelly and Hancock[20] used the Kruskal coordinates 
to compute the edge‑weights for a weight matrix 
and used it to embed the nodes of the graph onto a 
Riemannian manifold.

In this paper we employ a novel variant of SE called 
boosted spectral embedding  (BoSE), a supervised 
NLDR technique that utilizes a boosted distance metric 
(BDM) in place of the EDM. The BDM, which was 
first introduced,[21] employs the AdaBoost algorithm 
developed by Freund and Schapire.[22] AdaBoost is an 
ensemble approach that allows for implicit feature 
weighting based on class discriminability. The difference 
between SE and BoSE is that BDM actively places 
importance on discriminatory features while mitigating 
the role of weaker features, yielding an embedding 
which encourages same class objects to be embedded 
closer to each other and dissimilar class objects to be 
mapped farther apart. The main purpose of BoSE is 
to improve the lower‑dimensional embedding so that 
classification and image retrieval will be more accurate in 
the lower‑dimensional spaces. Feature weighting prior to 
DR makes BoSE a supervised method. Similar to SE, the 
methods[19,20] are unweighted and unsupervised.

The primary contributions of this work are twofold. 
First we present a new NLDR scheme boosted spectral 
embedding (BoSE) that employs AdaBoost with SE to 
generate lower‑dimensional data representations with 
greater class separability. Second, BoSE is employed 
in conjunction with a CBIR scheme  (CBIR‑BoSE) 
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to perform accurate retrieval of database images 
with respect to a query instance. An overview of the 
CBIR‑BoSE system is illustrated in Figure  1. For a 
database of N annotated images, feature extraction is 
performed to yield N corresponding high‑dimensional 
feature vectors. A  subset of the N high‑dimensional 
feature vectors is used as a training set for a boosted 
classifier to compute the weights for each feature in this 
two‑class  CBIR problem. A  low‑dimensional embedding 
of the entire dataset  (MBoSE) is then created via BoSE. 
The Euclidean distance between the query image and 
the database images is then computed in MBoSE and the 
most similar  (lowest distance) images are first retrieved. 
Images retrieved from the same class as the query 
instance are considered as “relevant”. Evaluation is done 
by constructing precision‑recall (PR) curves, where a large 
area under precision‑recall curves  (AUPRC) reflects that 
CBIR‑BoSE is retrieving the most relevant images first.

In this work we evaluated our CBIR‑BoSE system on 
three different two‑class problems, illustrated in Figure 2. 
The three datasets comprised  (1) 58 hematoxylin 
and eosin (H and E) stained prostate cancer tissue 
biopsy samples classified as benign  [Figure  2a] or 
malignant [Figure 2d] and these images were represented 
by Gabor, Haralick, and first‑order statistical features; 

(2) 55 H  and  E stained estrogen receptor  (ER) + breast 
cancer histology specimens classified as low [Figure 2b] or 
high [Figure 2e] grade and these images were represented 
by Haralick features; and (3) 41 H and E stained HER2+ 
breast cancer tissue specimens classified as having 
low  [Figure  2c] or high  [Figure  2f] levels of lymphocytic 
infiltration  (LI) and these images were represented by 
architectural features using the delaunay triangulation, 
minimum spanning tree, and the voronoi diagram. The 
choice of these datasets was dictated by the fact that 
manual inspection of both prostate and breast cancer 
histology suffers from high inter‑  and intra‑pathologist 
variability.[23‑25] Typically the pathologist first determines 
if the histology sample is benign or malignant. If it is 
found to be malignant, the cancer is assigned a grade 
based on the morphologic and architectural attributes; 
cancer grade being highly correlated to patient 
outcome[23,26] In the progression of solid tumors, local and 
systemic inflammation tends to play an important role.[27] 
Tumor infiltrating lymphocytes represent a local immune 
response and the degree of LI in a tumor is considered as 
being prognostic of patient outcome in several different 
disease states.[28‑30] The development of CBIR tools 
with applications in digital pathology[31] could assist 
pathologists by providing a quantitative, reproducible 
and accurate image‑based risk score, indicative of disease 
aggressiveness and patient outcome.[23] Additionally, a 
CBIR system for digitized histopathology could serve as 
a teaching, training, and instructional tool for pathology 
residents and fellows.

The rest of this paper is organized as follows. The 
BDM is presented in Section 2. The methodological 
description of the BoSE scheme is presented in Section 
3. The experimental design and evaluation of BoSE 
are presented in Section 4. Results and discussion are 
presented in Section 5. Lastly, concluding remarks are 
presented in Section 6 [Table 1].

BOOSTED DISTANCE METRIC

Brief Overview of Boosted Distance Metric
We define a set of objects as X = {x1, x2,…, xN} where N 
is the number of objects and each image represents one 
object. Each image xi, i ∈ {1,…, N} belongs to one of two 
classes + 1 or − 1. The ground truth label of xi is denoted 
L (xi) ∈ {+1, −1} where L (xi) = −1 indicates membership 
in class  −  1 and L  (xi) =1 indicates membership in 
class  +  1. Let Φd  (xi) for d ∈  {1, 2,…, D} represent the 
value of feature d from xi. The BDM construction is 
comprised of three main steps:
Step 1: �Constructing weak classifiers: Weak classifier 

hd(xi) ∈  {−1, 1} predicts the class label of xi 
based on feature operator Φd. In this work, a 
weak classifier is one that outputs a class label 
for the object under consideration. The weak 
learner may be one that outputs a probabalistic 

Figure 1: A flowchart illustrating the different components of 
the content-based image retrieval/boosted spectral embedding 
(CBIR-BoSE) system. Initially quantitative feature extraction is 
performed on a query image Q to yield a set of K image descriptors 
F1,….Fk. The database contains N annotated images (with 
corresponding class labels) with their corresponding feature-based 
representations. For the particular problem of interest, the image 
features are assigned weights ( ˆ ˆ

