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Background: There are a growing number of publications that report an absence of
inflammatory based disease among populations that are endemic to parasitic worms
(helminths) demonstrating the ability of these parasites to potentially regulate human
immune responses. The aim of this systematic review and meta-analysis was to determine
the impact of helminth infection on metabolic outcomes in human populations.

Methods: Using PRISMA guidelines, six databases were searched for studies published
up to August 2020. Random effects meta-analysis was performed to estimate pooled
proportions with 95% confidence intervals using the Review Manager Software
version 5.4.1.

Results: Fourteen studies were included in the review. Fasting blood glucose was
significantly lower in persons with infection (MD -0.22, 95% CI -0.40- -0.04, P=0.02),
HbA1c levels were lower, although not significantly, and prevalence of the metabolic
syndrome (P=0.001) and type 2 diabetes was lower (OR 1.03, 95% CI 0.34-3.09,
P<0.0001). Infection was negatively associated with type 2 diabetes when comparing
person with diabetes to the group without diabetes (OR 0.44, 95% CI 0.29-0.67,
P=0.0001).

Conclusions: While infection with helminths was generally associated with improved
metabolic function, there were notable differences in efficacy between parasite species.
Based on the data assessed, live infection with S. mansoni resulted in the most significant
positive changes to metabolic outcomes.

Systematic Review Registration:Website: PROSPERO Identified: CRD42021227619.
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INTRODUCTION

The metabolic syndrome is a cluster of risk factors with a
diagnostic requirement of abdominal obesity and the presence
of two or more of the following criteria: dysregulated glucose and
lipid homeostasis; high blood pressure; abnormal cholesterol
levels; and/or insulin resistance (IR) (1, 2). Having these traits
greatly increases a person’s risk of developing type 2 diabetes
(T2D) or cardiovascular disease, with the risk increasing
proportionally to that of the number of traits present (3).
Thus, it is perhaps not surprising that the prevalence of T2D is
increasing in parallel to that of increasing obesity (4). Currently
at epidemic proportions globally, predictive modelling estimates
that the incidence will further increase by 51% in 2045 (5).

The explanation for the close association between obesity and
T2D was first provided as early as 1993 by Hotamisligil et al.,
who demonstrated a causal link between obesity-induced pro-
inflammatory cytokines and the development of IR (6), an
observation which has since been corroborated by many
research groups, both in animal models and human patients
(7–11). More specifically, it has been shown that in obese
individuals the pro-inflammatory cytokines TNF and IL-6 are
significantly increased as compared to their leaner counterparts.
This excess of pro-inflammatory cytokines impedes normal
insulin signaling by promoting serine rather than tyrosine
phosphorylation of the insulin receptor substrate-1, preventing
translocation of the GLUT4 glucose transporter into the cell,
leading to the development of an insulin resistant state (12). To
compensate for the cell’s inability to take up glucose, the b-cells
in the pancreas increase their insulin output to try to maintain
glucose homeostasis. This eventually leads to cellular exhaustion,
the deterioration of the b cells, and subsequent hyperglycemia
(13). Dysregulated glucose homeostasis eventually leads to the
development of T2D.

Current therapies for T2D primarily aim to manage
hyperglycemia rather than target the underlying inflammation.
The two main pharmacological treatments for T2D are
metformin and sulphonylureas (14). However, due to the many
side effects, such as gastrointestinal disturbance and intolerance,
many other secondary treatments are commonly added or
substituted in the treatment regime (14). Recognition that
inflammation is involved in the pathogenesis of T2D provides a
rationale for testing pharmacologically-directed anti-inflammatory
treatments. Salicylates have direct anti-inflammatory effects via the
inhibition of NF-kB activation (15). By inhibiting IKKb, a key
activator in the NF-kB pathway, obesity induced IR was reversed
(15). Additionally, salicylate activates AMPK resulting in the
phosphorylation of ACC, the rate limiting step of fatty acid
synthesis (16). Salsalate, a prodrug form of salicylate that is better
tolerated than salicylates, has been shown to improve fasting
glucose, reduce circulating free fatty acids and increase
adiponectin in humans (17). Unfortunately, in this same study,
tinnitus and headaches were observed side effects at higher dosage,
and although these were absent in the lower dosage groups, these
lower dosages showed reduced efficacy. Further, the treatments
were required to be taken 2-3 times daily and had no lasting effects
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(17). Therefore, there remains a clinically unmet need for
treatments that can improve glucose homeostasis and
inflammation, while not causing adverse side effects.

Emerging evidence suggests that parasitic worms (helminths)
have the potential to treat underlying inflammation as well as
improve glycaemia (18–20). The human immune system has
evolved over millennia to provide protection from pathogenic
micro-organisms such as viruses and bacteria. However, despite
also being considered as pathogens, the immune response to
infection with helminths does not convey protective immunity.
Instead, the presence of the parasite is tolerated, with infections
lasting several decades. It has been suggested that this
unexpected outcome developed because the classic
antimicrobial immune response was ineffective against these
large worms and if activated would result in collateral damage
to host tissue (21). Equally, helminth parasites cause extensive
tissue disruption due to their feeding and migrating. Therefore,
mammalian hosts have adapted to respond to helminth infection
with a regulatory phenotype of immune response which operates
to encapsulate the parasites while simultaneously repairing tissue
damage (21). Indeed, there is an inverse relationship between the
prevalence of inflammatory diseases and endemic infection with
helminths, whereby diseases mediated by a dysregulated immune
response are far more common in industrialized countries (22).

Rather than a classic protective pro-inflammatory Th1 type
immune response, which is mounted against micropathogens
(viruses, bacteria and protozoa), the typical immune response to
helminth parasite infection is the development of a potent anti-
inflammatory, type 2 immune response (23–26). This response is
characterized by the secretion of cytokines, such as IL-4, IL-5 and
IL-13, by T cells and polarization of macrophages towards an
anti-inflammatory M2 phenotype with concomitant suppression
of M1 inflammatory macrophages and the consequential
inhibition of pro-inflammatory Th1 and Th17 responses (25,
27). Experimental studies in mice have supported the notion that
helminth infection could be harnessed to regulate obesity driven
inflammation to inhibit the development of metabolic disease.
Mice infected with parasitic worms consistently showed reduced
body weight and improved glucose metabolism compared to
their uninfected counterparts (28–32). The mechanism behind
these positive outcomes was shown to be an increased infiltration
of M2 macrophages to the adipose tissue in response to the
parasitic infection which suppressed the chronic pro-
inflammatory response associated with obesity and thus led to
an improvement in IR. While there is no direct evidence for a
similar role for Group 2 Innate Lymphoid Cells (ILC2), these
cells are quickly and robustly activated following helminth
infection and are fundamental in regulating barrier tissue
homeostasis and in the initiation and enhancement of the Th2
immune response (33, 34). Conversely, during obesity, a
reduction in the number of ILC2s in adipose tissue has been
associated with increased inflammation (35). Reversing this loss
of ILC2s, as would occur during helminth infection, in obese
mice restores glucose tolerance and insulin sensitivity (36, 37).

Based on this evidence there is growing support for the idea
that controlled infection with live parasitic worms offers a novel
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strategy for the treatment of metabolic disorders caused by the
chronic inflammation induced by obesity. However, despite the
multiple publications of epidemiological and experimental studies
there has only been one previous meta-analysis of the data (19).
While this examined available data in publications up to 2016, as a
result of the eligibility criteria only four publications were included
in the review and minimal comparators were assessed. Since then,
there have been an additional twelve publications. Furthermore, an
analysis of the impact that the species of worm has on the outcome,
and whether there is difference between an active or previous
infection, has never been determined. Therefore, the present
study aims to apply these considerations to a new meta-analysis
of published evidence to more fully evaluate the effect of helminth
infection on metabolic outcomes associated with glucose
metabolism in humans. With a clinical trial testing the efficacy of
intestinal parasite worm infection for the treatments of T2D
underway (ACTRN12617000818336) (38), such an updated
critical review of the evidence is timely.
METHODS

This systematic review and meta-analysis was conducted according
to the Preferred Reporting Items for Systematic Reviews and Meta-
Analysis guidelines (PRISMA) (39, 40) and registered with
PROSPERO, registration number CRD42021227619.