1 T,…,α α ) corresponding to their 
class separability. A weighted similarity matrix is then created 
via the boosted distance metric, which is then used with BoSE to 
project the data into a lower-dimensional space. In the reduced 
space, the distance between the query Q and the database images 
is calculated and the database images most similar to the query 
are retrieved (R1, …., R5)
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likelihood that an object (in this case, an image) 
belongs to a specific class based solely on a single 
attribute. These probabilities can be thresholded 
to obtain the class label. Multiple different weak 
learners derived from various image features 
can be constructed and evaluated in terms of 
classifier accuracy  (assuming that a training set 
with class labels is available). Weak classifiers 
were constructed by using only a subset  (training 
set) of the entire dataset

Step 2: �Implicit Feature Weighting: The T most accurate 
weak classifiers, ht, t ∈ {1, 2,…, T} are identified 
and weights ˆ  associated with each ht are 
learned via the AdaBoost[22] algorithm, thereby 
enabling implicit feature weighting

Step 3: �BDM Construction: The BDM is then defined 
using the features Φt  (xi) and associated weights 
̂t  obtained in Step 2.

Construction of  Weak Classifiers
Each individual feature (weak classifier) is used to classify 
an image and its classification accuracy is leveraged in 
determining its class separability. The construction of the 
weak classifiers employed in this work is outlined below:
Step 1: �Calculate Φd  (xi) for all d ∈  {1, 2,…, D}, i ∈ 

{1, 2,…, N}, in order to obtain corresponding 
feature values for each of the images.

Step 2: �Create training set Xtr  ⊂  X containing N objects 
by randomly sampling half of the entire dataset X

Step 3: Let X  +  indicate all objects in Xtr belonging to 
class  +  1. Similarly, X −  is the set of all samples 
in Xtr that belong to class  −  1. We can obtain an 
appropriate probability distribution function  (PDF), 
the integral of the density function, which predicts 
the likelihood of observing a feature value given a 
class label as:

	
- (X )adexp( )

-1p( (X )| )= (X )a ad b d ( )

Φ

ητΦ ω Φ τη Γ τ

� (1)

	 for a ∈  {+,−}, ωb ∈  {+1,−1} Γ is the gamma 
function, and τ, η >0 are scale and shape parameters. 
Equation 1 is a gamma function estimation of the 
PDF,[32] and is preferred to a Gaussian distribution 
because the feature histograms are asymmetric about 
the mean and the gamma function models the 
distribution more accurately.

Step 4: �Obtain the a posteriori probability P (+1|Φd (xi)) 
which computes the likelihood that an object 
with feature value Φd  (xi) belongs to the positive 
class + 1 by solving,

	

P(+1)p( (x )|+1)idP + (x ))=id P(+1)p( (x )|+1)+id
P(–1)p( (x )|–1)id

( |
Φ

1 Φ
Φ

Φ

� (2)

Step 5: �Once the a posteriori probabilities have been 
computed for each image based on a single 

Figure 2: Example images of (a) benign and (d) malignant prostate tissue, (b) low and (e) high grade estrogen receptor (ER+) breast cancer 
tissue, and HER2+ breast cancer tissue with (c) low and (f) high levels of lymphocytic infiltration. The histology images were obtained by 
digitizing biopsy samples previously stained with hematoxylin and eosin (H&E). In (a) the nucleoli are less prominent and the glands are 
more open, whereas in (d) the nucleoli are more apparent and the glands are shriveled due to increased cell proliferation. There is a greater 
amount of nuclear proliferation in (e) high grade ER+ breast cancer when compared to (b). A similar phenomenon can be observed when 
looking at HER2+ breast cancer tissue with low versus high levels of lymphocytic infiltration. In (f) there are more lymphocytes that have 
infiltrated the cancerous tissue compared to (c)

d
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f

a

e
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feature, the weak classifiers are defined based on 
the individual features. The weak classifiers may 
now be defined as follows:

ì
ï
í
ï
î

h
d i d i

d i

1     if P(+1| (x ))>P(–1| (x ))
(x )= -1     otherwise

Φ Φ

If the probability, which based on a single feature, of 
the image xi belonging to class  +1 is greater than its 
probability of belonging to class  −1, it will be given a 
class label of 1. Otherwise, it will be given a classification 
label of −1.

Implicit Feature Weighting
We use the AdaBoost[22] algorithm to perform implicit 
weighting of the weak classifiers  (in turn reflecting 
the importance of the individual image attributes) in 
order to distinguish between the positive and negative 
classes. Our feature weighting algorithm is illustrated 
in Figure  3. AdaBoost works in an iterative fashion by 
first identifying the best‑performing weak classifiers 
and then assigning weights based on the discriminative 
value of that feature.[22] The weights of the training 
images are initialized by taking the reciprocal of the 
number of images there are in the training set  (Line 
0). For each weak classifier  (feature), its classification 
error is computed  (Line 2). At each iteration, the weak 
classifier with the lowest classification error is chosen 
and its weight is determined  (Line 4). The weights 
of the training images are updated such that the 
images that were frequently classified properly received 
lower weights, while the images that were frequently 
misclassified received higher weights  (Line 5). This 
ensures that subsequent weak classifiers are picked based 
on their ability to classify these hard to classify instances. 
The process repeats T for iterations. The output of 
the algorithm is a set of weak classifiers ht and their 

associated normalized weights ̂t , t ∈ {1, 2,…, T} where 

1≤T≤D and 0< ̂t<1. ̂t is the operator for the feature 
selected at iteration t of AdaBoost. The algorithm stops 
when εt>0.5.

Constructing the Boosted Distance Metric
The BDM is constructed after the weights and features 
have been chosen. To find the distance between two 
points in the high‑dimensional space, we calculate,

1
T 2^ ^ ^ 2

0 1.BDM i j 0 jt t
t 1

D (x ,x ) ( (x ) (x )) <<
=

 = Φ −Φ  
∑ � (3)

This is essentially a weighted Euclidean distance, where 
the weights influence the contribution of each feature. If 
α̂ ≈t 0 , then Φ̂t

will not affect the value of the similarity 
measure.