Search Strategy
Publications were sourced from Web of Science, SCOPUS,
PubMed, Ovid MEDLINE, Cochrane CENTRAL, and Embase
and included all publications up to August 2020. Terms searched
were: (helminth OR helminths OR soil transmitted helminths
OR strongyloides OR strongyloidiasis OR ascaris OR trichuris
OR hookworm OR Necator americanus OR Ancylostoma
duodenale OR schistosomiasis OR schistosoma OR
schistosome OR nematode) AND (diabetes OR type 2 diabetes
OR insulin resistance OR insulin sensitivity OR glucose
metabolism OR glucose tolerance OR metabolic syndrome)
NOT (type 1 diabetes). There was some variation in search
terms between databases, for example, if there were a maximum
number of conjunctions that could be used. Search results
were uploaded to Endnote and duplicates excluded. One
investigator then screened titles and abstracts for relevant
research articles.

Study Selection
This review included any study type, with samples of any size and
on people of any age. Review articles, non-human models,
studies that focused on type 1 diabetes, studies whose
outcomes were unrelated to clinical glucose metabolism, and
study protocols were excluded. Papers published in English
between 2015 and 2020 were included.

Quality Assessment
Two investigators independently assessed the quality of the
accepted papers using the Joanna Brigg’s Institute appraisal
Frontiers in Endocrinology | www.frontiersin.org 3
tool (41). This instrument scores 8 methodological items for
cross-sectional studies, 10 items for case control studies and 11
for cohort studies. The items are scored 0 (no), 1 (unclear/not
applicable), or 2 (Yes). The maximum obtainable scores were 16
for cross-sectional studies, 20 for case control studies and 22 for
cohort studies (Supplementary Tables 1–3). Disagreements
were discussed between the investigators until a consensus
was reached.

Data Extraction
One reviewer extracted relevant information from acceptable
papers including study design, sample size, population details,
recruitment process, helminth exposure, method of diagnosis of
infection and metabolic outcomes. If data were reported in
separate metrics, outcome data extracted were converted to a
common metric so treatment effects could be estimated.

Data Analyses and Statistical Methods
The pooled data are presented as mean and 95% confidence
interval using the extracted mean and the standard deviation
values. All analyses were conducted using the Review Manager
Software version 5.4.1 (42). Heterogeneity of the data was
evaluated by calculating the I2 index (43). If the I2 value was
<50%, the fixed effects model (FEM) was be applied. Sub-group
analysis was conducted based on the type of helminth parasite.
RESULTS

Study Selection
After searching six databases and exploring reference lists, 903
potential papers were identified. These were uploaded to
Endnote, where duplicates were excluded. Titles and abstracts
were then screened resulting in the removal of an additional 639
as they did not meet the inclusion criteria. A further 16 articles
were excluded after full-text assessment revealed that they also
did not meet the inclusion criteria; two did not measure
outcomes associated with glucose homeostasis, two assessed
infection as the only outcome, seven were not human
populations, one was a review, two were study protocols, and
two used the same population data as an already included study.
This left fourteen studies for review. Three of these did not
contain the standard deviation, and therefore could only be
included in the systematic review, while eleven studies
contained sufficient data to include in a meta-analysis (Figure 1).

Quality Assessment
Thirteen of the studies were deemed to be of high quality as they
scored ≥80% of the maximum obtainable score. One study (44)
did not reach this cut off, so was not included in the meta-
analysis, but was included in the systematic review.

Study Characteristics
Of the fourteen studies included, ten were cross-sectional studies,
two were case control, and two were cohort studies
(Supplementary Table 4). These studies were conducted in
August 2021 | Volume 12 | Article 728396
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Australia, China, India, Indonesia, England, Egypt, Ethiopia, Lao
People’s Democratic Republic, South Africa, Thailand and
Uganda. The sample sizes ranged from 158 to 9939, and ages
ranged from 9 to 89.