Proposition 2.1 given that 

1
2

2

1

( ( ) ( ))
T

Eu t i t j
t

D x x
=

 = Φ −Φ  
∑  

is the Euclidean distance metric, is also a distance metric.

Proof since DEu is a metric, it is  (1) positive,  (2) 
symmetric,  (3) definite, and  (4) the triangle inequality 
holds. DBDM must also be a metric since ̂t  ∈ [0.1] is 
positive and real valued. Therefore properties  (1)‑(4) are 
satisfied for DBDM.

A look at the simple case where T  =  2, and where a, 
b ∈ R2 can provide some insight into DBDM.

If L (a) = L (b) then on average, over the entire training 
set, DEu  (a, b) >DBDM  (a, b). Ideally, if L  (a) = L  (b), 
then D  (a, b) ≈0. We denote the distance between 
a and b in the first dimension as Δ1 and the second 
dimension as Δ2. Assume that feature dimension 
Δ1 is on average, over the entire training set, more 
discriminating than Δ2; more specifically that ||δ1 (a) −

Figure 3: The BoostFeatWeights algorithm for implicitly weighting the top performing image features for a specific task. All samples were 
initialized with equal weights. The weights for the weak classifiers are computed based on the classification error dε . At each iteration, 
weights ( ( ))t iΠ  increase for samples that are difficult to classify. This forces the weak classifiers to concentrate on the images that are 
frequently misclassified. Once all the weights ( )tα  for the weak classifiers are found, they are normalized so that they would range from 
0 to 1. The T best performing classifiers and their weights are computed
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δ1  (b) ||<|| δ2  (a) −δ2  (b)|| where δ1 and δ2 represent 
the positions of the objects in feature spaces Δ1 and 
Δ2 respectively. Thus, α α1 2

ˆ ˆ>  via the learned feature 
weights. Recall that ˆ ˆBDM a b 2 2

1 1 2 2D ( , )= ( ) + ( )α ∆ α ∆  and 

Eu a b 2 2
1 2D ( , )= ( ) +( )∆ ∆ . It can be seen that on average, 

over the entire training set, the following holds:

ˆ ˆ2 2 2 2
1 2 1 1 2 2( ) +( ) > ( ) + ( )∆ ∆ α ∆ α ∆ � (4)

ˆ ˆ2 2 2 2
1 2 1 1 2 2( ) +( ) > ( ) + ( )∆ ∆ α ∆ α ∆ � (5)

ˆ ˆ2 2 2 2
1 1 1 2 2 2( ) – ( ) > ( ) –( )∆ α ∆ α ∆ ∆ � (6)

ˆ ˆ2 2
1 1 2 2( ) (1 )>( ) ( 1)∆ −α ∆ α − � (7)

Recall that ˆ ˆ1 2, 0α α ≥  and ˆ ˆ1 2, [0,1]α α ∈ . Therefore, 
the left hand side of the inequality would yield a 
positive number and the right hand side would yield a 
negative number. Therefore on average, over the entire 
training set, Eu BDM a bD (a, b) D ( , )<  if L(a) = L(b). 
Note that it is similarly possible to show that under 
the same assumptions made for proposition 2.1 if 
L(a) ≠ L(b), then on average, over the entire training 
set, Eu BDMa b a bD ( , ) D ( , )< .

BOOSTED SPECTRAL EMBEDDING FOR 
CONTENT‑BASED IMAGE RETRIEVAL

Boosted Spectral Embedding
The goal of SE is to project the feature vectors from a D 
dimensional space to a k dimensional space, where k << 
D. The low‑dimensional representation of X is denoted 
Y =  {y1, y2,…, yN}. The first step in SE is to create a 
weight matrix W where each element  (i, j) in W is 
denoted by wij and represents the distance between xi and 
xj defined by some metric D.

The low‑dimensional representation of X is then found 
by solving the eigenvalue decomposition problem:

(L W)Y LY,− = λ � (8)

where L is the diagonal matrix,  jj ij
i

L w= å (15)

The typical formulation of W involves the use of the 
EDM, where wij  =  exp  (−DEu  (xi, xj)/σ), and σ is the 
standard deviation of X. However, in BoSE, we replace 
the EDM with the BDM to obtain,

BDM i j
ij

x x
w

D ( , )
=exp( )−

σ
� (9)

Since SE seeks to preserve object adjacencies as defined 
by W by improving the description of adjacency via the 
BDM, we should improve the resulting low‑dimensional 
embedding  (achieve greater class separability in the 
reduced embedding space). Since DBDM is a metric, W is 
positive, semi‑definite, and symmetric.

Content‑Based Image Retrieval ‑ Boosted Spectral 
Embedding
The high‑dimensional feature data extracted from 
each of the datasets is reduced to a fewer number 
of dimensions via BoSE, the intent being to perform 
retrieval in the BoSE reduced space. Briefly, the retrieval 
is performed as follows. The query sample and all 
existing annotated database samples are aggregated and 
the BoSE representation for all images  (following feature 
extraction and weighting) is determined. Using the 
EDM, the distance between the query image and all of 
the database images is calculated in the BoSE space. The 
resulting distance vector is sorted in ascending order and 
the most similar database images in terms of distance are 
outputted. The CBIR‑BoSE algorithm is illustrated in 
Figure 5.

Experimental Design and Evaluation
Dataset Description
We considered three datasets  [Table  2]. Slides from all 
three datasets were stained with H  and  E and scanned 
into a computer via a whole‑slide digital scanner at the 
University of Pennsylvania (prostate cancer) and the Cancer 
Institute of New Jersey  (breast cancer). The prostate and 
breast cancer images were taken at magnifications of ×40 

Figure 4: The BoSE algorithm. The weak classifiers are built using the training samples (Xtr) and the weights are calculated via AdaBoost. 
The boosted distance metric is then employed with the weights to calculate the distances between all the objects in X. The distances 
are used in conjunction with the Gaussian kernel to obtain the weight matrix W. The lower-dimensional embedding Y is then obtained by 
solving the eigenvalue decomposition in Equation 8
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and  ×20, respectively, and were saved in the SVS format. 
Pathologists were instructed to manually place a contour 
around homogeneous regions of tissue corresponding 
to either “cancer” or “noncancer” regions. Annotation 
was performed on the scanned SVS biopsy image 
files using the  Image Scope software platform  (Aperio 
ePathology, Leica Biosystems).   No confounding tissue 
types  (e.g.,  atrophy, prostatic intraepithelial neoplasia) 
were included. The entire set of tissue biopsy images were 
then divided into 30‑by‑30 square pixel regions; within 
these 900 pixels, if over 50% of the pixels (450) contained 
the expert’s annotation, those regions were included in 
the dataset. All of the images were converted from the 
RGB color space to the hue, saturation, value  (HSV) 
space to mitigate the effect of varying stain intensities. 
By converting images to the HSV space, we ensure that 
any potential stain intensity variation across images is 
confined to a single channel  (the “value” channel). All 

three channels are still evaluated. However, if the variation 
in the intensity is detrimental, the features in the “value” 
channel will not be selected. The objective of experiment 
1  (D1) was to distinguish between malignant and benign 
prostate tissue patches  [Table  2, Figure  6] from biopsy 
samples obtained from 58 patients. In experiment 2  (D2), 
we aimed to distinguish between high and low grade breast 
cancer tissue patches from biopsy samples obtained from 
55 patients. Lastly, the objective of Experiment 3 (D3) was 
to distinguish between high and low levels of LI in breast 
cancer tissue patches from 41 biopsy samples obtained 
from 12  patients. The final diagnosis and grade for each 
of the datasets was obtained as a consensus of two expert 
pathologists.

Content‑Based Image Retrieval Comparisons
For each of the experiments detailed below, we 
compared the performance of three CBIR paradigms. 

Figure 5: The content-based image retrieval/boosted spectral embedding algorithm

Figure 6: Examples of (a) benign and (e) Gleason grade 3 prostate cancer images and their corresponding feature images obtained at 
the level of sub-regions of the whole image: (b) (f) First-order statistics (range using a 5 × 5 window, Hue color channel), (c) (g) Haralick 
(Correlation using a 5 × 5 window, Hue color channel), and (d) (h) Gabor features (5 × 5 window, Hue color channel)
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(1) CBIR‑BoSE: The proposed system, whereby the BDM 
is used to perform SE and obtain a low‑dimensional 
representation of objects for retrieval  [Figure  5].  (2) 
CBIR‑SE: Traditional SE, whereby the EDM is used 
to obtain the low‑dimensional representation.  (3) 
CBIR‑BDM: CBIR performed using BDM to identify 
object similarities in the original high‑dimensional space. 
These three paradigms are evaluated in terms of CBIR 
measures of performance. CBIR‑BoSE and CBIR‑SE are 
also evaluated in terms of classification accuracy. These 
are detailed below in Section 4.6 “Evaluation”.

Experiment 1: Distinguishing Malignant from 
Benign Prostate Histopathology
In,[32] Doyle, et  al. found that a weighted combination of 
Gabor filter features, Haralick co‑occurrence features, and 
first‑order statistics could accurately distinguish between 
benign and malignant patterns of H  and  E‑stained prostate 
tissue. In malignant tissue cell proliferation is increased, leading 
to enlarged nuclei and visible nucleoli, which cause malignant 
tissue to absorb an increased amount of hematoxylin. These 
changes lead to clear texture differences [Figure 6], which are 
captured by the following features:
•	 Gabor filter features:[33] Gabor filter banks are created 

by modulating a Gaussian function by a sinusoid, 
parameterized by an orientation and a frequency 
parameter. The filter provides a large response when 
convolved with directional image intensity patterns 
that correspond to the filter’s parameters. The 
increased size and number of nuclei, in addition to 
the appearance of clear nucleoli, cause significant 
changes in the response at small frequency 
parameters

•	 Haralick co‑occurrence features:  [34] Co‑occurrence 
image features are based on the adjacency of pixel 
values in an image. An adjacency matrix is created 
where the value of the ith row and the jth column 
equals the number of times pixel values i and j appear 
within a fixed distance of one another. By calculating 
these feature values for a local neighborhood, we can 
discriminate between the different texture patterns 
produced by benign and malignant nuclei

•	 First‑order statistical features: Simple statistics 
calculated on image values are used to quantify 
intensity variations. These texture features include 
the mean, median, and standard deviation of local 
neighborhoods as well as gradient features and 
directional derivatives, which indicate transitions 
between high intensity values  (the stroma/lumen) 
and the low intensity values  (nuclei and nucleoli). 
These changes should be pronounced in malignant 
tissue, where nuclei are stained more heavily.

Feature operators extract these three families of 
quantitative features from each channel in an image, 
yielding a total dataset of over  900 features. In,[32] 
14 highly discriminating pixel‑wise features were learned 

via AdaBoost[22] out of a feature set that comprised 
over  900 features. AdaBoost assigned a weight to all 
of the features and these weights were thresholded in 
that features with a α >0.05were retained while the 
noninformative features were discarded. In the current 
study these 14 features were extracted for each image, 
generating 14 corresponding feature images, three of 
which are illustrated in Figure  6. The pixel values for 
each feature image were averaged, generating a 14 
element feature vector to characterize each prostate 
image [Table 3].