Three of the studies investigated the effects on glucose
homeostasis by previous parasite (Schistosoma spp.) infection,
while eleven reportedly examined the impact of an active
infection. Helminths assessed included S. japonicum [N=2 (44,
45)], O. viverrini [N=1 (46)], S. stercoralis [N=4 (47–50)], S.
mansoni [N=1 (51)], Schistosoma spp. [N=2 (52, 53)] or any
worm/multiple infection (S. mansoni or hookworm or S.
strongyloides or A. lumbricoides or T. trichura or E.
vermicularis or S. haematobium or O. viverrini or minute
intestinal flukes or Paragonimus spp. or S. stercoralis or
cestodes/Taenia spp.) [N=4 (26, 54–56)]. Infection was
diagnosed by a variety of methods, namely stool examination/
microscopy, serology or PCR (Supplementary Table 4).

The outcomes reported varied between studies, however all
measured at least one marker relevant to glucose homeostasis.
They included: fasting blood glucose (N=7), HbA1c (N=7),
fasting plasma insulin (N=3), HOMA-IR (N=3), T2D diagnosis
(N=7), and MetS diagnosis (N=3). For glycated hemoglobin
(HbA1c), the studies included in this review used the DCCT
(%) unit, where ≥6.5% was considered abnormal/diabetic. The
MetS was characterized by central obesity and any two (45, 53) or
Frontiers in Endocrinology | www.frontiersin.org 4
three (52) of the following criteria defined by the International
Diabetes Federation (2): (1) BP≥ 130/85mmHg or taking
antihypertensive drugs; (2) TG≥150 mg/dl; (3) HDL-C <40
mg/dl in men, < 50 mg/dl in women; (4) FBG ≥100 mg/dl or
taking hypoglycemic medications.

Study Findings
Of the fourteen studies assessed, nine reported that infection
with a parasitic worm had protective effects on diabetes-related
parameters (26, 44–47, 50–53), however three studies (48, 49, 55)
reported a positive association between specific infections and
T2D diagnosis, and two studies (54, 56) reported no association.
Individual glucose homeostasis related outcomes are
summarized in Supplementary Table 4.
META-ANALYSIS OF SELECTED STUDIES

Association Between Parasite Infection
and Fasting Blood Glucose
Of the seven studies that measured fasting blood glucose, only
five provided sufficient data for inclusion in the meta-analysis.
Pooled data from these studies demonstrated a significant
decrease in FBG among those infected with parasites
(Figure 2) (MD -0.22, 95% CI -0.40, -0.04; I2 = 71%).
FIGURE 1 | Flow diagram of study selection.
August 2021 | Volume 12 | Article 728396

https://www.frontiersin.org/journals/endocrinology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/endocrinology#articles
Sheena
Note
Marked set by Sheena



Rennie et al. Helminth Infection and Metabolic Syndrome
However, subgroup analysis according to the genus of parasite
revealed that infection with any soil-transmitted nematode had
no effect on FBG (MD -0.27, 95% CI -0.49, -0.05; I2 = 76%)
compared to uninfected people. In contrast, there was a
significant decrease in FBG among people infected with
Schistosoma spp. (MD -0.27, 95% CI -0.49, -0.05; I2 = 76%)
compared to those not infected (Figure 2). Furthermore, the
greatest beneficial impact was reported in people with active
infections of S. mansoni (51) presented as the largest decrease in
fasting blood glucose levels. In contrast, past infection with either
S. japonicum (45) or Schistosoma spp (52, 53). had only a
modest effect.

Results from two studies not included in the meta-analysis
also demonstrated lower FBG among people chronically infected
with S. japonicum (44), S. mansoni or hookworm (56)
(Supplementary Table 4).

Association Between Parasite
Infection and HbA1c
While six studies measured HbA1c, only three of those provided
sufficient data for inclusion in a meta-analysis (46, 50, 52). Two
of these studies examined the effect of infection with trematode
parasites (46, 52), and one examined infection with an intestinal
nematode (50). Either an active infection withO. viverrini (46) or
a previous infection with Schistosoma spp (52). reported
significantly lowered HbA1c. In contrast, the third study
reported no effect when a population was actively infected with
the intestinal nematode S. stercoralis (50) (Figure 3).