Experiment 2: Distinguishing High from Low 
Grade Breast Histopathology
Two of the defining histological features of breast cancer 
are the disorganization of the tissue and the structure 
of the cells. The severity of the cancer is given a Bloom 
Richardson  (BR) grade level.[26] Breast cancer tissue 
samples with greater disorganization and increasingly 
irregular structure are given higher grades. High grade 
samples exhibit more nuclear proliferation than low 
grade samples. As with the prostate cancer samples, the 
breast cancer biopsy samples were stained with H and E. 
Haralick features were extracted and used to describe 

Table 1: List of mathematical symbols and notations 
used throughout the paper

Symbol Description

X = {X1, X2, ..., XN} Quantitative representation of images in RN×D

Y = {y1, y2, ..., yN} Low‑dimensional projection of X
W Weight matrix
Φd Feature operator that extracts quantitative 

feature d from image
L (xi) ∈ {+1, −1} Ground truth label for object xi

hd Weak classifier built using a Bayesian framework
αt, t ∈ {1,....,T} Weights associated with the T most optimal 

features
α̂t, t ∈ {1,....,T} Normalized weights associated with the T 

most optimal features
DBDM Boosted distance metric
MBOSE Low‑dimensional representation produced 

by BoSE
MSE Low‑dimensional representation produced 

by SE

BoSE: Boosted spectral embedding, SE: Spectral embedding

Table 2: List of the breast cancer and prostate 
cancer datasets used in this study

Data Classes (+1/−1) Class 
distribution 

(+1/−1)

Number 
of samples

Prostate (D1) Cancer/benign 29/29 58
Breast (D2) High grade/low grade 36/19 55
Breast (D3) High LI/low LI 20/21 41

LI: Lymphocytic infiltration
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the degree of nuclear proliferation by quantifying the 
variations in the intensity values in the images. The 
objective of this experiment was to retrieve images 
corresponding to the grade of the query image. To 
define a two‑class problem, all images are first separated 
into either low  (BR 4, 5) and high  (BR 7, 8) grade 
classes [Table  2]. From each image, 12 Haralick feature 
images were generated  (contrast energy, contrast inverse 
moment, contrast average, contrast variance, contrast 
entropy, intensity average, intensity variance, intensity 
entropy, entropy, energy, correlation, and one information 
measure of correlation) and the following statistics were 
computed from the pixel values from each feature image: 
mean, standard deviation, and entropy. This was done for 
all three color channels in the HSV space.

Experiment 3: Distinguishing High Lymphocytic 
Infiltration from Low Lymphocytic Infiltration 
Breast Histopathology
The class problem is defined as follows: Images were 
separated into either low LI or high LI classes  [Table  2]. 
To quantify the arrangement of lymphocytic nuclei in the 
histology images, architectural features were computed for 
each image. The centroids of the lymphocytic nuclei are 
used to construct the delaunay triangulation GD [Figure 7b 
and f], the minimum spanning tree GM [Figure 7c and g], 
and the Voronoi Diagram GV [Figure 7d and h]. Automated 
nuclear detection was performed to identify the nuclear 
centers as centroids of the different graphs. However, the 
cancer and lymphocytic nuclei are similar in appearance. 
In general, lymphocytic nuclei differ in appearance from 
cancer cell nuclei by their smaller size, more circular 
shape, and a darker homogeneous staining.[35] We took 
these differences into account and performed automated 
nuclear detection in the following manner.

Step 1: On each image, M candidate nuclear centers 
M = {m1, m2,…, mM} were found by convolving the 
image xi with a Gaussian  (smoothing) kernel at multiple 
scales. This was done to account for the variation in 

lymphocyte size. The darkest pixels were found on the 
smoothed image based on local differences in luminance 
and these were the candidate lymphocytic nuclear centers.

Step 2: Using Hojjatoleslami and Kittler’s region‑growing 
scheme,[36] each of the M candidate lymphocytic nuclear 
centers was grown into a corresponding region . The 
optimal regions were identified when the boundary 
strength, which is defined as the difference in the mean 
intensity of the pixels in the internal boundary and the 
current boundary of the region, was at a maximum. 
See[35] for a more detailed description.

Step 3: Each of r  ∈  R contained two random variables: 
Ar ∈  {ωc, ωl} which is the classification of the candidate 
nuclear centers as either a cancer (ωc) or lymphocytic (ωl) 
nucleus and Br ≡ [Cr,ϕr ]

T ∈ R(+2) where Cr is the square 
root of the nuclear area and ϕr is the standard deviation 
of the luminance in the nuclear region. The labels, Ar, 
given the feature vectors Br are estimated via a maximum 
a posteriori  (MAP) estimation by finding the Ar that 
maximizes the posterior probability.

r r r
r r

r

p B A p A
p A B

p B
( | ) ( )

( | ) =
( )

� (10)

where p  (Br|Ar) is the likelihood term and p  (Ar) and 
p  (Br) are prior probabilities. p  (Br) is ignored because 
maximization was done with respect to p (Ar).

Step 4: p  (Br|Ar) is computed from PDFs, where Ar is 
provided by manual delineation of lymphocytes in a 
training set.

Step 5: The prior probabilities p  (Ar) is defined by 
a Markov random field) andcomputed. The iterated 
conditional modes algorithm,[37] a deterministic relaxation 
procedure, was used to compute the MAP estimation and 
classify each r ∈ R. The regions classified as cancer nuclei 
were discarded and the centroids of the lymphocytic 
nuclei were calculated, yielding O={o1, o2,…, oL} where 
O ⊆ M. Details of the automated nuclear detection can 
be found in.[35]

Using the O centroids, we constructed a graph 
G =  (V, E, J), where V represent the vertices of the 
graph which correspond to the number of centroids, E 
are the set of edges, and J are the weights of the edges, 
proportional to edge length. The set of vertices, edges, 
and weights make up a unique graph on the image. 
From each graph, we extracted a set of features listed in 
Table 4. A detailed description of the graph construction 
and feature extraction can be found in.[38]

EVALUATION

Content‑Based Image Retrieval ‑ Boosted Spectral 
Embedding
The performance of a CBIR system is determined by 
how many retrieved images for a given query image 

Table 3: Texture features extracted from the 
prostate tissue sample images

Texture feature Parameters Total 
features

First‑order statistics 
(SD, range)

Window size: w = 5 2

Haralick features 
(information measure, 
correlation, energy, 
contrast variance, entropy)

Window size: w = 5
Distance: δ = 1

5

Gabor features Window size: w ∈ {5, 9}
Orientation:  

Î
  5

{0, ,…, }
6 6

7

SD: Standard deviation
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are relevant to the query, defined as images which 
belong to the same class as the query image, and also 

the order in which they appear. Precision is defined 

as 
( )

( )=
  


, where ( )ξ β  denotes the number of 

relevant objects in the β closest objects. Recall is defined 

as 
( )

r( )
(N 1)
 

 
= . Precision‑recall curves were generated 

by plotting p() versus r() for ∈ {1,2,...,N-1}. Area 
under the AUPRC was measured and used to evaluate 
the CBIR system. The AUPRC ∈ [0,1]values where an 
AUPRC 1 indicates that the CBIR system only retrieved 
relevant images and an AUPRC 0 indicates that the 
CBIR system only retrieved irrelevant images. Therefore, 
the higher the AUPRC, the better the CBIR system. We 

denote AU
BoSE , 

AU
SE  and AU

BDM  as the AUPRC values for 
CBIR‑BoSE, CBIR‑SE, and CBIR‑BDM, respectively. 
CBIR‑BDM retrieves images from the database using the 
BDM without DR.

Classifier Evaluation of Boosted Spectral 
Embedding and Spectral Embedding
A second performance measure for evaluating BoSE is 
classifier accuracy. Of the classifiers available  (Support 
Vector Machines, Neural Nets, etc.), the Random 
Forest  (RF) classifier was chosen due to its ability to 
accurately and efficiently run on large databases with 
minimal training time and lower overall computational 
time. The RF classifier  (obtained by bagging decision 
trees)[39] is trained on both MBoSEand  MSE [Figure  10]. 

Table 4: List of the features extracted to quantify the degree of LI. A detailed description of the feature 
extraction and graph construction can be found in[38]

Graph Features

Voronoi diagram (13 features) Total area of all polygons
Polygon area (mean, SD, minimum/maximum ratio, entropy)
Polygon perimeter (mean, SD, minimum/maximum ratio, entropy)
Polygon chord length (mean, SD, minimum/maximum ratio, entropy)

Delaunay triangulation (8 features) Triangle area (mean, SD, minimum/maximum ratio, entropy)
Triangle side length (mean, SD, minimum/maximum ratio, entropy)

Minimum spanning tree (4 features) Branch length (mean, SD, minimum/maximum ratio, entropy)
Nuclear features (25 features) Density of nuclei

Distance to {3, 5, 7} nearest nuclei (mean, SD, disorder)
Number of nuclei in a {10, 20, ..., 50} pixel radius (mean, SD, disorder)

LI: Lymphocytic infiltration, SD: Standard deviation

Figure 7: Example breast histopathology images that contain (a) low and (e) high levels of lymphocytic infiltration with their corresponding 
feature images: (b) (f) Delaunay Triangulation, (c) (g) Minimum Spanning Tree, and (d) (h) Voronoi Diagram. Quantitative graph features 
were calculated using the graphs constructed on the image
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The accuracy of the RF classifier should reflect the class 
discriminability of MBoSE. A  RF classifier is an ensemble 
of decision trees  (i.e.,  weak learners) combined via 
bootstrap aggregation. Averaging decisions across weak 
learners creates a strong learner that reduces overall 
bias and variance.[39] We define 

Acc
BoSE  and Acc

SE  as the 
classification accuracy when performing classification in 
the lower‑dimensional spaces created by BoSE and SE, 
respectively. The classification accuracy is defined as 

TP TN
TP TN FP FN

+
+ + +

 where TP are the true positives, TN 

are the true negatives, FP are the false positives, and FN 
are the false negatives.

Let S+1 ⊂ X and where for any S+1, L(a) =+1 and for 
any b ∈ S-1, L(b) =-1. S+1 and S-1 are subsets of the 
total number of the specific class objects we have in 
X. S+1 and are S-1 randomly sampled with replacement 
from X, ensuring that each of S+1 and S-1 only comprise 
of instances from either of  +1and −1. Each random 
sampling of S+1 and S-1 is used to train a decision 
tree classifier vΩ , where v ∈ {1,2,...,V} and so that 

v(x) {+1, 1}Ω ∈ − .

Randomized, 3‑fold cross‑validation was used to 
determine training and testing inputs for the RF 
classifier. First, the entire dataset X was randomly divided 
into three equally‑sized subsets X1, X2, X3 ⊂X. Two of the 
subsets were used for training the RF classifier, which 
was then evaluated on the remaining subset. The subsets 
were subsequently rotated until each subset was used 
for evaluation exactly once. The entire cross‑validation 
scheme was repeated over  50 iterations, over which 
mean and standard deviation classification accuracy were 
reported.

Evaluating Intrinsic Dimensionality for 
Content‑Based Image Retrieval  ‑  Boosted 
Spectral Embedding
When performing retrieval and classification in the 
lower‑dimensional space, identifying the optimal 
number of dimensions within which to embed the data 
is a nontrivial task. Each dataset possesses an intrinsic 
dimensionality in which the classification accuracy and 
the retrieval performance will be optimal. In order to 
evaluate the effect of the total number of embedding 
dimensions to be considered, for the purpose of 
maximizing classification accuracy and the AUPRC, each 
dataset was reduced to lower‑dimensional embeddings. 
The corresponding number of dimensions associated with 
these reduced‑dimensional embeddings was varied and 
BoSE was evaluated in these different spaces  [Table  5]. 
We define Acc

BoSE,k  and AU
BoSE,k  as the accuracy and 

AUPRC using BoSE in k dimensions, where k ∈ {1,2,...,K}  
and similarly Acc

SE,k  and AU
SE,k  for SE The maximum, 

minimum, and average AUPRC and classification accuracy 

is reported and calculated in the following manner: 

max
k

 
  ,

,k
= max[ ] , min

k
 
  ,

,k
= min[ ]   

K1
,kK =1k

  µψ =ν ∑ ν
where  Acc AU { , }∈ and BoSE,SE { }∈ .