Pooled data from the three studies demonstrated no
difference in HbA1c between infected patients and non-infected
patients (Figure 3A, MD -0.25, 95% CI -0.55, 0.05; I2 = 76%),
however, there was a trend towards lower HbA1c. As the presence
of diabetes can impact the measure of HbA1c, the study in which
the effect of helminth infection was measured in individuals with
T2D (50) was excluded from a subsequent sensitivity analysis. The
outcome of this was similar to the assessment of the pooled data set,
with no difference in HbA1c between infected and non-infected
people (Figure 3B, MD -0.29, 95% CI -0.66, 0.08; I2 = 88%).
Frontiers in Endocrinology | www.frontiersin.org 5
Similarly, results from the remaining three studies not included
in the meta-analysis also reported either no effect or a positive
association between helminth infection and HbA1c (48, 54, 56).

Association Between Parasite Infection
and the Prevalence of the MetS
The only studies that examined the prevalence of the metabolic
syndrome (MetS) were conducted in populations that had been
previously infected with Schistosome parasites (45, 52, 53).
Analyzing the pooled data from these, demonstrated that the
prevalence of MetS was 56% lower among infected populations
(Figure 4, OR 0.44, 95% CI 0.29, 0.67; I2 = 84%).

Prevalence of Type 2 Diabetes in Infected
and Non-Infected Populations
Pooled data from the three studies that compared the prevalence
of T2D in infected vs. non-infected populations (49, 52, 53)
demonstrated no difference in the prevalence of T2D (Figure 5A,
OR 1.03, 95% CI 0.34, 3.09; I2 = 96%). However, sub-group
analysis demonstrated that the prevalence of T2D was 46% lower
among those infected with Schistosoma spp. (OR 0.54, 95% CI
0.43, 0.68; I2 = 0%).

Prevalence of Infection in Populations
With or Without Diabetes
Pooled data from three papers (47, 48, 55) that assessed
prevalence of infection in populations with diabetes vs. without
diabetes, a negative association between testing positive for
infection and prevalence of T2D was evident (Figure 5B, OR
0.75, 95% CI 0.36, 1.57; I2 = 83%). The lack of significance likely
reflects the variance in outcomes between the different studies.
The two studies that examined people infected with S. stercoralis
(47, 48) reported opposing effects while the third study (55)
reported a negative association between any infection and T2D.
This same study (55) reported a positive association of T2D with
Taenia spp., however this cannot be included in the analysis
because the populations with any infection are not discreet from
the population where specific infections were assessed.
FIGURE 2 | Effect of infection on fasting blood glucose. Forest plot summarising that of the 5 studies included herein, all report lower mean FBG levels in an
infected population.
August 2021 | Volume 12 | Article 728396
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FIGURE 4 | Effect of infection on the prevalence of the metabolic syndrome. Forest plot of studies which both individually and taken as a whole, demonstrate the
protective effect of infection on prevalence of the MetS.
A

B

FIGURE 3 | Effect of infection on HbA1c. (A) Forest plot of studies that measured HbA1c. Together, lower HbA1c is favored by infection. (B) Subgroup analysis
excluding populations with diabetes only, infection favors lower HbA1c.
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DISCUSSION

Increasing evidence indicates that human infection with parasitic
worms has favorable effects on metabolic outcomes. Although
recent experimental studies in mice have lent mounting support
to these epidemiological observations, there is a lack of
considered statistical assessment of the data. The aim of this
study was to fill this gap in knowledge and critically evaluate the
effect of helminth infection on metabolic outcomes within a
broader human population.