RESULTS AND DISCUSSION

Experiment 1: Distinguishing Malignant from 
Benign Prostate Histopathology
Quantitative evaluation
Figure 8 and Table 8 reveal that over a range of dimensions, 
CBIR‑BoSE consistently outperforms CBIR‑SE in terms 

of  (a) AUPRC, and  (b) accuracy. For D1, and AU,max
BoSE  

were greater than AU,max
SE  and  AU,min

SE  [Table  6]. The 

average AUPRC for CBIR‑BoSE  ( AU
BoSE ) across the all the 

dimensionalities evaluated was greater than the average 

AUPRC for CBIR‑SE  ( AU
SE )  [Table  6]. Acc,max

BoSE  and 
Acc,min
BoSE  were greater than Acc,max

SE  and  Acc,min
SE  [Table 8]. 

Acc
BoSE was greater than Acc

SE and unlike the AUPRC values, 

the accuracy values remain relatively invariant to the number 
of dimensions that D1 is embedded into via BoSE and SE.

Table 5: The original dimensionality of the datasets 
and their reduced dimensionality employed for 
evaluating CBIR‑BoSE and CBIR‑SE. Both CBIR 
systems were evaluated after projecting the 
original high‑dimensional data into spaces of 
progressively different reduced dimensions

Dataset Original 
dimensionality

Reduced 
dimensionality

Prostate cancer 14 1, 2, 3, 4, 5, 6, 7
Breast cancer 
grading

108 1, 2, 3, 5, 10, 15, 20, 
25, 30, 35, 40, 45, 50

Lymphocytic 
infiltration

50 1, 2, 3, 5, 10, 15, 20, 25

CBIR‑BoSE: Content‑based image retrieval‑boosted spectral embedding, CBIR‑SE: Content‑ 
based image retrieval‑spectral embedding, CBIR: Content‑based image retrieval

Table 6: Quantitative results showing the maximum, 
minimum, and mean AUPRC values for Experiment 1 
(D1), Experiment 2  (D2), and Experiment 3  (D3). 
yAcc

BoSE is greater than y Au
SE     for D1, D2, and D3 and is 

statistically significant using a P<0.0.5

Dataset AU,max
BoSEθ  AU,max

SE  AU,min
BoSE  AU,min

SE  AU
BoSE

 AU
SE

D1 0.87 0.68 0.70 0.60 0.79 0.63
D2 0.90 0.90 0.73 0.57 0.79 0.68
D3 0.75 0.78 0.45 0.36 0.54 0.44

AUPRC: Area under precision‑recall curves
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Qualitative evaluation
For each of the top five images retrieved, CBIR‑BoSE 
yielded more relevant images compared to 
CBIR‑SE  [Figure  9] reflecting that objects from the 
same class are mapped closer to each other in MBoSE. 
Figure  10a and d display MSE and MBoSE, respectively, 
showing a much greater separation between the 
malignant and benign classes in MBoSE compared to 
MSE.

Experiment 2: Distinguishing High from Low 
Grade Breast Histopathology
Quantitative evaluation
For D2, AU

BoSE  and AU
SE  decreased as the dimensionality of 

the data increased [Figure 11]. While AU,max
BoSE  and AU,max

SE  

occurred when D2 was reduced to two dimensions and 

were similar, AU
SE  decreased more drastically compared to 

AU
BoSE . This resulted in AU,min

BoSE  being greater than  AU,min
SE  

[Table  6]. Another consequence of the difference in the 

rate of decrease of AU  between CBIR‑BoSE and CBIR‑SE 

was that AU
BoSE  was greater compared to  AU

SE  [Table  6]. 

Acc,max , Acc,min , and Acc yielded similar values for 

both BoSE and SE and no appreciable difference was 
observed [Table 8].

Qualitative evaluation
Figure  12 displays the top five images for both the 
CBIR‑BoSE and CBIR‑SE systems. CBIR‑BoSE 
retrieved more relevant images and thus illustrated that 
images from similar classes are mapped closer to each 
other in MBoSE compared to MSE. MBoSE  [Figure  10b] 
appears to suggest better class separability compared to 
SE [Figure 10e].

Experiment 3: Distinguishing High Lymphocytic 
Infiltration from Low Lymphocytic Infiltration 
Breast Histopathology
Quantitative evaluation

For D3, 
AU,max
SE  was greater compared to AU,max

BoSE . AU,min
BoSE , 

and AU
BoSE  were greater compared to q AU,min

SE
, and  AU

SE  

[Figure  13, Table  6]. Acc,max
BoSE  and Acc

BoSE  were higher 

compared to Acc,max
SE  and Acc

SE , but Acc,min
BoSE  was similar 

to  Acc,min
SE  [Table 8]. The dimensionality of the data had 

little effect on the Acc
BoSE and Acc

SE .

Qualitative evaluation
Figure  14 displays the top five images for both the 
CBIR‑BoSE and CBIR‑SE systems. MBoSE  [Figure  10c] 
appears to show better separation between the images 

Figure 8: Quantitative results displaying and over the dimensions  
for Experiment 1.  A second order polynomial was fitted to the data 
to illustrate the trends in

Figure 9: The illustration shows the retrieved images using (b) boosted spectral embedding (BoSE) and (c) spectral embedding (SE) for (a) 
the query image (prostate cancer tissue sample). The images that are outlined in green and blue are from the cancer and benign classes, 
respectively. For the top five retrieved images, content-based image retrieval (CBIR)-BoSE returned more relevant images compared to 
CBIR-SE
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that have low LI and images that have high LI than 
MSE [Figure 10f].

A Comparison of Content‑Based Image 
Retrieval‑BoSE and Content‑Based Image 
Retrieval ‑ Boosted Distance Metric
When comparing CBIR‑BoSE against CBIR‑BDM, AU

BoSE  
and AU

BDM  for D1 and D2 were in general comparable to 
each other with CBIR‑BoSE outperforming CBIR‑BDM 
most of the time [Table 7]. However, this comparison is 
possibly not a fair comparison because the two metrics 
are being evaluated in different dimensional spaces. 

Additionally, apart from the marginal outperformance 
of the BDM via BoSE, it is highly likely that given the 
high dimensionality of the feature space, CBIR‑BDM 
will most likely also be more unstable compared to 
CBIR‑BoSE.

Area Under Precision‑Recall Curves as a Function 
of Increasing Dimensionality of MBoSE

AU
BoSE  decreased as the dimensionality of MBoSE increased 

for all three experiments. We offer some intuition as 
to why this happens. Let the blue triangle in Figure  15 
denote the query image. When the dataset is embedded 
into a one‑dimensional space, seven of the eight nearest 
samples are from the same class. Thus, when performing 
image retrieval, the majority of the top eight retrieved 
images will be relevant. When the dataset is embedded 
into a two‑dimensional space, only four of the eight 
nearest images are from the same class. If image retrieval 
is performed in this space, only half of the top eight 
images retrieved will be relevant, reducing precision 
for that query image; however, classification accuracy 
for the whole dataset is unchanged. Lastly, when the 
dataset is embedded into a three‑dimensional space, 
a similar situation is encountered. It should be noted 
that because classification and training is performed 
each time a dataset is reduced in dimensionality, it is 
very possible that all of these spaces will yield either 
similar classification accuracies or improvements in 
classification accuracy. Consequently, the apparent 
discrepancy between the trends in AUPRC and 
accuracy for BoSE and SE across a different number 

Figure 10: MBoSE and MSE shown for (a), (d) D1, (b), (e) D2, and (c), (f) D3 using (a), (b), (c) BoSE and (d), (e), (f) SE. Although the low-
dimensional data do not appear as a set of ‘clusters’, we can see a clear class separation on the manifold when using BoSE (top row) 
compared to SE (bottom row). BoSE: Boosted spectral embedding, SE: Spectral embedding

Figure 11: Quantitative results displaying and over all the dimensions   
for the breast cancer images is greater than. A second order 
polynomial was fitted to the data to illustrate the trends in. BoSE: 
Boosted spectral embedding, SE: Spectral embedding

d

cb

f

a

e



J Pathol Inform 2015, 1:41	 http://www.jpathinformatics.org/content/6/1/41

of dimensions exists because in CBIR the order of the 
retrieved data points affects the AUPRC while the 
accuracy is unaffected.

CONCLUDING REMARKS

In this paper, we presented a CBIR system that utilized 
BoSE, which employed the BDM in conjunction with 
SE. The BDM preferentially weights features that 
discriminate between objects of different classes allowing 
for a similarity matrix which better describes object 
similarity. We have created a task‑specific embedding 
technique that improves class separability, yielding better 
classification and retrieval. In this work we applied the 
CBIR‑BoSE framework in the context of problems in 
digital pathology. SE has been shown to be less sensitive 
to the choice of system parameters compared to other 

Figure 13: Quantitative results displaying AU
BoSE,k  and AU

SE,k   over all 

the dimensions   for the lymphocytic infiltration images.  AU  for BoSE 
were greater compared to SE.  A second order polynomial was fitted 
to the data to illustrate the trends in AU  . BoSE: Boosted spectral 
embedding, SE: Spectral embedding

popular manifold learning schemes  (e.g.  Isomap,[12] 
LLE[13]). The CBIR system presented here could be 
employed as a teaching tool for pathology residents 
and fellows. Specifically, we focused on distinguishing 
between[1] benign and malignant prostate histology, 
(2) low and high grade  ER  +  breast cancer histology, 
and (3) low and high levels of LI in HER2 + breast tissue. 
We compared CBIR‑BoSE to CBIR‑SE, which uses the 
EDM to define object similarity. For different numbers 
of dimensions of the low‑dimensional space, for different 

Table  7: Quantitative results showing the 
maximum, minimum, and mean AUPRC values 
for Experiment  1 (D1), Experiment 2  (D2), and 
Experiment 3 (D3). q 

AU
BoSE is comparable to q AU

BDM for 
D1 and D2. y AU

BoSE is greater than y AU
BDM for D2 and is 

statistically significant using a P<0.5

Dataset  AU,max
BoSE  AU,max

BDM  AU,min
BoSE  AU,min

BDM ψAU
BoSE  AU

BDM

D1 0.87 0.87 0.70 0.87 0.79 0.87
D2 0.90 0.64 0.73 0.64 0.79 0.64
D3 0.75 0.81 0.45 0.69 0.54 0.77

AUPRC: Area under precision‑recall curves

Table 8: Quantitative results showing the 
maximum, minimum, and mean classification 
accuracies for Experiment 1 (D1), Experiment 
2 (D2), and Experiment 3 (D3). y Acc

BoSE is greater 
than y Acc 

SE  for D1 and D3 and is statistically 
significant using a P<0.05

Dataset ,Acc max
BoSEq ,Acc max

SEq ,Acc min
BoSEq ,Acc min

SEq Acc
BoSEy Acc

SEy

D1 0.93 0.81 0.92 0.79 0.93 0.80
D2 0.99 0.99 0.81 0.76 0.96 0.96
D3 0.96 0.92 0.90 0.90 0.93 0.91

Figure 12: The illustration shows the retrieved images using (b) BoSE and (c) SE for (a) the query image (high grade breast cancer tissue 
sample). The images that are outlined in green and blue are from high and low grade breast cancer classes, respectively. For the top five 
retrieved images, CBIR-BoSE returned more relevant images compared to CBIR-SE. BoSE: Boosted spectral embedding, SE: Spectral 
embedding, CBIR: Content-based image retrieval
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datasets, for different performance measures  (CBIR and 
classifier based), CBIR‑BoSE outperformed CBIR‑SE a 
majority of the time.

One of the current limitations of our CBIR system is that 
for every new query image, the manifold for the query along 
with all existing database images needs to be computed. 
This procedure needs to be repeated for each new query 
instance. In future work we are looking to incorporate 
out of sample extrapolation schemes[40] which allow for 
the mapping of a new query instance into an existing 
lower‑dimensional space, without having to recompute 
the eigenvalue decomposition; thus reducing the overall 
computational cost of a new retrieval task. We also intend 
to extend our current scheme to the multi‑class case.
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