While a previous meta-analysis concluded that helminth
infection provided protection from metabolic dysfunction, this
was based on only four studies up to 2016. This current review
expands on the earlier analysis, as in addition to those four
studies - 7 more recent publications were included in the meta-
analysis. In addition to the larger sample sizes, our meta-analysis
used a different approach to the previous study. Here, the data
has been presented as mean values for all continuous outcomes,
and the number of events for dichotomous outcomes. In
contrast, the earlier meta-analysis treated every outcome as
dichotomous and only presented the number of events.
Furthermore, results in the previous analysis were initially
presented as one single forest plot where multiple outcomes
were combined, and the total numbers of events appear greater
as they have added the total population for the studies each time
when the study had multiple outcomes. However, a repeat of this
analysis in which overlapping data sets were excluded (i.e. if one
study analyzed multiple outcomes, only one outcome was
Frontiers in Endocrinology | www.frontiersin.org 7
included in the final analysis) did not reportedly create any
substantial change in their results (19).

The outcomes from our meta-analysis were in agreement with
the 2016 study and determined a generally positive effect of parasite
infection onmetabolic outcomes. However, it also revealed that not
all parasite infections were equally efficacious. Direct comparison
showed that infection with trematode flukes [Schistosoma spp. (45,
51–53) and O. viverrini (46)] had a greater effect on all measures
compared to infection with intestinal nematode parasites [S.
stercoralis (49, 50) and soil transmitted helminths (26)].

The reason for this striking difference is not obvious. As
mentioned, the modulation of inflammation by all helminths has
been characterized to be the same; a potent and biased Th2
immune response and a regulation of pro-inflammatory Th1
immunity, irrespective of the species of worm. However, from a
host perspective, there are subtle differences in these immune
responses. For the intestinal nematodes, the induction of Th2
cytokines leads to an increased turnover of intestinal epithelial
cells and ultimately the expulsion of the worm (57). In contrast,
for the tissue dwelling trematodes, the same type of immune
response acts to repair tissue damage caused by the migrating
worms and ultimately directs a tolerance towards the parasite,
allowing the establishment of a long-term chronic infection (58,
59). However, in addition to this consideration, it is tempting to
speculate that the positive effect of Schistosoma spp. and O.
viverrini on the MetS may be due to the fact that these parasites
have adapted to reside in the liver, thus directly targeting the
organ that links obesity, IR and T2D (60).
A

B

FIGURE 5 | Prevalence of type 2 diabetes in infected or non-infected individuals. (A) Forest plot of studies illustrating that prevalence of T2D is not affected by
infection when all studies are pooled. Subgroup analysis of only Schistosoma infection shows infection is associated with lower prevalence of T2D. (B) Forest plot of
an infected population with diabetes vs. an infected population without diabetes shows people are less likely to develop diabetes if infected.
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An additional discovery from the current meta-analysis was a
difference in efficacy between active and previous infections, with
analysis suggesting that an active infection is the most beneficial.
This is of interest as it has been hypothesized that the continued
presence of helminth parasites may be required to elicit the
regulatory effect on the human immune response (61–63).

This observation highlights the importance of correctly
diagnosing the status of the parasite infection in order to make an
accurate correlation with a therapeutic effect on a disease, as
illustrated in the six studies that examined the effect of infection
with S. stercoralis.Only three of these confirmed the presence of an
active worm infection by detecting the presence of eggs in stool
samples. In each case the parasite infection had no effect on
metabolic outcomes (50, 54, 56). In contrast, two studies that
reported a positive association with T2D and S. stercoralis
infection used only seropositivity for anti-parasite IgG as a
measure of parasite infection (47, 49). While this readout
supports an exposure to the parasite, it does not necessarily
indicate the presence of the parasite, and instead could suggest a
past infection, which may be less likely to provide the necessary
immune regulation to control obesity driven inflammation and
thus MetS.

Equally, seropositivity, in the absence of eggs or larvae, may
indicate a very recent infection or low dose, as proposed by Hays
et al. (47, 48). In these studies, the population under examination
were Aboriginal Australians from the Kimberly region, a location
that is endemic for S. stercoralis (64, 65). One of these studies
compared the prevalence of T2D in infected versus non-infected
populations and found a negative association of T2D with
seropositivity for the parasite, supporting the general
hypothesis that infection with helminth parasites are beneficial
(47). In contrast, a second study in the same community that
compared the effect of parasite infection on T2D reported a
positive association, with a higher number of people with T2D
presenting with seropositivity for S. stercoralis compared to
people without diabetes (48). A difference in the chronicity
and the burden of parasite infections, and thus the extent of
immune regulation may explain this apparent anomaly. For most
helminth infections the switch of their host’s immune response
towards the characteristic Th2/Treg phenotype can take time as it is
often dependent on maturation of the parasite, the production of
eggs and/or larvae, or simply the time it takes for the parasite to
migrate to the tissue in which it will ultimately reside (66–68). In
addition, it is acknowledged that the greater the worm burden, the
stronger the immune regulation (69). Therefore, in the Australian
population studied by Hays et al. (47, 48), it is possible that the
population with reduced T2D are harboring a chronic and/or high
dose parasite infection, which would have amore potent regulatory
effect on the immune system. In contrast, the group of people in
which there was no apparent beneficial effect, may have been
recently infected and thus the regulation of immune responses by
the parasite had not yet begun.

Limitations
Unfortunately, due to the range in design and reporting of each
of the studies, there are some limitations to the analyses
Frontiers in Endocrinology | www.frontiersin.org 8
presented here. The extent of the meta-analysis was restricted
by the lack of consistency in the outcomes that were measured
across different studies, thus reducing the number of data sets
available for statistical comparison. Additionally, three studies
were not added to the meta-analysis; two did not include
standard deviation and the authors did not respond to requests
for data, and one was the only study that measured the particular
outcome, and so had no comparative data set for analysis.

Moreover, the conclusions made from this analysis regarding
the impact of different parasites was based on the assumption
that the data presented for single infections was arising from
patients that had been screened for other pathogens. However,
not all studies were explicit as to whether patients had been
tested for concomitant infections. This is an important
consideration as many of the populations represented in these
studies are residing in regions that are endemic for multiple
parasites, and indeed viral and bacterial pathogens, all of which
will likely have some impact on the development of
inflammatory mediated diseases, such as the MetS. Of the 14
studies examined for this review, four focused on populations
where multiparasitism was evident, with some people carrying
up to six different nematodes and trematodes (26, 54–56). In
contrast to the other studies, where only a single parasite
infection was evident, there was largely no change in any
metabolic measures. Without detailed knowledge of each
individual’s infection history, this is a very difficult dataset to
interpret. Even if a person was apparently infected with only one
parasite at the time of the study, the impact that previous
infection with a different or multiple parasites has on their
immune system, physiology and metabolism was not measured
and therefore cannot be assessed. Thus, it is challenging to
genuinely determine whether a specific parasite infection was
mediating any effect on the development of MetS and/or T2D in
this scenario. As mentioned above, the lack of consideration for
worm burden and chronicity of infection hampered an
exploration of the impact either of these factors have on the
improvement of metabolic outcomes. Therefore, it is still
unknown how quickly the helminth-induced effects take place
and whether infection during early life is required to develop the
immune-regulatory networks which mediate the therapeutic
effect. Furthermore, the populations within these studies were
all endemically infected with helminths. Such lifelong exposure
ensures that a higher intensity of infection can be tolerated
compared to naïve individuals not previously infected (70).
Thus, for the purposes of translating the beneficial effect of
parasite infection to treat MetS, a well-tolerated infection in non-
endemic populations would require a lower worm burden, but
this may reduce the potency and strength of the immune
regulatory response (71, 72). Associated with that
consideration, the conclusion regarding the beneficial effect of
helminth infection would have been strengthened by the
inclusion of some measure of inflammation, as this would have
pointed to a mechanism that would inform future development
of helminth-derived therapies. However, other than recording an
increase in eosinophilia or seropositivity as a marker for parasite
infection, there are no additional data regarding the effect of
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helminth infection on the underlying inflammation at the root of
the MetS.

Clinical Implications and Future Research
Currently the benefit of live helminth infection to individuals with
central obesity and at least oneMetS risk factor is being assessed in a
double-blind, placebo-controlled clinical trial. Patients will be
infected with 40 larvae of the human hookworm Necator
americanus and changes in insulin sensitivity, body mass index
and waist circumference will be measured over a 2-year period
(ACTRN12617000818336) (38). Despite the limitations of our
meta-analysis, the overall results clearly showed that infection
with intestinal worms, such as hookworm, was less efficacious
than the tissue dwelling parasites S. mansoni and O. viverrini. In
all cases where an outcome could be compared, the impact of
intestinal parasites was underwhelming, with no effect on HbAIc
(50, 54, 56) or HOMA-IR (26, 56), only a modest effect on fasting
blood glucose (26), and except for one study (47), either no effect or
an increase in T2D (48, 49). In contrast, for every outcome, infection
with S. mansoni, resulted in a significant positive effect (51).

The choice of hookworm for a clinical trial is based primarily on
the lack of pathology that results from infection with this parasite.
Other than a mild itch as the larval worms enter the body through
the skin, for doses of up to 40 larvae, no discomfort has been
reported in previous human safety trials (73–75). This parasite
resides in the intestine of its human host where it attaches to the
intestinal epithelium and feeds on blood. For a low dose/controlled
infection, this has little pathological consequence, unlike with high
doses where intestinal hemorrhage and iron deficiency anemia are
common (76). Although S. mansoni also infects its human hosts
through the skin, it resides in the mesenteric blood vessels, where
the adult male and female wormsmate to produce eggs that are then
excreted from the body in order for the life cycle of the parasite to
continue. While infection is rarely fatal, it can result in significant
morbidities and loss of quality-of-life (77). Eggs that are not
correctly secreted from the body can become trapped in the liver
leading to the formation of granulomas and fibrosis which can
result in portal hypertension and congestive splenomegaly (78).
Liver enlargement and periportal fibrosis are commonly associated
with advanced chronic infection. Children that are repeatedly
infected can develop anemia and malnutrition which lead to
significant developmental defects. Such outcomes clearly preclude
the consideration of this parasite for live helminth therapy.

If live infection is deemed to be too high risk for a therapeutic
intervention, there may be potential in using schistosome-derived
products instead. Multiple experimental studies in murine models
of obesity have tested the possibility that compounds derived from
parasites can mimic the regulation of immune responses seen
during live infection and thus exploited as therapeutics for
inflammatory based diseases such as T2D. The most commonly
investigated derivatives have been soluble egg antigen (SEA) from
either S. mansoni or S. japonicum, and subsequently glycan and
glycoproteins found within SEA, such as the LewisX containing
Lacto-N-fucopentaose III (LNFPIII). The SEA, whether from S.
mansoni or S. japonicum, consistently shows efficacy inmodels of IR
and T2D, improving insulin sensitivity and glucose tolerance,
Frontiers in Endocrinology | www.frontiersin.org 9
increasing adipose M2 macrophages, increasing expression of IL-4
and -5, and increasing T regulatory cells (29, 79–82). Similarly,
LNFPIII has also been shown to reduce white adipose tissue
inflammation and improve adipose tissue insulin sensitivity (83).
In addition to these secreted products, a myriad of immune-
regulating molecules secreted by S. mansoni and many other
helminths have been identified. Based on their varying
mechanisms of action many of these also offer great potential to
suppress obesity-driven inflammation (84, 85).

Combining these observations with the current meta-analysis,
strongly support the proposal that helminth parasites have the
capacity to regulate obesity driven inflammation to mediate a
positive effect on metabolic outcomes. However, consideration
for the variations between different parasites and a deeper
understanding of the mechanisms involved is required before
helminth-based therapies can progress to the clinic. This
advancement would be greatly supported if future studies in
the field included an accurate diagnosis of the parasite infection,
information on the immunological and inflammatory status of
patients, and consistent measures of metabolic outcomes. As this
type of information is expanded and underscored with enhanced
knowledge of the biochemistry and function of parasite-derived
molecules, there is every possibility that helminth-derived
therapy will be a clinical reality for patients with MetS.
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